FIELD OF THE INVENTION
The present invention relates to construction of a wound stator for a dynamo-electric machine and, more particularly, to an end wrapping configuration to form end connections for coil windings on the stator.
BACKGROUND OF THE INVENTION
Field coils for stators of dynamo-electric machines are generally placed on radially inwardly extending teeth of the stator as wire windings. In stators used for motors, the motor performance may be affected by the size and geometry of the motor and by the “active materials” forming the motor. In a brushless DC motor, for example, the active materials may comprise steel, magnets and copper forming the motor windings. For a given motor size, comprising a fixed amount of steel and magnet, providing additional windings (copper) located in the stator slots provides an increased amount of torque. Alternatively, if the field coils are formed with additional windings, it may be possible to reduce the axial length of the stator while maintaining the same performance that was achieved with a longer stator and lower number of windings. Generally, the slot geometry for stators is fixed such that the amount of the slot area that is filled with copper, i.e., the slot fill, is dependent on the efficiency with which the windings are positioned adjacent to each other within the slots.
Various factors affect the ability to efficiently position windings within the stator slots including interference from windings already positioned in a slot as additional wire is located in the slot. Thus, winding operations commonly involve a forming operation in which windings are periodically pushed or formed into closer engagement with each other to provide additional slot clearance for receiving further windings. In addition, in series wound stators, winding wire that extends across two or more slots defined between adjacent teeth at an end of the stator, i.e., cross-overs, may form a partial barrier covering a radial portion of the slots and limiting the amount of wire that may be added to the slots.
SUMMARY OF THE INVENTION
In accordance with an aspect of the invention, a method of winding a dynamo-electric stator is provided. The method comprises: providing a stator having a plurality of radially inwardly extending teeth; providing a plurality of wire turns around each of the teeth to form a wire winding on each of the teeth, the windings comprising first, second and third phase windings; each winding comprising a primary lead defined by a free end of the wire forming the winding and a secondary lead defined by a free end of the wire forming the winding, the primary and secondary leads extending from opposite sides of a respective tooth on a termination side of the stator; each phase comprising a plurality of the windings wherein each phase comprises a winding having a primary lead defining a primary base lead, a winding having a secondary lead defining a secondary base lead, two or more windings having primary leads defining at least an initial primary wrap lead and a last primary wrap lead, and two or more windings having secondary leads defining at least an initial secondary wrap lead and a last secondary wrap lead; performing an end wrapping operation for each phase comprising:
- wrapping the initial primary wrap lead in a first circumferential direction around the termination side of the stator to a respective one of the primary base leads; wrapping the last primary wrap lead in a second circumferential direction, opposite to the first direction, around the termination side of the stator to the respective one of the primary base leads; wrapping the initial secondary wrap lead in the first direction around the termination side of the stator to a respective one of the secondary base leads; wrapping the last secondary wrap lead in the second direction around the termination side of the stator to the respective one of the secondary base leads; and joining the wrap leads associated with each of the primary and secondary base leads to form a primary and secondary lead connection for each of the phases.
In accordance with another aspect of the invention, a wound stator is provided for a dynamo-electric machine. The wound stator comprises a stator having a plurality of circumferentially spaced, radially inwardly extending teeth, and a plurality of discrete strands of wire, each strand of wire forming a plurality of turns around a respective tooth to define a winding on the respective tooth. Each winding comprises a primary lead defined by a free end of a respective one of the discrete strands of wire and a secondary lead defined by another free end of the respective one of the discrete strands of wire wherein each of the primary and secondary leads are located on a termination side of the stator. One of the primary leads defines a primary base lead, and one of the secondary leads defines a secondary base lead. A plurality of conductive paths extend from each of a plurality of the windings to the primary base lead and a plurality of conductive paths extend from the plurality of windings to the secondary base lead; and each of the conductive paths comprise one of the primary and secondary leads without additional conductive structure extending between the plurality of windings and the primary and secondary base leads.
In accordance with another aspect of the invention, a method of winding a dynamo-electric stator is provided. The method comprises: providing a stator having a plurality of radially inwardly extending teeth; providing a plurality of wire turns around each of the teeth to form a wire winding on each of the teeth, the windings comprising first, second and third phase windings; each winding comprising a primary lead defined by a free end of the wire forming the winding and a secondary lead defined by a free end of the wire forming the winding, the primary and secondary leads extending from opposite sides of a respective tooth on a termination side of the stator; each phase comprising a plurality of the windings wherein each phase comprises a winding having a primary lead defining a primary base lead, a winding having a secondary lead defining a secondary base lead, two or more windings having primary leads defining at least an initial primary wrap lead and a last primary wrap lead, and two or more windings having secondary leads defining at least an initial secondary wrap lead and a last secondary wrap lead; performing an end wrapping operation for the first, second and third phases, comprising:
- wrapping the initial primary wrap leads in a first circumferential direction around the termination side of the stator to respective ones of the primary base leads; wrapping the initial secondary wrap leads in a second circumferential direction, opposite to the first direction, around the termination side of the stator to respective ones of the secondary base leads; wrapping the last primary wrap leads in the second circumferential direction around the termination side of the stator to respective ones of the primary base leads; wrapping the last secondary wrap leads in the first circumferential direction around the termination side of the stator to respective ones of the secondary base leads; and joining the wrap leads associated with each of the primary and secondary base leads to form a primary and secondary lead connection for each of the phases.
BRIEF DESCRIPTION OF THE DRAWINGS
While the specification concludes with claims particularly pointing out and distinctly claiming the present invention, it is believed that the present invention will be better understood from the following description in conjunction with the accompanying Drawing Figures, in which like reference numerals identify like elements, and wherein:
FIG. 1 is a perspective view of a stator stack carrying windings prior to a lead wrapping operation;
FIGS. 2-4 illustrate steps for wrapping primary leads of first phase windings on the stator;
FIGS. 5-7 illustrate steps for wrapping secondary leads of the first phase windings on the stator;
FIGS. 8-10 illustrate steps for wrapping primary leads of second phase windings on the stator;
FIGS. 11-13 illustrate steps for wrapping secondary leads of the second phase windings on the stator;
FIGS. 14-16 illustrate steps for wrapping primary leads of third phase windings on the stator;
FIGS. 17-19 illustrate steps for wrapping secondary leads of the third phase windings on the stator;
FIG. 20 is a perspective view of the termination side of a stator at the conclusion of the wrapping operation for the first phase primary and secondary leads;
FIG. 21 is a perspective view of the termination side of the stator at the conclusion of the wrapping operation for the second phase primary and secondary leads;
FIG. 22 is a perspective view of the termination side of the stator at the conclusion of the wrapping operation for the third phase primary and secondary leads;
FIG. 23 is a perspective view of the termination side of the stator following completion of the primary and secondary lead connections;
FIG. 24 illustrates simultaneous wrapping of first primary leads of three phases in accordance with a second embodiment of the invention;
FIG. 25 illustrates simultaneous wrapping of first secondary leads of three phases in accordance with the second embodiment of the invention;
FIG. 26 illustrates simultaneous wrapping of second primary leads of three phases in accordance with the second embodiment of the invention;
FIG. 27 illustrates simultaneous wrapping of second secondary leads of three phases in accordance with the second embodiment of the invention;
FIG. 28 illustrates simultaneous wrapping of third primary leads of three phases in accordance with the second embodiment of the invention; and
FIG. 29 illustrates simultaneous wrapping of third secondary leads of three phases in accordance with the second embodiment of the invention.
DETAILED DESCRIPTION OF THE INVENTION
In the following detailed description of the preferred embodiment, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration, and not by way of limitation, a specific preferred embodiment in which the invention may be practiced. It is to be understood that other embodiments may be utilized and that changes may be made without departing from the spirit and scope of the present invention.
Referring to FIG. 1, the present invention comprises a method of constructing a wound stator 10. The stator 10 may comprise a stator stack 12 formed of a plurality of laminations bonded together to form a unitary structure. The stator stack 12 includes a plurality of radially inwardly extending teeth 14 having inner ends comprising inner surfaces 16 defining an inner diameter of the stator 10 for receiving a rotor (not shown). It should be noted that although the illustrated stator stack 12 is shown herein as including twelve teeth 14, the present invention may be practiced with a stator stack 12 having a different number of teeth 14 such as, for example, nine teeth.
Each of the teeth 14 receive a plurality of wire turns forming a wire winding 18 on each of the teeth 14. In accordance with an aspect of the invention, wire may be fed from within the inner diameter of the stator 10 through slots 20 between the teeth 14 during a winding operation forming the windings 18. The wire windings 18 on the stator stack 12 are formed as parallel windings, where each wire winding 18 is formed from a discrete strand of wire having a free end on either side of a respective tooth 14. The free ends of the windings 18 comprise a primary lead 22a and a secondary lead 22b extending from the tooth 14 on a termination side 24 of the stator 10. Forming the windings 18 as parallel windings enables the present stator 10 to be formed with a higher slot fill, in that the windings provided to each tooth 14 may be wound on radially outer portions of the teeth, i.e., adjacent to a peripheral portion 26 of the stator stack 12, to a greater extent than may be possible for series wound windings.
Further, it should be noted that each winding 18 may comprise more than one wire. For example, each winding 18 may be formed with two or more wires wound simultaneously around a respective tooth 14. Providing two or more wires forming the windings 18 permits a smaller diameter wire to be used for the windings 18, which may permit a closer packing of wires adjacent to each other, i.e., with less unfilled space, than a larger diameter wire, facilitating a higher slot fill density.
In the illustrated embodiment, the wound stator 10 comprises a stator for use in a three phase motor (not shown) such as a three phase brushless DC motor. Hence, in the illustrated stator 10 including twelve windings, each of the phases comprises three windings 18. The windings 18 for each phase are located on teeth 14 spaced from each other 90 degrees around the circumference of the stator stack 12.
In accordance with an aspect of the invention, the primary and secondary leads 22a, 22b are wrapped in a predetermined pattern around the peripheral portion 26 of the stator stack 12 to connect the windings 18 associated with a respective phase together in a parallel connection of the windings 18 for each phase. As will be described further below, a wrapping operation is performed on the primary and secondary leads 22a, 22b to provide a woven pattern that causes the leads 22a, 22b to engage each other for maintaining the leads 22a, 22b in a compact wrap structure that lies close to the stator stack 12.
Referring to FIGS. 2-19, the steps of the wrapping operation are illustrated diagrammatically. Generally, the wrapping operation comprises performing a wrapping operation for each phase in succession, where the separate phases are designated by the letters A, B and C. During the wrapping operation, three of the primary leads 22a for a phase, designated as primary wrap leads, are wrapped to the remaining one of the primary leads 22a, designated a primary base lead, to define a wrapped group of primary leads 22a. Subsequently, three of the secondary leads 22b for the phase, designated as secondary wrap leads, are wrapped to the remaining one of the secondary leads 22b, designated as a secondary base lead, to define a wrapped group of secondary leads 22b. The primary and secondary wrap leads are designated by 22an and 22bn, respectively where n is a wrap wire number 1, 2 or 3. The primary and secondary base leads are designated by 22a0 and 22b0, respectively.
It should be noted that in FIGS. 2-19, for ease of illustration, each of the wrapping operations for forming either the wrapped group of primary leads 22a or the wrapped group of secondary leads 22b of a phase are shown separately in three successive views, i.e., showing only the leads associated with the group, without including illustration of other wrapped leads. In addition, the lead 22a, 22b being wrapped is illustrated by a bold solid line, while previously wrapped leads 22a, 22b in the group are designated by a thinner line.
FIGS. 2-4 illustrate a wrapping operation for the primary leads 22a of a first phase A for the wound stator 10 which may be performed in the illustrated and described sequence. As seen in FIG. 2, an initial or first primary wrap lead 22a1-A for the first phase is wrapped 180 degrees around the termination side 26 in a first, counterclockwise direction from a first winding 181-A of the first phase to the primary base lead 22a0-A associated with a third winding 183-A of the first phase. FIG. 3 illustrates a second primary wrap lead 22a2-A for the first phase that is wrapped 90 degrees around the termination side 26 in the first, counterclockwise direction from a second winding 182-A of the first phase to the primary base lead 22a0-A. FIG. 4 illustrates a last or third primary wrap lead 22a3-A for the first phase that is wrapped 90 degrees around the termination side 26 in a second, clockwise direction from a fourth winding 184-A of the first phase to the primary base lead 22a0-A. The primary wrap leads for the first phase are joined together to define a first phase primary lead connection 23a-A.
FIGS. 5-7 illustrate a wrapping operation for the secondary leads 22b of the first phase A for the wound stator 10 which may be performed in the illustrated and described sequence. As seen in FIG. 5, an initial or first secondary wrap lead 22b1-A for the first phase is wrapped 180 degrees around the termination side 26 in the first, counterclockwise direction from the second winding 182-A to the secondary base lead 22b0-A associated with the fourth winding 184-A of the first phase. FIG. 6 illustrates a second secondary wrap lead 22b2-A for the first phase that is wrapped 90 degrees around the termination side 26 in the first, counterclockwise direction from the third winding 183-A to the secondary base lead 22b0-A. FIG. 7 illustrates a last or third secondary wrap lead 22b3-A for the first phase that is wrapped 90 degrees around the termination side 26 in the second, clockwise direction from the first winding 181-A to the secondary base lead 22b0-A. The secondary wrap leads for the first phase are joined together to define a first phase secondary lead connection 23b-A.
It can be seen that the secondary base lead 22b0-A is circumferentially displaced from the primary base lead 22a0-A by 90 degrees. Further, a comparison of the area of the termination side 24 swept by the secondary leads 22b of the first phase, as seen by comparing FIGS. 5-7 to FIGS. 2-4, shows that the secondary leads 22b overlap, i.e., cross over and engage, portions of each of the primary leads 22a to bias the primary leads 22a axially toward the stator stack 12.
In should be noted that a guide may provided to direct the leads 22a, 22b in a circumferential direction around the inner diameter of the stator stack 12 during the wrapping process. For example, as seen in FIG. 1, a mandrel 30 may be provided for engagement with the termination end of the stator stack 12 during the wrapping process. The mandrel 30 may have a cylindrical base 32 and a conical body 34. The base 32 defines a diameter that is slightly larger than the inner diameter of the stator stack 12, as defined by the inner surfaces 16 of the teeth 14, and provides a surface around which the leads 22a, 22b may be drawn as they are directed to the respective base leads. The conical body 34 facilitates guiding the leads 22a, 22b to the surface of the base 32. In addition, the base 32 includes an insert portion 36 defining a diameter substantially equal to, or slightly less than, the inner diameter of the stator stack 12 for engaging the inner diameter of the stator stack 12, and maintaining the mandrel 30 in position on the stator stack 12 during the wrapping process.
FIGS. 8-10 illustrate a wrapping operation for the primary leads 22a of a second phase B for the wound stator 10 which may be performed in the illustrated and described sequence subsequent to the steps described for wrapping the leads of the first phase. As seen in FIG. 8, an initial or first primary wrap lead 22a1-B for the second phase is wrapped 180 degrees around the termination side 26 in the first, counterclockwise direction from a first winding 181-B of the second phase to the primary base lead 22a0-B associated with a third winding 183-B of the second phase. FIG. 9 illustrates a second primary wrap lead 22a2-B for the second phase that is wrapped 90 degrees around the termination side 26 in the first, counterclockwise direction from a second winding 182-B of the second phase to the primary base lead 22a0-B. FIG. 10 illustrates a last or third primary wrap lead 22a3-B for the second phase that is wrapped 90 degrees around the termination side 26 in a second, clockwise direction from a fourth winding 184-B of the second phase to the primary base lead 22a0-B. The primary wrap leads for the second phase are joined together to define a second phase primary lead connection 23a-B.
FIGS. 11-13 illustrate a wrapping operation for the secondary leads 22b of the second phase B for the wound stator 10 which may be performed in the illustrated and described sequence. As seen in FIG. 11, an initial or first secondary wrap lead 22b1-B for the second phase is wrapped 180 degrees around the termination side 26 in the first, counterclockwise direction from the second winding 182-B to the secondary base lead 22b0-B associated with the fourth winding 184-B of the second phase. FIG. 12 illustrates a second secondary wrap lead 22b2-B for the second phase that is wrapped 90 degrees around the termination side 26 in the first, counterclockwise direction from the third winding 183-B to the secondary base lead 22b0-B. FIG. 13 illustrates a last or third secondary wrap lead 22b3-B for the second phase that is wrapped 90 degrees around the termination side 26 in the second, clockwise direction from the first winding 181-B to the secondary base lead 22b0-B. The secondary wrap leads for the second phase are joined together to define a second phase secondary lead connection 23b-B.
It can be seen that the lead wrapping of the primary and secondary leads 22a, 22b of the second phase B is circumferentially displaced clockwise from the lead wrapping of the respective primary and secondary leads 22a, 22b of the first phase A by one tooth 14 of the stator stack 12. Hence, the lead wrapping of the second phase substantially overlaps the lead wrapping of the first phase to bias the first phase axially toward the stator stack 12. Further, as described above with regard to the lead wrapping of the first phase, the secondary base lead 22b0-B of the second phase is circumferentially displaced from the primary base lead 22a0-B by 90 degrees, such that the secondary leads 22b overlap, i.e., cross over and engage, portions of each of the primary leads 22a of the second phase to bias the primary leads 22a axially toward the stator stack 12.
FIGS. 14-16 illustrate a wrapping operation for the primary leads 22a of a third phase C for the wound stator 10 which may be performed in the illustrated and described sequence subsequent to the steps described for wrapping the leads of the second phase. As seen in FIG. 14, an initial or first primary wrap lead 22a1-C for the third phase is wrapped 180 degrees around the termination side 26 in the first, counterclockwise direction from a first winding 181-C of the third phase to the primary base lead 22a0-C associated with a third winding 183-C of the third phase. FIG. 15 illustrates a second primary wrap lead 22a2-C for the third phase that is wrapped 90 degrees around the termination side 26 in the first, counterclockwise direction from a second winding 182-C of the third phase to the primary base lead 22a0-C. FIG. 16 illustrates a last or third primary wrap lead 22a3-C for the third phase that is wrapped 90 degrees around the termination side 26 in a second, clockwise direction from a fourth winding 184-C of the third phase to the primary base lead 22a0-C. The primary wrap leads for the third phase are joined together to define a third phase primary lead connection 23a-C.
FIGS. 17-19 illustrate a wrapping operation for the secondary leads 22b of the third phase B for the wound stator 10 which may be performed in the illustrated and described sequence. As seen in FIG. 17, an initial or first secondary wrap lead 22b1-C for the third phase is wrapped 180 degrees around the termination side 26 in the first, counterclockwise direction from the second winding 182-C to the secondary base lead 22b0-C associated with the fourth winding 184-C of the third phase. FIG. 18 illustrates a second secondary wrap lead 22b2-C for the third phase that is wrapped 90 degrees around the termination side 26 in the first, counterclockwise direction from the third winding 183-C to the secondary base lead 22b0-C. FIG. 19 illustrates a last or third secondary wrap lead 22b3-C for the third phase that is wrapped 90 degrees around the termination side 26 in the second, clockwise direction from the first winding 181-C to the secondary base lead 22b0-C. The secondary wrap leads for the third phase are joined together to define a third phase secondary lead connection 23b-C.
It can be seen that the lead wrapping of the primary and secondary leads 22a, 22b of the third phase C is circumferentially displaced clockwise from the lead wrapping of the respective primary and secondary leads 22a, 22b of the second phase B. Hence, the lead wrapping of the third phase substantially overlaps the lead wrapping of the first and second phases to bias these phases axially toward the stator stack 12. Further, as described above with regard to the lead wrapping of the first and second phases, the secondary base lead 22b0-C of the third phase is circumferentially displaced from the primary base lead 22a0-C by 90 degrees, such that the secondary leads 22b overlap, i.e., cross over and engage, portions of each of the primary leads 22a of the third phase to bias the primary leads 22a axially toward the stator stack 12.
Further, it should be understood that by providing the above-described wrapping operation in which the leads 22a, 22b for the phases are wrapped across each other in the described pattern, multiple leads 22a, 22b may extend in different directions, i.e., clockwise and counterclockwise, to form a woven-type end and create a substantially tight nesting of the leads 22a, 22b against each other to maintain the leads in close association with the termination end 24 of the stator stack 12.
Referring to FIGS. 20-22, the termination end 24 of the stator 10 is shown at different stages of the wrapping process to illustrate the interaction of the different leads 22a, 22b to form a woven-type end construction. FIG. 20 illustrates the end of the stator 10 at the conclusion of wrapping the primary and secondary leads 22a, 22b of the first phase A. It can be seen that the secondary leads 22b overlap the primary leads 22a. For example, it can be seen that the secondary wrap lead 22b2-A extends across the primary wrap leads forming the primary lead connection 23a-A at the third winding 183-A to substantially retain the leads closely adjacent to the third winding 183-A of the first phase.
FIG. 21 illustrates the end of the stator 10 at the conclusion of wrapping the primary and secondary leads 22a, 22b of the second phase B. It can be seen that the secondary leads 22b overlap the primary leads 22a of the second phase and overlap the leads of the first phase. For example, it can be seen that the secondary wrap lead 22b2-B extends across the primary wrap leads forming the lead connection 23a-B at the third winding 183-B of the second phase, and also extends across the wrap leads forming the lead connection 23a-A at the third winding 183-A of the first phase. Also, it may be seen that the secondary wrap lead 22b3-B extends across the wrap leads forming the secondary lead connection 23b-A at the fourth winding 184-A of the first phase.
FIG. 22 illustrates the end of the stator 10 at the conclusion of wrapping the primary and secondary leads 22a, 22b of the third phase B. It can be seen that the secondary leads 22b overlap the primary leads 22a of the third phase and overlap the primary and secondary leads of the first and second phases. For example, it can be seen that the secondary wrap lead 22b2-C extends across the primary wrap leads forming the lead connection 23a-C at the third winding 183-C of the third phase, and also extends across the wrap leads forming the lead connections 23a-B and 23a-A at the third windings 183-B and 183-A of the of the second and first phases, respectively. Also, it may be seen that the secondary wrap lead 22b3-C extends across the wrap leads forming the secondary lead connection 23b-A and the secondary lead connection 23b-B at the fourth windings 184-A and 184-B of the first and second phases, respectively.
It should be noted that the above described wrapping of leads only identifies exemplary overlaps of the leads adjacent to windings where the lead connections are formed. However, the primary and secondary leads 22a, 22b define multiple points of engagement around the periphery 26 of the terminal end 24 of the stator 10 to create a substantially tightly wrapped formation of wires forming the lead connections, as seen in FIG. 23. As may also be seen in FIG. 23, the lead connections 23a-A, 23a-B, 23a-C, 23b-A, 23b-B, 23b-C may be formed by twisting and soldering the respective wrap leads forming the connections.
FIGS. 24-29 illustrate an alternative embodiment for performing a wrapping process on the wrap leads 22a, 22b. In the alternative wrapping process, three leads comprising either three primary leads 22a for each of the three phases or three secondary leads 22b for each of the three phases, are wrapped to respective base leads simultaneously.
As seen in FIG. 24, first primary leads 22a1-A, 22a1-B, 22a1-C are wrapped in a first, counterclockwise direction from respective first windings 181-A, 181-B, 181-C to respective primary base leads 22a0-A, 22a0-B, 22a0-C associated with respective third windings 183-A, 183-B, 183-C. The first primary leads 22a1-A, 22a1-B, 22a1-C may be wrapped substantially simultaneously around the peripheral portion 26 of the termination side 24.
In a subsequent step, as illustrated in FIG. 25, first secondary leads 22b1-A, 22b1-B, 22b1-C are wrapped in a second, counterclockwise direction from respective second windings 182-A, 182-B, 182-C to respective secondary base leads 22b0-A, 22b0-B, 22b0-C associated with respective fourth windings 184-A, 184-B, 184-C. The first secondary leads 22b1-A, 22b1-B, 22b1-C may be wrapped substantially simultaneously around the peripheral portion 26 of the termination side 24.
In a subsequent step, as illustrated in FIG. 26, second primary leads 22a2-A, 22a2-B, 22a2-C are wrapped in the first direction from respective second windings 182-A, 182-B, 182-C to the respective primary base leads 22a0-A, 22a0-B, 22a0-C associated with the respective third windings 183-A, 183-B, 183-C. The second primary leads 22a2-A, 22a2-B, 22a2-C may be wrapped substantially simultaneously around the peripheral portion 26 of the termination side 24.
In a subsequent step, as illustrated in FIG. 27, second secondary leads 22b2-A, 22b2-B, 22b2-C are wrapped in the second direction from respective first windings 181-A, 181-B, 181-C to the respective secondary base leads 22b0-A, 22b0-B, 22b0-C associated with the respective fourth windings 184-A, 184-B, 184-C. The second secondary leads 22b2-A, 22b2-B, 22b2-C may be wrapped substantially simultaneously around the peripheral portion 26 of the termination side 24.
In a subsequent step, as illustrated in FIG. 28, third primary leads 22a3-A, 22a3-B, 22a3-C are wrapped in the second direction (clockwise) from respective fourth windings 184-A, 184-B, 184-C to the respective primary base leads 22a0-A, 22a0-B, 22a0-C associated with the respective third windings 183-A, 183-B, 183-C. The third primary leads 22a3-A, 22a3-B, 22a3-C may be wrapped substantially simultaneously around the peripheral portion 26 of the termination side 24.
In a subsequent step, as illustrated in FIG. 29, third secondary leads 22b3-A, 22b3-B, 22b3-C are wrapped in the first direction (counterclockwise) from respective third windings 183-A, 183-B, 183-C to the respective secondary base leads 22b0-A, 22b0-B, 22b0-C associated with the respective fourth windings 184-A, 184-B, 184-C. The third secondary leads 22b3-A, 22b3-B, 22b3-C may be wrapped substantially simultaneously around the peripheral portion 26 of the termination side 24.
It can be seen that in the alternative embodiment of FIGS. 24-29, each subsequent group of leads 22a, 22b overlaps one or more previously wrapped group of leads, and may extend in different directions, i.e., clockwise and counterclockwise, to form a woven-type end and create a substantially tight nesting of the leads 22a, 22b against each other to maintain the leads in close association with the termination end 24 of the stator stack 12.
In each of the embodiments described above, the windings 18 are individually formed on each of the teeth 14 prior to forming connections between the windings 18 of each phase, and the windings 18 of each phase are connected in parallel with each other subsequent to completion of the windings 18. By completing the windings 18 on all the teeth 14 prior to forming connections between the windings 18, it is possible to increase the slot fill of the wound stator 10 in comparison to prior winding configurations such as, for example, series wound stators. In particular, it is believed that the present method may provide slot fills of at least about 75-80%.
Further, the described wrapping operation provides a plurality of conductive paths across the termination side 24 of the stator 10 without requiring additional connecting structure for providing connections between the windings 18. In particular, the leads 22a, 22b define cross-overs, i.e., extending across the slots of the stator around the termination side 24, to form conductive paths between the windings 18 of each phase without incorporation of a termination plate or other conductive structure.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.