Paranasal ostium finder devices and methods

Information

  • Patent Grant
  • 11116392
  • Patent Number
    11,116,392
  • Date Filed
    Wednesday, December 5, 2018
    6 years ago
  • Date Issued
    Tuesday, September 14, 2021
    3 years ago
Abstract
Devices and methods for locating sinus ostia and positioning a guide wire within the sinus ostia. The subject devices include a shaft having a distal end, a proximal end, a curved region located between the distal and proximal ends, and an interior channel, an extensible and retractable guide wire movably mounted within the interior channel and a probe tip joined to the guide wire. Certain devices further include expandable portions for engaging and treating body anatomy.
Description
FIELD OF THE INVENTION

The present invention relates generally to medical devices, systems and methods and more particularly to methods and devices for locating and dilating paranasal sinus ostia.


BACKGROUND OF THE INVENTION

The skull contains a series of cavities known as paranasal sinuses that are connected by passageways. The paranasal sinuses include frontal sinuses, ethmoid sinuses, sphenoid sinuses and maxillary sinuses. The paranasal sinuses are lined with mucous-producing mucosal tissue and ultimately open into the nasal cavity. Normally, mucous produced by the mucosal tissue slowly drains out of each sinus through an opening known as an ostium. If the mucosal tissue of one of these passageways becomes inflamed for any reason, the cavities which drain through that passageway can become blocked. This blockage can be periodic (resulting in episodes of pain) or chronic. This interference with drainage of mucous (e.g., occlusion of a sinus ostium) can result in mucosal congestion within the paranasal sinuses. Chronic mucosal congestion of the sinuses can cause damage to the epithelium that lines the sinus with subsequent decreased oxygen tension and microbial growth (e.g., a sinus infection).


The term “sinusitis” refers generally to any inflammation or infection of the paranasal sinuses caused by bacteria, viruses, fungi (molds), allergies or combinations thereof. It has been estimated that chronic sinusitis (e.g., lasting more than 3 months or so) results in 18 million to 22 million physician office visits per year in the United States. Patients who suffer from sinusitis typically experience at least some of the following symptoms: headaches or facial pain; nasal congestion or post-nasal drainage; difficulty breathing through one or both nostrils; bad breath; and/or pain in the upper teeth.


One of the ways to treat sinusitis is by restoring the lost mucous flow. The initial therapy is typically drug therapy using anti-inflammatory agents to reduce the inflammation and antibiotics to treat the infection. A large number of patients do not respond to drug therapy. Currently, the gold standard for patients with chronic sinusitis that do not respond to drug therapy is a corrective surgery called Functional Endoscopic Sinus Surgery (FESS).


During FESS, an endoscope is inserted into the nose and, under visualization through the endoscope, the surgeon may remove diseased or hypertrophic tissue or bone and may enlarge the ostia of the sinuses to restore normal drainage of the sinuses. FESS procedures are typically performed with the patient under general anesthesia.


Although FESS continues to be the gold standard therapy for surgical treatment of severe sinus disease, FESS does have several shortcomings. For example, FESS can cause significant post-operative pain. Also, some FESS procedures are associated with significant post-operative bleeding and, as a result, nasal packing is frequently placed in the patient's nose for some period of time following the surgery. Such nasal packing can be uncomfortable and can interfere with normal breathing, eating, drinking etc. Also, some patients remain symptomatic even after multiple FESS surgeries. Additionally, some FESS procedures are associated with risks of iatrogenic orbital, intracranial and sino-nasal injury. Many otolaryngologists consider FESS an option only for patients who suffer from severe sinus disease (e.g., those showing significant abnormalities under CT scan). Thus, patients with less severe disease may not be considered candidates for FESS. One of the reasons why FESS procedures can be bloody and painful relates to the fact that instruments having straight, rigid shafts are used. In order to target deep areas of the anatomy with such straight rigid instrumentation, the physician needs to resect and remove or otherwise manipulate any anatomical structures that may lie in the direct path of the instruments, regardless of whether those anatomical structures are part of the pathology.


New devices, systems and techniques are being developed for the treatment of sinusitis and other disorders of the ear, nose, throat and paranasal sinuses. For example, various catheters, guide wires and other devices useable to perform minimally invasive, minimally traumatic ear, nose and throat surgery have been described in U.S. patent applications Ser. No. 10/829,917 entitled “Devices, Systems and Methods for Diagnosing and Treating Sinusitis and Other Disorders of the Ears, Nose and/or Throat,” issued as U.S. Pat. No. 7,654,997 on Feb. 2, 2010, Ser. No. 10/912,578 entitled “Implantable Device and Methods for Delivering Drugs and Other Substances to Treat Sinusitis and Other Disorders,” issued as U.S. Pat. No. 7,361,168 on Apr. 22, 2008, Ser. No. 10/944,270 entitled “Apparatus and Methods for Dilating and Modifying Ostia of Paranasal Sinuses and Other Intranasal or Paranasal Structures” published as U.S. Pub. No. 2006/0004323 on Jan. 5, 2006, Ser. No. 11/037,548 entitled “Devices, Systems and Methods For Treating Disorders of the Ear, Nose and Throat,” issued as U.S. Pat. No. 7,462,175 on Dec. 9, 2008, and Ser. No. 11/116,118 entitled “Methods and Devices For Performing Procedures Within the Ear, Nose, Throat and Paranasal Sinuses” issued as U.S. Pat. No. 7,720,521 on May 18, 2010. Each of these applications is hereby incorporated herein, in its entirety, by reference thereto. Many of these new devices, systems and techniques are useable in conjunction with endoscopic, radiographic and/or electronic/electromagnetic visualization assistance to facilitate precise positioning and movement of catheters, guide wires and other devices within the ear, nose, throat and paranasal sinuses and to avoid undesirable trauma or damage to critical anatomical structures such as the eyes, facial nerves and brain.


In one new procedure (referred to herein as a “Flexible Transnasal Sinus Intervention” or FTSI, or the Balloon Sinuplasty™ procedure), a dilatation catheter (e.g., a balloon catheter or other type of dilator) is advanced through the nose or some other entry path into the patient's head to a position within the ostium of a paranasal sinus or other location, without requiring removal or surgical alteration of other intranasal anatomical structures. The dilatation catheter is then used to dilate the ostium or other anatomical structures (such as man-made openings into a paranasal sinus and/or spaces within the nasal cavity) to facilitate natural drainage from the sinus cavity. En some cases, a tubular guide may be initially inserted through the nose and advanced to a position near the sinus ostium, and a guide wire may then be advanced through the tubular guide and into the affected paranasal sinus. The dilatation catheter may then be advanced over the guide wire and through the tubular guide to a position where its dilator (e.g., balloon) is positioned within the sinus ostium. The dilator (e.g., balloon) is then expanded, causing the ostium to dilate. In some cases, such dilatation of the ostium may fracture, move or remodel bony structures that surround or are adjacent to the ostium. Optionally, in some procedures, irrigation solution and/or therapeutic agents may be infused through a lumen of the dilatation catheter and/or other working devices (e.g., guide wires, catheters, cannula, tubes, dilators, balloons, substance injectors, needles, penetrators, cutters, debriders, microdebriders, hemostatic devices, cautery devices, cryosurgical devices, heaters, coolers, scopes, endoscopes, light guides, phototherapy devices; drills, rasps, saws, etc.) may be advanced through the tubular guide and/or over the guide wire to deliver other therapy to the sinus or adjacent tissues during the same procedure in which the FTSI is carried out. In FTSI procedures, structures and passageways other than sinus ostia may be dilated using the tools described above, tissue may be resected or ablated, bone may be restructured, drugs or drug delivery systems may be deployed, etc., as described in the documents incorporated herein by reference.


In FTSI procedures that include positioning of a guide wire into a paranasal sinus, the placement of the guide wire through a sinus ostium is typically preceded by the user finding the target ostium with a sinus seeker. The user or surgeon places a sinus seeker into the nasal passageway, and then by tactile feedback (i.e., by “feel”) finds the target ostium by contacting the distal end of the sinus seeker with the target sinus ostium. Use of more than one sinus seeker device may be required to locate the target ostium. The surgeon then removes the sinus seeker from the patient and introduces a guide catheter into the nasal passage. The guide wire is introduced into the nasal passageway through the guide catheter and, by tactile memory, the surgeon directs or positions the guide wire to the target ostium. When fluoroscopy or other x-ray visualization techniques are available, the physician may still utilize a sinus seeker prior to inserting the guide wire into a patient due to the physician's familiarity with using a sinus seeker to find the target ostium.


The insertion and removal of the ostium locating device, followed by introduction of a guide catheter and guide wire, results in repeated intrusion of devices into the patient's paranasal cavity and may correspondingly result in increased tissue trauma, increased post-operative recovery time, and/or increased surgery time (and thus cost) involved in the procedure. Presently, no single device is capable of both finding a target ostium and introducing a guide wire into the paranasal cavity to the target ostia, thus allowing the completion of two tasks in one step. There is a need for such methods and devices that can accurately determine the position of a target paranasal sinus ostium and also feed or position a guide wire into the target ostium during sinus procedures.


A need also exists for simplified devices and methods for accessing and dilating a maxillary sinus ostium. The maxillary sinus ostium can often be difficult to locate and treat, and in many cases it may be advantageous to dilate the maxillary ostium and also dilate an area or move an anatomical structure outside of the sinus (in the paranasal cavity) to help treat sinusitis. For example, it may be desirable in some case to dilate the middle meatus or infundibulum or move the middle meatus, anterior ethmoid air cell or uncinate process. It would be ideal if a physician could do so without removing tissue and with a relatively convenient tool or set of tools. The present invention will address at least some of these needs.


The present disclosure addresses these and other needs.


SUMMARY

The invention provides sinus seeker or sinus ostium finder or seeker devices and methods for introducing a guide wire into a target sinus ostium using the sinus seeker device itself. The present disclosure also provides a probe with a dilator for locating and dilating the maxillary sinus and for dilating a space outside the maxillary sinus.


The sinus ostium tinder of the invention comprises, in general terms: a shaft having a distal end, a proximal end, a curved region located between the distal and proximal ends, and an interior channel; an extensible and retractable guide wire movably mounted within the interior channel; and a probe tip joined to the guide wire. The guide wire is reversibly movable between a retracted position wherein the probe tip is adjacent to the distal end, and an extended position wherein the probe tip is separated from the distal end.


The probe with dilator device includes a shaft with a rigid proximal end and a less rigid, curved distal end with an atraumatic, probe-like distal tip. The device can further include one or more expandable dilators attached along the shaft such as to the curved distal portion or which is advanceable along the shaft.


In certain embodiments the probe tip is detachable and interchangeable.


In certain embodiments the sinus ostium finder further comprises a handle joined to the proximal end.


In certain embodiments the shaft further comprises an exterior sheath and an interior element, the interior channel extending through the interior element.


In certain embodiments the interior element comprises a rigid material and the exterior sheath comprises a resilient material.


In certain embodiments the interior element is removable and interchangeable.


In certain embodiments the sinus ostium finder further comprises an actuator element mechanically coupled to the guide wire. The actuator element may be located on the handle and mechanically coupled to the guide wire. The actuator element may be slidably mounted within a slot on the handle.


In certain embodiments the shaft further comprises a tubular inner sheath and a tubular outer sheath, the inner sheath positioned within the outer sheath, the interior channel extending through the inner sheath.


In certain embodiments the interior sheath may be extensible and retractable with respect to the outer sheath.


In certain embodiments the shaft further comprises a slot communicating with the interior channel, the slot structured and configured to allow the guide wire to be inserted into and removed from the interior channel through the slot.


In certain embodiments the outer sheath includes a first slot and the inner sheath includes a second slot, the first and second slots structured and configured to allow the guide wire to be inserted into and removed from the interior channel through the first and second slots when the first and second slots are aligned with each other.


In certain embodiments the shaft further comprises a front portion and a back portion joined to the front portion, the front and back portions defining a tubular shape, the interior channel located between the front and back portions.


In certain embodiments the front portion further comprises a slot, the slot communicating with the interior channel, the slot structured and configured to allow the guide wire to be inserted into and removed from the interior channel through the slot.


In many embodiments the sinus ostium finder of the invention may comprise:

    • an elongated shaft having a distal end and a proximal end, and a curved region between the proximal and distal ends; a handle joined to the proximal end; a longitudinal interior channel extending through the shaft and the handle; an extensible and retractable guide wire movably mounted within the interior channel; a probe tip joined to an end of the guide wire; and an actuator element associated with the handle and mechanically coupled to the guide wire, the guide wire extensible and retractable according to adjustment of the actuator element.


The invention also provides methods for locating a target ostium. The subject methods comprise, in general terms: providing a sinus ostium finder having a shaft with a distal end, a proximal end, a curved region located between the distal and proximal ends, and an interior channel, with an extensible and retractable guide wire movably mounted within the interior channel, and a probe tip joined to the guide wire; inserting the shaft of the sinus ostium finder into a patient's paranasal cavity; adjusting the position of the distal end of the shaft; and adjusting the position of the guide wire and the probe tip until the target ostium is located.


In certain embodiments the methods further comprise withdrawing the Shaft from the paranasal cavity while leaving the guide wire and the probe tip in the adjusted position.


In certain embodiments the methods further comprise introducing a surgical device along the guide wire to the target ostium.


In certain embodiments, the probe can embody a device for locating and dilating a natural ostium of a maxillary sinus, the device comprising an elongate shaft, comprising a substantially rigid proximal portion, a curved distal portion, an atraumatic distal tip at the end of the curved distal portion, wherein the curved distal portion has a size and shape to allow passage of the distal portion into a nasal cavity to position the atraumatic distal tip within or near a maxillary sinus ostium and an inflation lumen passing through at least part of the shaft, at least one expandable dilator coupled with the distal portion of the shaft in fluid communication with the inflation lumen.


In other embodiments, the device for locating and dilating a natural ostium of a maxillary sinus can embody an elongate inner shaft, comprising a substantially rigid proximal portion, a curved distal portion, and an atraumatic distal tip at the end of the curved distal portion, wherein the curved distal portion has a size and shape to allow passage of the distal portion into a nasal cavity to position the atraumatic distal tip within or near a maxillary sinus ostium and an outer shaft slidably disposed over the inner shaft and including an inflation lumen, and at least one expandable dilator coupled with the distal portion of the shaft in fluid communication with the inflation lumen.


In a related method, locating and dilating a maxillary sinus ostium can involve a maxillary sinus, the method comprising advancing a curved distal portion of a maxillary sinus device into a nasal cavity, wherein a proximal portion of the maxillary sinus device is substantially rigid, passing an atraumatic distal end of the distal portion through the natural ostium of the maxillary sinus, using tactile feedback to confirm passage of the distal end through the ostium and dilating at least one expandable dilator coupled with the curved distal portion of the maxillary sinus device to dilate the natural maxillary sinus ostium.


Additionally, in certain embodiments, the distal tip of the device can light up to provide transillumination.


In certain embodiments, the device can be coupled or used with a variable degree of view endoscope for viewing the maxillary ostium.


These and other advantages and features of the invention will become apparent to those persons skilled in the art upon reading the details of the devices, methods and systems as more fully described below.





BRIEF DESCRIPTION OF THE DRAWING


FIG. 1 is an illustration of a patient being treated by a prior art system for catheter-based sinus surgery according to prior art techniques.



FIG. 2a is a side elevation view of a sinus ostium finder in accordance with the invention shown with a guide wire in a retracted position.



FIG. 2b is a side elevation view of the sinus ostium finder of FIG. 2a shown with a guide wire in an extended position.



FIGS. 3a and 3b are fluoroscopic images (A-P orientation) showing the sinus ostium finder of FIGS. 2a and 2b locating the left maxillary sinus ostium and deploying a guide wire.



FIG. 4a through Fig. c are fluoroscopic images (A-P orientation) showing another embodiment of a sinus ostium finder locating the left frontal sinus ostium and deploying a guide wire.



FIG. 5a is a perspective view of another embodiment of a sinus ostium finder in accordance with the invention shown with a guide wire in a retracted position.



FIG. 5b is a perspective view of the sinus ostium finder of FIG. 4a shown with the guide wire in an extended position.



FIG. 5c is a cross-section of the sinus ostium finder of FIGS. 4a and 4b taken through line A-A.



FIG. 6 is a perspective view of another embodiment of a sinus ostium finder in accordance with the invention.



FIG. 7 is a perspective view of the distal end portion of another embodiment of a sinus ostium finder in accordance with the invention.



FIG. 8a is a perspective view of another embodiment of a sinus ostium finder in accordance with the invention shown with a guide wire in a partially detached position.



FIG. 8b is a perspective view of a distal end portion of another embodiment of a sinus ostium finder in accordance with the invention.



FIG. 9 is a partial perspective view of another embodiment of the sinus ostium finder of the invention.



FIG. 10a is a front elevation view of a distal end portion of another embodiment of the invention, shown without the guide wire.



FIG. 10b is a longitudinal sectional view taken through line B-B of the distal end portion of FIG. 10a shown with a guide wire positioned within the internal longitudinal channel.



FIG. 10c shows the distal end portion of FIG. 10b with the guide wire partially removed from the internal longitudinal channel.



FIG. 11a is a perspective view of the distal end portion of another embodiment of a sinus ostium seeker in accordance with the invention shown without a guide wire.



FIG. 11b is a cross-sectional view of the distal end portion of FIG. 11a taken through line C-C.



FIG. 12a is a cross-sectional view of a distal end portion of another embodiment of a sinus seeker apparatus in accordance with the invention shown without a guide wire.



FIG. 12b shows the distal end portion of FIG. 12b with a guide wire.



FIG. 12c shows the distal end portion of FIG. 12b including a lubricant.



FIG. 13 is a flow chart illustrating one embodiment of the methods of the invention.



FIG. 14 is a cross-sectional view of anatomy proximate a maxillary sinus.



FIG. 15 is a cross-sectional view depicting use of a guide, guide wire and balloon catheter for treating a maxillary sinus.



FIG. 16 is a side view of one embodiment of a probe device with a dilator.



FIGS. 17a-d are cross-sectional views depicting treating a maxillary sinus with the device of FIG. 16.



FIGS. 18a-c are partial cross-sectional views depicting use of a probe over a shaped mandrel.



FIGS. 19a-b are perspective views of another approach to a probe device with a dilator.



FIG. 20 is a side view of yet another embodiment of a probe device.



FIG. 21 is a perspective view of another approach to a probe device.



FIG. 22 is a perspective view of yet another approach to a probe device.



FIG. 23 is a partial cross-sectional view depicting another embodiment of a probe device.



FIG. 24 is a partial cross-sectional view depicting another alternate embodiment of a probe device.



FIG. 25 is a perspective view depicting a probe device including details of a handle assembly.



FIG. 26 is a partial cross-sectional view depicting a probe with a tinder tip.



FIG. 27 is a perspective view of a handle for a probe device.



FIGS. 28a-c depict steps involved in a method of use of the device of FIG. 26.





DETAILED DESCRIPTION

This invention is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.


Where a range of values is provided, it should be understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included or excluded in the range, and each range where either, neither or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are now described. All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited.


It must be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a tube” includes a plurality of such tubes and reference to “the shaft” includes reference to one or more shafts and equivalents thereof known to those skilled in the art, and so forth.


The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.


Turning now to FIG. 1, an illustration of a patient being treated by a system for catheter-based minimally invasive sinus surgery according to prior art techniques is shown. A C-arm fluoroscope 1000 that is useable to visualize a guide catheter 1002, a guide wire 1002, and a working device 1006 (e.g., a balloon catheter, other dilatation catheter, debrider, cutter, etc.). The guide tube 1002 may be introduced under direct visualization, visualization provided by fluoroscope 1000 and/or from endoscopic visualization, to place the distal end of tube 1002 at a location associated with an ostium of a sinus to be treated. Guide wire 1004 is then inserted through tube 1002 and advanced to extend the distal end of guide wire 1004 to the ostium to be treated. Proper placement often involves advancement and retraction of the distal end of guide wire 1004 until it has been visually confirmed that the guide wire is properly positioned. Working device 1006 is next passed over the guide wire 1004 to the target location where a surgical procedure is to be performed. After performance of the surgical procedure, the working device 1006 is deactivated and withdrawn from the patient, after which the guide Wire 1004 and guide catheter 1002 are withdrawn to complete the procedure.


Referring now to FIGS. 2a and 2b, a sinus ostium seeker, finder or locator device 10 in accordance with the invention is shown. The sinus finder 10 of the invention comprises a shaft or body 11 having a proximal end 12, a distal end 14, and a curved portion or region 16. Shaft 11 and curved portion 16 define an elongated tubular shape and support a guide wire 18 (FIG. 2b) within an internal channel or cavity (not shown) that extends through shaft 11 and curved region 16 to distal end 14. Curved region 16 may be adjacent to distal end 14 or separated from distal end 14 by a straight or uncurved portion of shaft or body 11. Guide wire 18 is extensible and retractable from shaft 11 through the distal end 14. A probe tip 20 on guide wire 18 is configured for locating a target ostium. Guide wire 18 is shown in a retracted position in FIG. 2a wherein probe tip 20 is adjacent or proximate to distal end 14, and in an extended position in FIG. 2b wherein probe tip 20 is positioned away from distal end 14. Proximal end 12 may be joined to a handle (not shown). The extension and retraction of guide wire 18 may be controlled by application of suitable force to guide wire 18.


Shaft 11 and curved portion 16 are shown as integral portions of a single piece or unit in the embodiment of FIGS. 2a and 2b. In certain embodiments the shaft 11 and curved portion 16 may comprise separate components that are joined together. The curved portion 16 as shown defines an angle of approximately 90 degrees or slightly greater than ninety degrees. This angle may vary as required for different uses of the invention. Preferably, curved portion defines an angle of between about 0 degrees and about 180 degrees, and more preferably between about 0 degrees and about 120 degrees, and providing several iterations at 0 degrees, 30 degrees, 70 degrees, 90 degrees and 110 degrees, or as required to accommodate a particular sinus surgery operation.


Curved portion 16 may be detachable from the remainder of shaft 11 and interchangeable to allow variation of curvature. Curved portion 16 and/or body 11 in many embodiments are resilient to facilitate positioning within a patient's paranasal cavity. In certain embodiments curved portion 16 and shaft 11 are malleable or bendable. In still other embodiments curved portion 16 is resilient or malleable, and shaft 11 is substantially rigid in nature.


Probe tip 20 is structured and configured to facilitate location of a target ostium. In many embodiments probe tip 20 is spherical or oblong in shape, but may be varied in shape as required for different uses of the invention. Probe tip 20 and distal end 14 are structured and configured to provide atraumatic surfaces to minimize trauma or damage to the patient's paranasal cavity. Probe tip 20 may be detachable from guide wire 18 and interchangeable, so that different sized and/or shaped probe tips 20 may be utilized for location of different sinus ostia.


Guide wire 18 may be extended or retracted manually by hand actuated, electric, or air-driven mechanism (not shown), such as a slide, rotatable crank, winch device, reel assembly, or the like. In certain embodiments the extension and retraction of guide wire 18 may be achieved by an electric or air-driven motor (not shown) that is mechanically interfaced with guide wire 18. Guide wire 18 is resilient or flexible in many embodiments to allow the user to easily locate probe tip 20 to a desired location. In certain embodiments guide wire 18 may be bendable or malleable rather than resilient.


Shaft 11, curved portion 16, probe tip 20, guide wire 18, as well as components of the invention in the several embodiments described herein, may be made of various metals or metal alloys, or polymeric materials such as engineering resins, or composite materials thereof, or various combinations of such materials. Preferably biocompatible materials, or coatings of biocompatible materials, are utilized for shaft 11, curved portion 16, probe tip 20 and guide wire 18 to minimize trauma to paranasal cavity tissue that comes in contact with sinus seeker 10. Shaft 11 and curved portion 16 in many embodiments are integral portions of a single component. Shaft 11 and/or curved portion 16 may be malleable, as noted above, such that the angle of curved portion 16 is adjustable by bending to accommodate a particular use. Shaft 11, curved portion 16, probe tip 20 and guide wire 18 and other components of the invention in many embodiments are made of materials that are autoclavable or otherwise sterilizable so that the apparatus 10 or individual components may be re-used. In certain embodiments the shaft 11, curved portion 16, probe tip 20 and guide wire 18 may be made of inexpensive, disposable materials.


In FIGS. 3a and 3b, the sinus ostium finder 10 is shown fluoroscopically in use to locate the left maxillary sinus ostium O1. The body or shaft 11 of sinus ostium finder is positioned within the patient's paranasal cavity P, and guide wire 18 (FIG. 3b) is extended from body 11 to locate ostium O1. Guide wire 18 is resilient or malleable as noted above, and may undergo flexing or bending over a substantial range of angle. As shown in FIG. 3b, the portion of guide wire 18 adjacent probe tip 20 is approximately parallel with the portion of guide wire 18 adjacent to distal end 14, indicating a flexion angle of approximately 180 degrees in guide wire 18 between distal end 14 and probe tip 20. Once the guide wire 18 has been positioned into the maxillary sinus cavity O1, shaft 11 and curved portion 16 may be removed or withdrawn from the patient's paranasal cavity P while leaving behind the guide wire 18, thus allowing other working devices (not shown) to be introduced over the guide wire 18 and then into the target sinus. In certain embodiments, the sinus ostium finder 10 may include radio-opaque markings (not shown) on shaft 11, curved portion 16, probe tip 20 and/or guide wire 18 to facilitate fluoroscopic visualization of the finder 10 and help in the navigation of finder 11 within the patient's nasal passageway P. The radio-opaque markings may comprise, for example, gradation markings to show dimensions or distances and numerical indicia identifying the gradation markings.


Referring now to FIGS. 4a through 4c, there is shown another embodiment sinus ostium finder 21 in accordance with the invention, with like reference numbers used to denote like parts. The sinus ostium finder 21 is shown fluoroscopically in use to locate the left frontal sinus ostium O2 of a patient. In the embodiment of FIGS. 4a through 4c, the curved region 16 of sinus ostium finder 21 defines an angle of approximately 150 degrees of curvature. The sinus ostium finder 10 of FIGS. 3a and 3b, in comparison, has a curved region 16 that defines an angle of approximately 110 degrees. In other respects the sinus ostium finder 21 is identical to sinus ostium finder 10.


In FIG. 4a, sinus ostium finder 21 is shown inserted into paranasal cavity P, with guide wire (not shown) in a fully retracted position such that probe tip 20 is positioned adjacent distal end 14. In FIG. 4b, guide wire 18 is shown partly extended from distal end 14. In FIG. 4c, guide wire is more fully extended such that probe tip 20 at the end of guide wire 18 is able to locate ostium O2.



FIGS. 5a, 5b and 5c show yet another embodiment of sinus seeker or finder 22 in accordance with the invention. Wherein like reference numbers are used to represent like parts. The sinus seeker 22 includes a handle portion 24 having distal and proximal end portions 26, 28 respectively (with only part of the proximal end portion 28 being shown). In the embodiment of FIGS. 5a-5c, handle 24 is of elongated cylindrical configuration and is structured to allow a user to manually adjust the position of shaft 11 and curved portion 16 within a paranasal cavity. Handle 24 is joined to the proximal end 12 of body or shaft 11 at joint 30 by means of internal threading (not shown), snap fitting or other suitable attachment means, and may be detachable from shaft 11 and interchangeable. Alternatively, handle 24 may be made integral with shaft 11. Curved portion 16 is joined to body or shaft 11 at joint 32 by internal threading (not shown), snap fitting or other suitable attachment means, and may be detachable from shaft 11 as noted above. Alternatively, curved portion 16 may be integral with shaft 11.


An interior opening or channel 34 extends longitudinally through handle 24, shaft 11 and curved portion 16, with channel 34 being configured to slidably or movably accommodate guide wire 18. In general, the inner diameter of the longitudinal channel 34 ranges from about 0.5 mm to about 5 mm, and more preferably from about 1 mm to about 3 mm, depending on the size of guide wire 18 utilized with the invention.


Referring more particularly to FIG. 5c, the curved portion 16 of sinus seeker 22 may further comprise a flexible or resilient outer sheath 36 and an internal element 38 within sheath 36. In the embodiment of FIG. 5c, outer sheath 36 is of circular cross-sectional shape, while internal element 38 is of a “U” or “C” cross-sectional shape such that longitudinal channel 34 and guide wire 18 are located between portions or ends 40, 42. Internal element 38 may be removable from sheath 36 and interchangeable. Internal element 38 may be of higher modulus material than sheath 36, such that the curvilinear shape and flexural properties of internal element 38 are imparted to curved portion 16. The material of internal portion 38 may be selected for desired flexural or malleable properties. In many embodiments internal element may also extend through shaft 11, or through shaft 11 and handle. In certain embodiments the outer sheath 36 may comprise a higher modulus material than internal element 38 such that the shape and flexural properties of the curved region are derived from sheath 36 rather than internal element 38. In many embodiments internal element 38 may also extend through shaft 11, or through shaft 11 and handle 24.


Referring now to FIG. 6, another embodiment of a sinus ostium finder or seeker 44 in accordance with the invention is shown, with like reference numbers used to denote like parts. The handle 24 of sinus seeker 44 is of elongated cylindrical shape and includes a longitudinal slot 46 that communicates with interior channel 34. A knob or actuator element 48 is slidably mounted within slot 46. Knob 48 is mechanically coupled to guide wire 18 such that movement of knob towards distal end 26 of handle 24 advances guide wire 18 and probe tip 20 from distal end 14, as shown in FIG. 6, when actuator 48 is positioned adjacent to distal end of slot 46. Sliding of actuator 48 to the proximal end of slot 46 results in a corresponding retraction of guide wire 18 and probe tip 20, as illustrated in phantom lines.


Referring next to FIG. 7, there is shown a portion of another embodiment of a sinus ostium finder 50 in accordance with the invention. Sinus seeker 50 includes an outer sheath 52 of substantially tubular shape, and an inner sheath 54 positioned within outer sheath 52. Inner sheath 54 is also of substantially tubular shape. A longitudinal channel 34 extends through inner sheath 54 and is structured and configured to slidably accommodate guide wire 18. In the embodiment of FIG. 7, longitudinal channel 34 is of substantially circular cross-sectional shape.


Outer sheath 52 may extend along a portion of, or the entire length of shaft 11, including the curved region (not shown). Inner sheath 54 may likewise extend along a portion of, or the entire length of, the curved portion and shaft. Inner sheath 54 may be slidably extensible and retractable with respect to outer sheath 52, such that during extension the distal end 56 of inner sheath 54 moves away from distal end 58 of outer sheath, and during retraction the distal end 56 of inner sheath 54 approaches distal end 58 of outer sheath 52. The extension and retraction of inner sheath 54 with respect to outer sheath 52 may be controlled by an actuator knob such as knob 48 in FIG. 6


Inner sheath 54 may be of higher modulus material than outer sheath 52, such that the shape and mechanical properties of inner sheath are imparted to curved portion and/or shaft (not shown) of the sinus seeker 50. In other embodiments the outer sheath 52 may comprise higher modulus material than that of the inner sheath. The material of inner sheath 52 and/or outer sheath may be selected for specific flexural or malleable properties in accordance with the desired use of the invention.



FIG. 8a shows yet another embodiment of a sinus seeker 60, wherein like reference numbers denote like parts. The distal end 14 of sinus seeker 60 includes a longitudinal slot 62 that communicates with the internal longitudinal channel 34. Slot 62 may extend along the length of all or portion of curved region 16 and shaft 11. Actuation of knob 48 in the manner described above allows guide wire 18 to be advanced or retracted with respect to distal end 14. FIG. 8a shows knob 48 positioned adjacent to proximal end 28 of handle 24, corresponding to a retracted position for guide wire 18.


Slot 62 allows guide wire 18 to be removed from channel 34 through slot 62, as well as by extension from distal end 14. Curvilinear portion 16 in this regard may be made of resilient material such that guide wire 18 is retained within channel 34 under normal conditions, but can “snap” out of slot 62 to disengage from channel 34 upon application of a lateral force to guide wire 18. As shown in FIG. 8a, guide wire 18 is partially disengaged from channel 34 and slot 62. Disengagement of guide wire 18 through slot 62 as provided by sinus seeker 60 facilitates removal and interchanging of guide wire 18 and probe tip 20, and facilitates removal of shaft 11, curved portion 16 and distal end 14 from a target sinus or adjacent regions of the paranasal cavity while leaving guide wire 18 and probe tip 20 in place. A working device (not shown) may then be directed along guide wire 18 to the target sinus to carry out surgical procedures.


In the embodiment of FIG. 8a, shaft 11 is extensible and retractable with respect to handle 24. A sleeve or collar 64 supports shaft 11 and may be tensioned by means of a screw or threaded parts (not shown) to secure shaft in place. Loosening of collar 64 allows shaft 11 to be extended or retracted from collar 64 and handle 24 to provide a different length and configuration to sinus seeker 60. Once shaft 11 has been adjusted to a desired length by extension or retraction from handle 24, collar 64 may be tensioned to retain the adjusted position of shaft 11.



FIG. 8b shows a distal portion of another embodiment of a sinus ostium finder 68 in accordance with the invention. The apparatus 68 includes an outer sheath 70 of substantially cylindrical or tubular shape, and an inner sheath 72 substantially cylindrical or tubular shape positioned within outer sheath 70. A longitudinal channel 34 extends through inner sheath 72 and is structured and configured to slidably accommodate guide wire 18. In the embodiment of FIG. 8b, longitudinal channel 34 is of substantially circular cross-sectional shape.


A longitudinal slot 74 extends through inner sheath 72 and communicates with longitudinal channel 34. Slot 74 permits guide wire 18 to be removed from channel 34 in a lateral direction upon exertion of a lateral force on guide wire 18. Outer sheath 70 may also include a longitudinal slot 76, which extends through outer sheath 72 to communicate with longitudinal slot 74 and hence longitudinal channel 34. Thus, guide wire 18 may be removed laterally from inner and outer sheaths 72, 70 via slots 74, 72 upon application of a suitable lateral force on guide wire 18.


In the embodiment of FIG. 8b longitudinal slots 74, 76 are aligned so that both slots 74, 76 communicate with internal channel 34 to allow insertion and release of guide wire 18 from channel. In certain embodiments one or both of the inner sheath 72 and outer sheath 70 may be rotatable with respect to each other along the longitudinal axis A of the shaft and curved region (not shown) of the apparatus 68. Inner sheath 72, outer sheath 70, or both may be mechanically coupled to a rotational adjustment mechanism on the handle (not shown of the apparatus 68, so that the rotational position of sheath 70 and/or sheath 72 may be rotatably adjusted to control alignment of slots 74, 76. Thus, when one of sheaths 70, 72 is rotated with respect to the other, slots 74, 76 may be moved out of alignment so that guide wire 18 cannot be removed through slots 74, 76, or aligned as shown in FIG. 8b so that guide wire 18 can be removed from channel 34 through slots 74, 76.


Outer sheath 70 may extend along a portion of, or the entire length of, the curved portion and shaft (not shown in FIG. 8b) of the sinus seeker apparatus 68. Inner sheath 72 may similarly extend along a portion of, or the entire length of, the curved portion and shaft. Inner sheath. 72 may be slidably extensible and retractable with respect to outer sheath 70, with distal end 78 of inner sheath 72 moving away from distal end 80 of outer sheath 70 during extension, and with distal end 78 moving towards distal end 80 during extension.



FIG. 9 illustrates still another embodiment of a sinus ostium seeker 82 in accordance with the invention, wherein like reference numbers denote like parts. The apparatus 82 includes a longitudinal slot 84 that extends from distal end 14 to the distal end 26 of handle 24. Longitudinal slot 84 communicates with longitudinal channel 34, which extends through handle 24, shaft 11 and curved region 16 to distal end 14. Slot 84 includes a laterally curving region 86 such that the end 88 of slot 84 adjacent handle distal end 26 has a different angular orientation (relative to a central axis passing through the shaft 11) than the end 90 of slot 84 adjacent distal end 14 with respect to shaft 11 and curved region 16, such that slot 84 “twists” relative to shaft 11 as it traverses from its distal end to its proximal end. Thus, in FIG. 9, the portion of slot 84 adjacent slot end 88 is rotated from the portion of slot 84 adjacent end 90 with respect to the longitudinal axis (not shown) defined by shaft 11 and curved portion 16. The laterally curving region 86 of slot 84 facilitates the insertion and removal of guide wire 18 into or out of interior longitudinal channel 34.


Referring now to FIG. 10a through 10c, a distal portion of another embodiment of a sinus ostium finder 92 in accordance with the invention is shown, with like numbers used to denote like parts. The apparatus 92 includes an opening 94 that extends longitudinally from distal end 14 across curved portion 16 to shaft 11. Opening 94 communicates with internal longitudinal channel 34. Opening 94 is structured and configured to allow a user to grasp guide wire 18 through opening 94, using fingers, forceps or other grasping tool (not shown). Opening 94 facilitates the removal of guide wire 18 from the channel 34 and the apparatus 92. In this way, the proximal end (not shown) of the guide wire can be loaded into the distal end 14 of the shaft 11 where the cutout 94 in the bend helps pass a stiff proximal end of the guidewire into the body of the guide catheter despite the sharp bend angle of the curved tip. Thus, the guidewire can take a less severe bend during loading. Once loaded, the system is configured as shown in FIG. 10B. After the system is used to place the tip of the guide wire into the sinus, the guide catheter can be pulled back off the proximal end of the guide wire.



FIGS. 11a and 11b show a distal portion of another embodiment of a sinus ostium finder 96 in accordance with the invention, with like reference numbers used to denote like parts. The apparatus 96 includes an elongated back portion 98 and an elongated front portion 100 that are joined together along seams 102, 104 by adhesive, heat welding or other bonding means. Back and front portions 98, 100 together define a tubular shape, with an interior channel 34 of circular cross-sectional shape between the front and back portions 98, 100. Front and back portions 98, 100 extend from distal end 14 along curved region 16 and shaft (not shown), and together define the curved region 16 and shaft (not shown) of the apparatus 96. A longitudinal slot 106 in front portion 100 communicates with interior channel 34. In the embodiment of FIGS. 11a and 11b, front and back portions 100, 98 each are semicircular in cross-sectional shape and impart a circular cross-sectional shape to interior channel 34.


In many embodiments back portion 98 is made of a rigid or substantially rigid higher modulus material, while front portion 100 comprises a resilient lower modulus material. The resilient nature of front portion 100 allows a guide wire (not shown) to “snap fit” through slot 106 between ends 108, 110 (FIG. 11b). The guide wire thus can be easily inserted into and removed from channel 34 by application of a suitable force against front portion 100 to force or move the guide wire through slot 106. In certain embodiments both front and back portions may comprise flexible materials.



FIGS. 12a through 12c provide cross-sectional views of a portion of yet another sinus ostium finder 112 in accordance with the invention, with like numbers used to denote like parts. The apparatus 112 includes an outer sheath 114 and an inner section or portion 116 positioned within sheath 114. Sheath 114 is of elongated tubular configuration and defines an interior channel 34 that extends longitudinally through the curved region and shaft (not shown) of the apparatus 112. Inner section 116 fits within channel 34 and extends along all or a portion of the shaft and curved region. A slot 118 extends longitudinally along sheath 114 and communicates with interior channel 34. In the embodiment shown in FIGS. 12a through 12c, sheath 114 is of circular cross-sectional shape and inner section 116 is of arcuate or semicircular cross-sectional shape such that the cross-sectional shape of inner section 116 conforms to the cross-sectional shape of sheath 114. A guide wire 18 (FIGS. 12b and 12c) fits within channel 34.


Sheath 114 is made of resilient material such that guide wire 18 can be forced between ends or portions 120, 122 through slot 188 and into channel 34. Guide wire 18 then is retained within channel 34 until a suitable force is applied to wire to bring wire through slot 118 between ends 120, 122 and out of channel 34. Inner section 116 in many embodiments is made of a rigid or substantially rigid material, or a material of higher modulus than that of sheath 114.


A coating 124 (FIG. 12c) of biocompatible low friction coefficient material such as TEFLON™ may be included on guide wire 18 to facilitate sliding motion of guide wire 18 within channel 34 and to reduce or minimize possible trauma to a patient's paranasal cavity. A lubricating oil or gel 126 (FIG. 12c) may be included within channel 34 to facilitate movement of guide wire 34 within channel 34.


The methods of the invention will be more fully understood by reference to the flow chart of FIG. 13, as well as FIGS. 2-12. The sequence of the events described below may vary and should not be considered limiting. Not all events described may occur in a particular use of the invention, and in certain embodiments additional events not shown in FIG. 13 may be carried out.


In event 200, the shaft 11 of the sinus ostium finder of the invention is inserted into a patient's paranasal cavity. As shown in FIGS. 3 and 4, this event is carried out by inserting distal end 14, followed by curved region 16 and shaft 11 into paranasal cavity P. The insertion may be carried out by a surgeon or other medical personnel, and may be monitored fluoroscopically and/or endoscopically, or may be carried out without visualization tools.


In event 210, the position of distal end 14 is adjusted. In many embodiments the adjustment is carried out manually, positioning distal end 14 by suitable manual positioning of handle 24. The positioning of distal end 14 in many embodiments is monitored fluoroscopically, so that the distal end 14, as well as shaft 11 and curved region 14 may be visualized. It is to be recognized that alternatively, such positioning can be visualized solely by endoscopic visualization. The adjustment of the position of distal end 14 is carried out with the goal of locating a target sinus ostium in the event(s) below. In certain embodiments radio-opaque markings or markings provided by visually contrasting colors may be included on distal end 14, shaft 11 and/or curved region 16 to assist in locating the target ostium.


In event 220, the position of guide wire 18 and probe tip 11 is adjusted by extension of guide wire 18 from distal end 14 until probe tip 20 approaches or reaches the target ostium. The positioning of guide wire 18 and probe tip 20 is generally monitored fluoroscopically, so that the position of probe tip 20 with respect to the target ostium may be visualized. In certain embodiments radio-opaque and radio-transparent markings may be included on probe tip 20 and/or guide wire 20 to assist in locating the target ostium.


In event 230, a determination is made whether or not the target ostium has been located. The determination is made by visually such as endoscopically, fluoroscopically or using light-emitting transillumination to observe the location or position of probe tip 20 with respect to the target ostium. In many embodiments the probe tip 20 is selected to have a diameter that matches that of the target ostium, and location of the target ostium is determined by exactly fitting the probe tip 20 into the target ostium. If the target ostium has been located, event 240 is carried out.


If it is determined in event 230 that the target ostium has not been located, event 220 may be repeated by again adjusting the position of guide wire 18 and probe tip 20. This may be carried out by retracting guide wire 18 towards distal end 14, and then re-extending guide wire 18 from distal end 14 to adjust the position of guide wire 18 and probe tip 20 and direct probe tip 20 towards the target ostium.


In certain instances where it is determined in event 230 that the target ostium has not been located, both events 210 and 220 are repeated. Thus, guide wire 18 is retracted, the position or orientation of distal end 14 is adjusted by manually positioning the sinus ostium finder apparatus, and then guide wire 18 is again advanced to adjust the position of guide wire 18 and probe tip 20.


In still further instances where it is determined in event 230 that the target ostium has not been located, events 200 through 220 may be repeated. In such instances guide wire 18 would be retracted, and the sinus ostium finder withdrawn from the paranasal cavity. Then, a different, more suitably configured sinus ostium finder would be re-inserted into the paranasal cavity and events 210 through 230 are repeated. Alternatively, the probe tip 20 may be removed from guide wire and a differently sized or shaped probe tip 20 may be introduced to guide wire, after which events 210 through 230 are repeated.


At event 240, shaft 11 (including curved region 16 and distal end 14) is removed from the paranasal cavity while leaving guide wire 18 and probe tip 20 in place in their adjusted position. In embodiments of the invention wherein the shaft 11 includes a slot, guide wire 18 may be disengaged from the slot prior to removal of the shaft 11.


In event 250, a surgical or working device or devices are introduced along the guide wire 18 and directed along the guide wire 18 to the target ostium. Such devices may comprise, for example, catheters, cannula, tubes, dilators, balloons, substance injectors, needles, penetrators, cutters, debriders, microdebriders, hemostatic devices, cautery devices, cryosurgical devices, heaters, coolers, scopes, endoscopes, light guides, phototherapy devices, drills, rasps, saws, and the like.


In event 260 a surgical or other procedure is carried out using the working device introduced in event 250.


In event 270, the working device and guide wire are withdrawn from the paranasal cavity.


Referring now to FIGS. 14 and 15, in a related approach, various embodiments may provide for dilating and/or remodeling a sinus ostium and/or a transitional space leading to an ostia. In particular, the devices, systems and methods described below are directed to remodeling a maxillary sinus ostium and/or a transitional space leading to a maxillary ostium. In alternative embodiments, ostia and/or transitional spaces of other paranasal sinuses may be dilated. Dilating or remodelling a transitional space may mean dilating a general anatomical area in the vicinity of an ostium and/or moving one or more anatomical structures in that general anatomical area. Such dilation or remodelling may in some cases facilitate or enhance flow of air, mucus and/or other substances into and/or out of a maxillary sinus.


With reference to FIG. 14, the nasal/paranasal cavity outside the maxillary sinus has a transitional space formed by and including the anatomical structures and spaces called the infundibulum I, the uncinate process U, the ethmoid bulla B, the middle turbinate MT and the middle meatus. In various embodiments, any of these structures may be moved and/or any of these areas may be dilated.


Referring now to FIG. 15, the anatomy of the maxillary sinus transitional space, like that of the paranasal cavity and the sinuses themselves, consists of bone and mucosa. Flexible and rigid instruments may be conceived to remove obstruction in the transitional space. As shown in FIG. 15, one flexible embodiment may involve a balloon catheter 300. The area may be accessed using a guide 302 and guidewire 304 and the balloon catheter 300 may be positioned in the transitional space and inflated. However, this approach requires the coordinated use of several devices. The approach may further require multiple guides 302 to position the balloon 300 appropriately.


Referring now to FIG. 16, a simplified probe device 310 can include a malleable or semi-rigid region 312 extending from a handle 314. The probe tip 316 can be curved and is contemplated to embody a dilator 318 such as a balloon. A proximal end of the handle 314 is equipped with a luer 320 for accepting an inflation device operable to expand the dilator 318. In this configuration, the curve of the probe tip 316 may be adjusted to optimize access behind the uncinate and in the transitional space leading to the maxillary sinus. When an inflation device (not shown) is attached the balloon can be inflated, creating space in the transitional area as well as dilating the maxillary sinus ostium. This device may be used as a single hand instrument under direct vision, fluoroscopy, and/or image guidance. Guides and guidewires may be adapted for use therewith but may not be necessary.


The balloon dilator 318 of the probe device 310 may have various attributes and configurations. For example, the balloon 318 may be non-compliant, semi-compliant, or compliant. Further there may be one or several balloons, and the balloons may be concentric or non-concentric. Moreover, the contemplated balloon 318 may have multiple diameters and lengths, multiple taper geometries, and it may end at or before the distal tip of the probe, or extend beyond the probe. The balloon 318 may also have modified frictional properties to release or gain traction on anatomy, such as a non-slip surface. In various embodiments, the balloon 318 may have round or non-round cross-sectional geometries to assist re-wrap and profile.


In one contemplated approach, as shown in FIGS. 17a-d, the balloon 318 may be non-concentric and may be oriented to inflate on the outside of the curve 316 of the probe 310. The balloon 318 may relatively long, extending from the medial shaft 320 to beyond the probe tip 316. When inflated, the balloon 318 does not push the uncinate U. However, the balloon is configurable to push medially on the middle turbinate MT and posteriorly on the bulla B, thereby opening the transitional space (See FIGS. 17c and d). The balloon 318 may also extend beyond the probe tip 316 to ensure that the infundibulum has been remodelled and to exert medial force on the middle turbinate MT.


In another example, a concentric and relatively short balloon (not shown) may push the uncinate U anteriorly and may have some posterior impact on the bulla B. There would not necessarily be an impact on the middle turbinate MT. In alternative embodiments, the same or similar devices may be used to remove or reduce obstruction in the frontal and sphenoid transitional spaces. When used in conjunction with a viewing device, the physician may be able to open the transitional space for the maxillary sinus and visually confirm if the ostium is open or closed. If the ostium is closed, the surgeon may opt to use traditional sinuplasty devices or other methods. If the ostium is open, then removal of obstructions in the transitional space may be a sufficient treatment.


As shown in FIGS. 18a-c, another probe device 330 for dilating the infundibulum, bulla, and/or middle turbinate, as well as the maxillary ostium, is shown. In particular, probe device 330 is configured to first access the maxillary ostium by tactile feel. Next, a member is advanced through the maxillary ostium and then employed to dilate the anatomical structures in the area. Here, the probe device 300 includes a balloon 332 configured with a ball tip 334. The device 330 is further configured to receive a shaped mandrel 336 within an interior lumen 338.


As shown in FIG. 18b, the balloon portion 332 is advanced over the mandrel 336, the mandrel 336 directing the balloon 332 transversely. By using this structure, the balloon 332 passes through the maxillary ostium O. Next, the balloon 332 is dilated, which consequently pushes the middle turbinate MT medially and the bulla B posteriorly. The dilation also opens the ostium O and infundibulum, whereas the uncinate is pushed anteriorly. The mandrel 336 enables the probe device 330 to tolerate the dilation pressure used to expand the balloon 332 without using a guidewire.


The interior lumen 338 or the probe device 330 is constructed to allow retraction over the mandrel 336 without kinking. The mandrel 336 itself could be spring tempered or malleable. The mandrel 336 may also have a short coil or soft tip to reduce kinking of the inner member during balloon retraction. The mandrel 336 may further be constructed of a shape memory alloy which would conform to the balloon 336 geometry when inflated. This may also help in reducing stress on the interior lumen 338 and kinking during balloon retraction.


In an alternative embodiment, the probe device 320 may be modified to address the sphenoid or frontal paranasal sinuses by using a substantially straight or less severely curved mandrel, respectively. In some embodiments, an optional sheath (not shown) may be integrated onto a shaft of the probe to help re-wrap the balloon and thus reduce the overall profile of the balloon after dilation and deflation.


In some embodiments, the probe device 320 facilitates the use of tactile feel and balloon advancement to confirm ostial access. This is generally desirable when using the device in the maxillary and sphenoid sinuses and/or their transitional areas, but it may not work as well in the frontal sinus. Several additional means of confirmation may also be adapted. For example, a fluid may be flushed through a lumen of the probe device 336. If the fluid is seen endoscopically in the nasal cavity, it can be assumed that the device has not entered the sinus. Alternatively, light fibers may be added to the tip of the device to transilluminate a sinus. This addition of light fibers and transillumination may be used in the maxillary, sphenoid or frontal sinus.


In another embodiment, an image guidance sensor may be fixed to the tip of the probe device 320 and tracked with an electro-magnetic system. This would provide confirmation for each of the sinuses. Fluoroscopy could also be used to confirm access. Likewise, a flexible fiber scope could be passed down the center of the probe device 320 to visualize the area if the tip of the device 320 has entered the target sinus.


Turning now to FIGS. 19a and b, an alternative approach to a probe device 350 is shown. The device 350 includes a rigid or malleable shaft member 352 that terminates with an uncinate hook 354. A balloon 356 is configured about the hook 354 to provide a supported shape intended to maintain an access turn about an uncinate. Upon dilation, the balloon 356 forms a C-like shape, and anatomy at the interventional site is moved. For example, when placed into the sinuses, a terminal end 358 of the device 350 opens an infundibulum, an area 360 proximal the end 358 opens a supra-balloon space, a middle section 362 opens the middle meatus and a most proximal portion 364 of the balloon moves the middle turbinate. Thus, the device 350 can greatly and uniformly open the meatus and infundibulum to make easier the subsequent access the to the frontal, maxillary or ethmoid sinuses.


In a related device 370, and with reference now to FIG. 20, a balloon portion 372 is eccentrically located on a hook portion 374. The hook portion 374 can be either rigid or malleable. A shaft 376 is configured proximal to the balloon portion 372, and the device 370 can further include a tube 376 extending to a terminal end of the device, the tube 376 including an exit for a guidewire (not shown).


Yet further approaches to probe devices are depicted in FIGS. 21 and 22. In one embodiment, as shown in FIG. 21, a probe device 380 can embody a shaft 382 with a curved middle meatus/maxillary balloon 384 attached thereto. The balloon 384 includes a distal portion forming a maxillary region 386 and a proximal portion defining a middle meatus region 388. The balloon 384 is configured to have a built-in curve to turn about a patient's uncinate process.


In another embodiment, as shown in FIG. 22, a probe device 390 may include a shaft 396 and a balloon 391 having a maxillary region 392 embodying an increased diameter configured distally and about a curve from a meatus region 394. In either this or the previous embodiment, the maxillary region. 392 and meatus region 394 of the balloon 391 may be formed from different balloon materials, with for example, the maxillary region 392 being more compliant. The two regions 392, 394 can further embody different shapes such as the maxillary side defining a dog-bone configuration. In this way, use of the probe devices 380, 390 accomplishes simultaneous dilation of both the maxillary and middle meatus regions, while protecting the uncinate from trauma. Also, the meatus balloon region 388, 394 of these devices can function to anchor the maxillary balloon region 386, 392 against sudden movement.


Referring now to FIG. 23, in another embodiment, a transition space dilation tool 400 may include a balloon 402 attached about a distal portion of a semi rigid, rigid or malleable shaft 404. A distal end of the shaft 404 can be equipped with a ball-like atraumatic tip 406. The balloon 402 can be mechanically captured by a ball-shaft interface 408 to thereby minimize a neck region of the balloon 402. Moreover, the shaft 404 may include an inflatable lumen exit 410 for expanding the balloon 402, which may be pre-shaped into a hook. An inflation hub 411 may further be included to provide a dilation means.


The balloon 402 of this probe device 400 generally includes three regions: an infundibulum balloon region 412; a bullar balloon region 414; and a middle meatal balloon region 416. The infundibulum region 412 is configured to dilate infundibulum transitional space, the bullar region 414 compresses bulla to make room for scopes or other devices and the middle meatal region 416 opens meatal space to reduce potential trauma from subsequent device insertion. Each region may have different diameters or thicknesses and can define a myriad of shapes, angles and curves. Further, the shaft 404 can be single or multi-lumened, and the balloon can be compliant, semi-compliant or non-compliant.


With reference now to FIG. 24, an infundibular meatal or recess-transition space dilator 420 may include a shaft 422 having a ball tip 424 and a curved distal portion surrounded by a balloon 426. An inflation opening 428 is provided in the shaft 422 region surrounded by the balloon 426 and notably, the ball tip 424 is encapsulated by the balloon 426. The balloon 426 further includes a middle turbinate region 430, a bullar region 432 and an infundibular region 434. The balloon can be molded with a closed end or can be traditionally molded and then the tip molded over and closed. As before, the balloon material can be non-elastic, partially elastic, compliant, non-compliant or partially compliant.


In yet another approach, and with reference now to FIG. 25, a probe device 440 includes a separate internal element 442 that can be advanced and retracted to give tactile feedback to find a maxillary ostium. Once the maxillary ostium has been found, the user can independently advance a balloon portion 444 over a hypotube portion 446. The internal element 442 can be a wire or some other flexible element which can be extended out of the shaped hypotube 446 to probe for the sinus. In certain approaches, the internal element 442 can be coiled wire over a nitinol core, a solid flexible wire or plastic member, a light wire, or other flexible element. The shaped hypotube 446 can be formed from a steel or plastic tube that has a curve to direct the internal flexible member 442 and external balloon 444. In various embodiments, the tube can be pre-shaped for a specific sinus or malleable to allow the user to shape the device for a target trajectory.


The balloon 444 is configured about an outside of the shaped hypotube 446 and can be advanced independently of the internal element 442. A balloon shaft 448 is provided with one or two lumens to allow advancement of the balloon 444 and for inflation. The shaft 448 may extend over around the hypotube curve 446 or can start proximal the curve. A balloon pusher 450 is further provided to translate force from a balloon driver 452 to the balloon 444. This structure also may act as a manifold for fluid to fill/pressurize the balloon.


A probe handle 454 can be shaped to form an elongate structure and can be slender for easy holding and control. The handle 454 can further include a finger grip for assisting with traction for holding or advancing elements. The handle 454 also includes an internal element control 455 which slides within the handle 454 and allows the user to control advancing/retracting the internal element 442 as well as receiving tactile feedback from the internal element 442. The handle also includes a balloon driver 456 which slides within the handle 454 and allows user to advance/retract balloon. Rails 457 are further provided for guiding the movement of the internal control element 455 and push rods (not shown) connecting the balloon driver to the balloon pusher. In various alternative embodiments, balloon inflation fluid may be passed through one or both of the rails 457, if they are tubes, or alternatively, the probe device 440 may include one or more separate inflation lumens for delivering fluid/pressure to the balloon.


In certain circumstances, when attempting to access a maxillary sinus opening with a probe device including a shaping mandrel, it can be useful to have a mandrel with a very tight radius to send the probing end of the tip into the right place. It may also be useful to have the starting tip length itself be relatively short. The tip may need to have a finer selection end on the front. If the balloon catheter lumen itself is too large, bulky and/or stiff, it can pass by an ostium opening when advanced, without entering the opening, because the opening can be more like a hole in the side of the wall, and not necessarily at the end of an infundibular pocket. Further, even if the tip does momentarily engage the ostium, the stiffness of the balloon catheter can overpower it, and it will not enter the opening once the balloon is attempted to be advanced. Thus, a more flexible lead-in section that supports the balloon stiffness transition into the opening may be employed in some embodiments.


Turning now to FIG. 26, a probe device 460 having a small, short angled tip to select the side-hole ostium when that anatomy is present is described. This device includes a floppy lead-in catheter section that also has good column strength that permits advancement forward into an ostium to support the transition to the stiffer balloon. A nitinol super-elastic mandrel can be provided to form a very tight initial radius that maintains its shape as the floppy lead-in catheter is advanced but opens up as the stiffer balloon catheter is advanced.


As shown, the probe device 460 includes a finder tip 462, which could be shapeable or fixed and oriented outwardly to find an opening in a “wall” or infundibulum. The tip 462 could be made of a polymer or could be a wire tip. The probe device 460 can further embody a mandrel 464 formed from shape memory, super elastic, spring steel or other semi-rigid materials. This helps keep angles very tight when solely selecting with a flexible catheter. Moreover, the probe device 460 may include a flexible finder catheter body 464, which acts like a guidewire to track behind the tip 462 and acts to confirm access to the sinus by advancing without resistance.


Referring now to FIG. 27, in one embodiment, a handle 470 for the probe device 460 may include a thumb pusher 472 operatively connected to the balloon portion 474 so that manipulation of the pusher 472 advances and/or retracts the balloon 474. The handle 470 may further include a stabilization substructure 473 sized and shaped to receive figures of an operator.


With reference now to FIGS. 28a-28c, in one embodiment of a method for using a probe device 460, the probe device 460 may be placed in a pre-deployment configuration (FIG. 28a), with the mandrel 464 loaded within the flexible catheter body 466. During mid-deployment (FIG. 28b), the mandrel 464 is withdrawn proximally, but is left to extend beyond the balloon portion 474. Next, the mandrel 464 is further withdrawn proximal the balloon 474 (FIG. 28c) to achieve complete deployment. The balloon 474 can then be expanded to create space or accomplish desired tissue manipulation.


The above description has often focused on embodiments of devices, systems and methods for use in maxillary paranasal sinuses. In some cases, however, the above-described embodiments may be used in procedures involving frontal, sphenoid and/or ethmoid sinuses. In some cases, these embodiments may be used as described in these other sinuses, while in other cases minor modifications may be made to the devices, systems or methods to make them more amenable to use in the frontal, sphenoid or ethmoid sinuses. In any event, the description above related to usage in the maxillary sinus should not be interpreted to limit the present invention to applications in only that sinus.


While the present invention has been described with reference to the specific embodiments thereof, various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process step or steps, to the objective, spirit and scope of the present invention. All such modifications are intended to be within the scope of the claims appended hereto.

Claims
  • 1. An apparatus comprising: (a) a handle assembly;(b) an elongate body comprising a proximal portion, a distal portion, wherein the elongate body defines an inflation lumen, wherein the proximal portion of the elongate body defines a longitudinal axis, wherein the elongate body extends distally from the handle assembly, wherein the distal portion of the elongate body terminates into a distal end dimension to be interested within a nasal cavity; and(c) a balloon directly attached to the distal portion of the elongate body having a ball tip and a curved distal portion surrounded by the balloon, wherein the balloon is in fluid communication with the inflation lumen of the elongate body, wherein the balloon is configured to transition between a deflated configuration and an inflated configuration, wherein the balloon comprises an asymmetrical profile relative to a plane extending along a length of the distal portion of the elongate body that is directly attached to the balloon.
  • 2. The apparatus of claim 1, wherein the balloon is non-concentric relative to the distal potion of the elongate body.
  • 3. The apparatus of claim 1, wherein the balloon comprises multiple diameters along the length of the distal portion of the elongate body.
  • 4. The apparatus of claim 1, wherein the balloon comprises multiple taper geometries along the length of the distal portion of the elongate body.
  • 5. The apparatus of 1, wherein the balloon terminates prior to the distal end of the distal portion of the elongate body.
  • 6. The apparatus of claim 1, wherein the balloon extends past the distal end of the distal portion of the elongate body.
  • 7. The apparatus of claim 1, wherein the balloon comprises a round cross-sectional geometry.
  • 8. The apparatus of claim 1, wherein the balloon comprises a non-round cross-sectional geometry.
  • 9. The apparatus of claim 1, wherein the handle assembly comprises a luer fitting in fluid communication with the balloon.
  • 10. The apparatus of claim 1, wherein the elongate body comprises a malleable region extending from the handle assembly.
  • 11. The apparatus of claim 1, wherein the elongate body comprises a semi-rigid region extending from the handle assembly.
  • 12. The apparatus of claim 1, wherein the distal portion of the elongate body comprises a curved portion, wherein the balloon is disposed on the curved portion. comprises a hook shape.
  • 13. The apparatus of claim 12, wherein the curved portion comprises a uncinate hook.
  • 14. The apparatus of claim 1, wherein the balloon comprises a built-in curve.
  • 15. The apparatus of claim 1, wherein the balloon comprises an infundibulum balloon region, a bullar balloon region, and a middle meatal balloon region.
  • 16. The apparatus of claim 1, wherein the balloon comprises a first region, a second region, and a third region, wherein each region comprises a different thickness.
  • 17. The apparatus of claim 1, wherein the distal end comprises a ball tip.
  • 18. The apparatus of claim 1, wherein the balloon comprises an asymmetrical longitudinal profile relative to the longitudinal profile of the proximal portion of the elongate body.
  • 19. An apparatus comprising: (a) a handle assembly;(b) an elongate body comprising a proximal portion, a distal portion, wherein the elongate body defines an inflation lumen, wherein the proximal portion of the elongate body defines a longitudinal axis, wherein the elongate body extends distally from the handle assembly, wherein the distal portion of the elongate body terminates into a distal end dimension to be interested within a nasal cavity; and(c) a balloon directly attached to the distal portion of the elongate body, wherein the balloon is in fluid communication with the inflation lumen of the elongate body, wherein the balloon is configured to transition between a deflated configuration and an inflated configuration, wherein the balloon comprises an asymmetrical profile relative to a plane extending along a length of the distal portion of the elongate body, wherein the balloon comprises a first region, a second region, and a third region, wherein each region comprises a different thickness.
  • 20. An apparatus comprising: (a) a handle assembly;(b) an elongate body comprising a proximal portion, a distal portion, wherein the elongate body defines an inflation lumen, wherein the proximal portion of the elongate body defines a longitudinal axis, wherein the elongate body extends distally from the handle assembly, wherein the distal portion of the elongate body terminates into a distal end dimension to be interested within a nasal cavity; and(c) a balloon directly attached to the distal portion of the elongate body, wherein the balloon is in fluid communication with the inflation lumen of the elongate body, wherein the balloon is configured to transition between a deflated configuration and an inflated configuration, wherein the balloon comprises an inflated asymmetrical profile relative to a plane coextensively extending along a length of the distal portion of the elongate body, wherein the length of the distal portion is located within the balloon.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a continuation of patent application Ser. No. 15/625,013, filed Jun. 16, 2017, published as U.S. Pub. No. 2017/0347869 on Dec. 7, 2017, which is a continuation of patent application Ser. No. 14/446,537, filed Jul. 30, 2014, issued as U.S. Pat. No. 9,750,401 on Sep. 5, 2017, which is a continuation of patent application Ser. No. 12/512,420, filed Jul. 30, 2009, issued as U.S. Pat. No. 8,979,888 on Mar. 17, 2015, which claims the benefit of Provisional Application Serial No. 61/084,965, filed Jul. 30, 2008.

US Referenced Citations (819)
Number Name Date Kind
446173 Hancock Feb 1891 A
504424 De Pezzer Sep 1893 A
513667 Buckingham Jan 1894 A
705346 Hamilton Jul 1902 A
798775 Forsyte Sep 1905 A
816792 Green Apr 1906 A
1080934 Shackleford Dec 1913 A
1200267 Sunnergren Oct 1916 A
1650959 Pitman Nov 1927 A
1735519 Vance Nov 1929 A
1828986 Stevens Oct 1931 A
1878671 Cantor Sep 1932 A
2201749 Vandegrift May 1940 A
2493326 Trinder Jan 1950 A
2525183 Robison Oct 1950 A
2847997 Tibone Aug 1958 A
2899227 Jeanrenaud Aug 1959 A
2906179 Bower Sep 1959 A
2995832 Alderson Aug 1961 A
3009265 Bexark Nov 1961 A
3037286 Bower Jun 1962 A
3173418 Baran Mar 1965 A
3347061 Stuemky Oct 1967 A
3376659 Asin et al. Apr 1968 A
3384970 Avalear May 1968 A
3393073 Reutenauer et al. Jul 1968 A
3435826 Fogarty Apr 1969 A
3469578 Bierman Sep 1969 A
3481043 Esch Dec 1969 A
3486539 Jacuzzi Dec 1969 A
3506005 Gilio et al. Apr 1970 A
3509638 Macleod May 1970 A
3515888 Lewis Jun 1970 A
3527220 Summers Sep 1970 A
3531868 Stevenson Oct 1970 A
3552384 Pierie et al. Jan 1971 A
3624661 Shebanow Nov 1971 A
3731963 Pond May 1973 A
3792391 Ewing Feb 1974 A
3802096 Matern Apr 1974 A
3804081 Kinoshita Apr 1974 A
3800788 White Jul 1974 A
3834394 Hunter et al. Sep 1974 A
3850176 Gottschalk Nov 1974 A
3856000 Chikama Dec 1974 A
3859993 Bitner Jan 1975 A
3871365 Chikama Mar 1975 A
3894538 Richter Jul 1975 A
3903893 Scheer Sep 1975 A
3910617 Scalza et al. Oct 1975 A
3921636 Zaffaroni Nov 1975 A
3948254 Zaffaroni Apr 1976 A
3948262 Zaffaroni Apr 1976 A
3967618 Zaffaroni Jul 1976 A
3993069 Buckles et al. Nov 1976 A
3993072 Zaffaroni Nov 1976 A
3993073 Zaffaroni Nov 1976 A
4016251 Higuchi et al. Apr 1977 A
4052505 Higuchi et al. Oct 1977 A
4053975 Olbrich et al. Oct 1977 A
4069307 Higuchi et al. Jan 1978 A
4102342 Akiyama et al. Jul 1978 A
4138151 Nakao Feb 1979 A
4184497 Kolff et al. Jan 1980 A
4198766 Camin et al. Apr 1980 A
4207890 Mamajek et al. Jun 1980 A
4209919 Kirikae et al. Jul 1980 A
4213095 Falconer Jul 1980 A
4217898 Theeuwes Aug 1980 A
4268115 Slemon et al. May 1981 A
4299226 Banka Nov 1981 A
4299227 Lincoff Nov 1981 A
4312353 Shahbabian Jan 1982 A
4338941 Payton Jul 1982 A
D269204 Trepp May 1983 S
4388941 Riedhammer Jun 1983 A
RE31351 Falconer Aug 1983 E
4435716 Zandbergen Mar 1984 A
4437856 Valli Mar 1984 A
4450150 Sidman May 1984 A
4459977 Pizon et al. Jul 1984 A
4464175 Altman et al. Aug 1984 A
4471779 Antoshkiw et al. Sep 1984 A
4499899 Lyons, III Feb 1985 A
4554929 Samson et al. Nov 1985 A
4564364 Zaffaroni et al. Jan 1986 A
4571239 Heyman Feb 1986 A
4571240 Samson et al. Feb 1986 A
4581017 Sahota Apr 1986 A
4585000 Hershenson Apr 1986 A
D283921 Dyak May 1986 S
4589868 Dretler May 1986 A
4596528 Lewis et al. Jun 1986 A
D284892 Glassman Jul 1986 S
4603564 Kleinhany et al. Aug 1986 A
4606346 Berg et al. Aug 1986 A
4607622 Fritch et al. Aug 1986 A
4637389 Heyden Jan 1987 A
4639244 Rizk et al. Jan 1987 A
4645495 Vaillancourt Feb 1987 A
4669469 Gifford, III Jun 1987 A
4672961 Davies Jun 1987 A
4675613 Naegeli et al. Jun 1987 A
4691948 Austin, Jr. et al. Sep 1987 A
4708434 Tsuno Nov 1987 A
4708834 Cohen et al. Nov 1987 A
4726772 Amplatz Feb 1988 A
4736970 McGourty et al. Apr 1988 A
4737141 Spits Apr 1988 A
4748869 Ohtsuka Jun 1988 A
4748969 Wardle Jun 1988 A
4748986 Morrison et al. Jun 1988 A
4755171 Tennant Jul 1988 A
4771776 Powell et al. Sep 1988 A
4793359 Sharrow Dec 1988 A
4795439 Guest Jan 1989 A
4796629 Grayzel Jan 1989 A
4803076 Ranade Feb 1989 A
4811743 Stevens Mar 1989 A
4815478 Buchbinder et al. Mar 1989 A
4819619 Augustine et al. Apr 1989 A
4846186 Box et al. Jul 1989 A
4847258 Sturm et al. Jul 1989 A
4851228 Zentner et al. Jul 1989 A
4854330 Evans, III et al. Aug 1989 A
4862874 Kellner Sep 1989 A
4867138 Kubota et al. Sep 1989 A
4883465 Brennan Nov 1989 A
4897651 DeMonte Jan 1990 A
4898577 Badger et al. Feb 1990 A
4917419 Mora, Jr. et al. Apr 1990 A
4917667 Jackson Apr 1990 A
4919112 Siegmund Apr 1990 A
4920967 Cottonaro et al. May 1990 A
4925445 Sakamoto et al. May 1990 A
4940062 Hampton et al. Jul 1990 A
4943275 Stricker Jul 1990 A
4946466 Pinchuk et al. Aug 1990 A
4961433 Christian Oct 1990 A
4966163 Kraus et al. Oct 1990 A
4968300 Moutafis et al. Nov 1990 A
4984581 Stice Jan 1991 A
4994033 Shockey et al. Feb 1991 A
4998916 Hammerslag et al. Mar 1991 A
4998917 Gaiser et al. Mar 1991 A
5001825 Halpern Mar 1991 A
5002322 Fukumoto Mar 1991 A
5019075 Spears et al. May 1991 A
5019372 Folkman et al. May 1991 A
5020514 Heckele Jun 1991 A
5021043 Becker et al. Jun 1991 A
5024650 Hagiwara et al. Jun 1991 A
5024658 Kozlov et al. Jun 1991 A
5026384 Farr et al. Jun 1991 A
5030227 Rosenbluth et al. Jul 1991 A
5041089 Mueller et al. Aug 1991 A
5044678 Detweiler Sep 1991 A
5053007 Euteneuer Oct 1991 A
5055051 Duncan Oct 1991 A
5060660 Gamble et al. Oct 1991 A
5067489 Lind Nov 1991 A
5069226 Tamauchi et al. Dec 1991 A
5087244 Wolinsky et al. Feb 1992 A
5087246 Smith Feb 1992 A
5090595 Vandeninck Feb 1992 A
5090910 Narlo Feb 1992 A
5112228 Zouras May 1992 A
5116311 Lofstedt May 1992 A
5127393 McFarlin et al. Jul 1992 A
5137517 Loney et al. Aug 1992 A
5139510 Goldsmith, III et al. Aug 1992 A
5139832 Hayashi et al. Aug 1992 A
D329496 Wotton Sep 1992 S
5152747 Olivier Oct 1992 A
5156595 Adams Oct 1992 A
5163989 Campbell et al. Nov 1992 A
5167220 Brown Dec 1992 A
5168864 Shockey Dec 1992 A
5169043 Catania Dec 1992 A
5169386 Becker et al. Dec 1992 A
5171233 Amplatz et al. Dec 1992 A
5180368 Garrison Jan 1993 A
5183470 Wettermann Feb 1993 A
5189110 Ikematu et al. Feb 1993 A
5195168 Yong Mar 1993 A
5197457 Adair Mar 1993 A
5207695 Trout, III May 1993 A
5211952 Spicer et al. May 1993 A
5215105 Kizelshteyn et al. Jun 1993 A
5221260 Burns et al. Jun 1993 A
5226302 Anderson Jul 1993 A
5230348 Ishibe et al. Jul 1993 A
5236422 Eplett, Jr. Aug 1993 A
5243996 Hall Sep 1993 A
D340111 Yoshikawa Oct 1993 S
5250059 Andreas et al. Oct 1993 A
5251092 Brady et al. Oct 1993 A
5252183 Shaban et al. Oct 1993 A
5255679 Imran Oct 1993 A
5256144 Kraus et al. Oct 1993 A
5263926 Wilk Nov 1993 A
5264260 Saab Nov 1993 A
5267965 Deneiga Dec 1993 A
5270086 Hamlin Dec 1993 A
5273052 Kraus et al. Dec 1993 A
5275593 Easley et al. Jan 1994 A
5286254 Shapland et al. Feb 1994 A
5290310 Makower et al. Mar 1994 A
5295694 Levin Mar 1994 A
5300085 Yock Apr 1994 A
5304123 Atala et al. Apr 1994 A
5308326 Zimmon May 1994 A
5313967 Lieber et al. May 1994 A
5314417 Stephens et al. May 1994 A
5315618 Yoshida May 1994 A
5324306 Makower et al. Jun 1994 A
5333620 Moutafis et al. Aug 1994 A
5334167 Cocanower Aug 1994 A
5336163 DeMane et al. Aug 1994 A
5341818 Abrams et al. Aug 1994 A
5342296 Persson et al. Aug 1994 A
5343865 Gardineer et al. Sep 1994 A
5345945 Hodgson et al. Sep 1994 A
5346075 Nichols et al. Sep 1994 A
5346508 Hastings Sep 1994 A
5348537 Wiesner et al. Sep 1994 A
5350396 Eliachar Sep 1994 A
5356418 Shturman Oct 1994 A
5368049 Raman et al. Nov 1994 A
5368558 Nita Nov 1994 A
5368566 Crocker Nov 1994 A
5372138 Crowley et al. Dec 1994 A
5372584 Zink et al. Dec 1994 A
D355031 Yoshikawa Jan 1995 S
5386817 Jones Feb 1995 A
5391147 Imran et al. Feb 1995 A
5391179 Mezzoli Feb 1995 A
5402799 Colon et al. Apr 1995 A
5409444 Kensey Apr 1995 A
5411475 Atala et al. May 1995 A
5411476 Abrams et al. May 1995 A
5411477 Saab May 1995 A
5415633 Lazarus May 1995 A
5425370 Vilkomerson Jun 1995 A
5439446 Barry Aug 1995 A
5441494 Ortiz Aug 1995 A
5441497 Narciso, Jr. Aug 1995 A
5450853 Hastings et al. Sep 1995 A
5451221 Cho et al. Sep 1995 A
5454817 Katz Oct 1995 A
5458572 Campbell et al. Oct 1995 A
5465717 Imran et al. Nov 1995 A
5465733 Hinohara et al. Nov 1995 A
5478565 Geria Dec 1995 A
5486181 Cohen et al. Jan 1996 A
5496338 Miyagi et al. Mar 1996 A
5497783 Urick et al. Mar 1996 A
5507301 Wasicek et al. Apr 1996 A
5507725 Savage et al. Apr 1996 A
5507766 Kugo et al. Apr 1996 A
5512055 Domb et al. Apr 1996 A
5514128 Hillsman et al. May 1996 A
5519532 Broome May 1996 A
5531676 Edwards et al. Jul 1996 A
5533985 Wong Jul 1996 A
5538008 Crowe Jul 1996 A
5546964 Stangerup Aug 1996 A
5549542 Kovalcheck Aug 1996 A
5558073 Pomeranz et al. Sep 1996 A
5558652 Henke Sep 1996 A
5562619 Mirarchi et al. Oct 1996 A
5568809 Ben-Haim Oct 1996 A
5571086 Kaplan et al. Nov 1996 A
5578007 Imran Nov 1996 A
5578048 Pasqualucci et al. Nov 1996 A
5584827 Korteweg et al. Dec 1996 A
5591194 Berthiaume Jan 1997 A
5599284 Shea Feb 1997 A
5599304 Shaari Feb 1997 A
5599576 Opolski Feb 1997 A
5601087 Gunderson et al. Feb 1997 A
5601594 Best Feb 1997 A
5607386 Flam Mar 1997 A
5617870 Hastings et al. Apr 1997 A
5626374 Kim May 1997 A
5633000 Grossman et al. May 1997 A
5634908 Loomas Jun 1997 A
5638819 Manwaring et al. Jun 1997 A
5643251 Hillsman et al. Jul 1997 A
5645789 Roucher, Jr. Jul 1997 A
5647361 Damadian Jul 1997 A
5656030 Hunjan et al. Aug 1997 A
5662674 Debbas Sep 1997 A
5664567 Linder Sep 1997 A
5664580 Erickson et al. Sep 1997 A
5665052 Bullard Sep 1997 A
5669388 Vilkomerson Sep 1997 A
5673707 Chandrasekaran Oct 1997 A
5676673 Ferre et al. Oct 1997 A
5679400 Tuch Oct 1997 A
5682199 Lankford Oct 1997 A
5685838 Peters et al. Nov 1997 A
5685847 Barry Nov 1997 A
5690373 Luker Nov 1997 A
5693065 Rains, III Dec 1997 A
5694945 Ben-Haim Dec 1997 A
5697159 Linden Dec 1997 A
5700286 Tartaglia et al. Dec 1997 A
5707389 Louw et al. Jan 1998 A
5708175 Loyanagi et al. Jan 1998 A
5711315 Jerusalmy Jan 1998 A
5713839 Shea Feb 1998 A
5713946 Ben-Haim Feb 1998 A
5718702 Edwards Feb 1998 A
5720300 Fagan et al. Feb 1998 A
5722401 Pietroski et al. Mar 1998 A
5722984 Fischell et al. Mar 1998 A
5729129 Acker Mar 1998 A
5730128 Pomeranz et al. Mar 1998 A
5733248 Adams et al. Mar 1998 A
5746755 Wood et al. May 1998 A
5752513 Acker et al. May 1998 A
5762604 Kieturakis Jun 1998 A
5766158 Opolski Jun 1998 A
5775327 Randolph et al. Jul 1998 A
5776158 Chou Jul 1998 A
5779699 Lipson Jul 1998 A
5789391 Jacobus et al. Aug 1998 A
5792100 Shantha Aug 1998 A
5797878 Bleam Aug 1998 A
5803089 Ferre et al. Sep 1998 A
5814016 Valley et al. Sep 1998 A
5819723 Joseph Oct 1998 A
5820568 Willis Oct 1998 A
5820592 Hammerslag Oct 1998 A
5824044 Quiachon et al. Oct 1998 A
5824048 Tuch Oct 1998 A
5824173 Fontirroche et al. Oct 1998 A
5826576 West Oct 1998 A
5827224 Shippert Oct 1998 A
5830188 Abouleish Nov 1998 A
5833608 Acker Nov 1998 A
5833645 Lieber et al. Nov 1998 A
5833650 Imran Nov 1998 A
5833682 Amplatz et al. Nov 1998 A
5836638 Slocum Nov 1998 A
5836935 Ashton et al. Nov 1998 A
5837313 Ding et al. Nov 1998 A
5843089 Shatjian et al. Dec 1998 A
5843113 High Dec 1998 A
5846259 Berthiaume Dec 1998 A
5857998 Barry Jan 1999 A
5862693 Myers et al. Jan 1999 A
5865767 Frechette et al. Feb 1999 A
5872879 Hamm Feb 1999 A
5873835 Hastings Feb 1999 A
5882333 Schaer et al. Mar 1999 A
5887467 Butterweck et al. Mar 1999 A
5902247 Coe et al. May 1999 A
5902333 Roberts et al. May 1999 A
5904701 Daneshvar May 1999 A
5908407 Frazee et al. Jun 1999 A
5916193 Stevens et al. Jun 1999 A
5928192 Maahs Jul 1999 A
5931811 Haissaguerre et al. Aug 1999 A
5931818 Werp et al. Aug 1999 A
5932035 Koger et al. Aug 1999 A
5935061 Acker et al. Aug 1999 A
5941816 Barthel et al. Aug 1999 A
D413629 Wolff et al. Sep 1999 S
5947988 Smith Sep 1999 A
5949929 Hamm Sep 1999 A
5954693 Barry Sep 1999 A
5954694 Sunseri Sep 1999 A
5957842 Littmann et al. Sep 1999 A
5968085 Morris et al. Oct 1999 A
5971975 Mills et al. Oct 1999 A
5979290 Simeone Nov 1999 A
5980503 Chin Nov 1999 A
5980551 Summers et al. Nov 1999 A
5984945 Sirhan Nov 1999 A
5985307 Hanson et al. Nov 1999 A
5987344 West Nov 1999 A
5997562 Zadno-Azizi et al. Dec 1999 A
6006126 Cosman Dec 1999 A
6006130 Higo et al. Dec 1999 A
6007516 Burbank et al. Dec 1999 A
6007991 Sivaraman et al. Dec 1999 A
6010511 Murphy Jan 2000 A
6013019 Fischell et al. Jan 2000 A
6015414 Werp et al. Jan 2000 A
6016429 Khafizov et al. Jan 2000 A
6016439 Acker Jan 2000 A
6019736 Avellanet et al. Feb 2000 A
6019777 Mackenzie Feb 2000 A
6021340 Randolph et al. Feb 2000 A
6022313 Ginn et al. Feb 2000 A
6027461 Walker et al. Feb 2000 A
6027478 Katz Feb 2000 A
6039699 Viera Mar 2000 A
6042561 Ash et al. Mar 2000 A
6048299 von Hoffmann Apr 2000 A
6048358 Barak Apr 2000 A
6053172 Hovda et al. Apr 2000 A
6056702 Lorenzo May 2000 A
6059752 Segal May 2000 A
6071233 Ishikawa et al. Jun 2000 A
6079755 Chang Jun 2000 A
6080190 Schwartz Jun 2000 A
6083148 Williams Jul 2000 A
6083188 Becker et al. Jul 2000 A
6086585 Hovda et al. Jul 2000 A
6092846 Fuss et al. Jul 2000 A
6093150 Chandler et al. Jul 2000 A
6093195 Ouchi Jul 2000 A
6109268 Thapliyal et al. Aug 2000 A
6113567 becker Sep 2000 A
6117105 Bresnaham et al. Sep 2000 A
6122541 Cosman et al. Sep 2000 A
6123697 Shippert Sep 2000 A
6136006 Johnson et al. Oct 2000 A
6139510 Palermo Oct 2000 A
6142957 Diamond et al. Nov 2000 A
6148823 Hastings Nov 2000 A
6149213 Sokurenko et al. Nov 2000 A
6159170 Borodulin et al. Dec 2000 A
6171298 Matsuura et al. Jan 2001 B1
6171303 Ben-Haim Jan 2001 B1
6174280 Oneda et al. Jan 2001 B1
6176829 Vilkomerson Jan 2001 B1
6179788 Sullivan Jan 2001 B1
6179811 Fugoso et al. Jan 2001 B1
6183461 Matsuura et al. Feb 2001 B1
6183464 Sharp et al. Feb 2001 B1
6190353 Makower et al. Feb 2001 B1
6190381 Olsen et al. Feb 2001 B1
6193650 Ryan, Jr. Feb 2001 B1
6195225 Komatsu et al. Feb 2001 B1
6200257 Winkler Mar 2001 B1
6206870 Kanner Mar 2001 B1
6213975 Laksin Apr 2001 B1
6221042 Adams Apr 2001 B1
6231543 Hegde et al. May 2001 B1
6234958 Snoke et al. May 2001 B1
6238364 Becker May 2001 B1
6238391 Olsen et al. May 2001 B1
6241519 Sedleemayer Jun 2001 B1
6249180 Maalej et al. Jun 2001 B1
6254550 McNamara et al. Jul 2001 B1
6268574 Edens Jul 2001 B1
6283951 Flaherty Sep 2001 B1
6293957 Peters et al. Sep 2001 B1
6302875 Makower et al. Oct 2001 B1
6306105 Rooney et al. Oct 2001 B1
6306124 Jones et al. Oct 2001 B1
D450382 Nestenborg Nov 2001 S
6322495 Snow et al. Nov 2001 B1
6328564 Thurow Dec 2001 B1
6332089 Acker et al. Dec 2001 B1
6332891 Himes Dec 2001 B1
6340360 Lyles et al. Jan 2002 B1
6348041 Klint Feb 2002 B1
6352503 Matsui et al. Mar 2002 B1
6375615 Flaherty et al. Apr 2002 B1
6375629 Muni et al. Apr 2002 B1
6383146 Klint May 2002 B1
6386197 Miller May 2002 B1
6389313 Marchitto et al. May 2002 B1
6390993 Cornish et al. May 2002 B1
6394093 Lethi May 2002 B1
6398758 Jacobsen et al. Jun 2002 B1
6409863 Williams et al. Jun 2002 B1
6423012 Kato et al. Jul 2002 B1
6425877 Edwards Jul 2002 B1
6432986 Levin Aug 2002 B2
6440061 Wenner Aug 2002 B1
6443947 Marko et al. Sep 2002 B1
6445939 Swanson et al. Sep 2002 B1
6450975 Brennan et al. Sep 2002 B1
6450989 Dubrul et al. Sep 2002 B2
6464650 Jafari et al. Oct 2002 B2
6468202 Irion et al. Oct 2002 B1
6468297 Williams et al. Oct 2002 B1
6485475 Chelly Nov 2002 B1
6491940 Levin Dec 2002 B1
6494894 Mirarchi Dec 2002 B2
6500130 Kinsella et al. Dec 2002 B2
6500189 Lang et al. Dec 2002 B1
6503087 Eggert et al. Jan 2003 B1
6503185 Waksman et al. Jan 2003 B1
6503263 Adams Jan 2003 B2
6511418 Shahidi et al. Jan 2003 B2
6511471 Rosenman et al. Jan 2003 B2
6514249 Maguire et al. Feb 2003 B1
6517478 Khadem Feb 2003 B2
6524129 Cote et al. Feb 2003 B2
6524299 Tran et al. Feb 2003 B1
6526302 Hassett Feb 2003 B2
6527753 Sekine et al. Mar 2003 B2
6529756 Phan et al. Mar 2003 B1
6533754 Hisamatsu et al. Mar 2003 B1
6536437 Dragisic Mar 2003 B1
6537294 Boyle et al. Mar 2003 B1
6543452 Lavigne Apr 2003 B1
6544230 Flaherty et al. Apr 2003 B1
6549800 Atalar et al. Apr 2003 B1
6551239 Renner et al. Apr 2003 B2
6569146 Werner et al. May 2003 B1
6569147 Evans et al. May 2003 B1
6571131 Nguyen May 2003 B1
6572538 Takase Jun 2003 B2
6572590 Stevens et al. Jun 2003 B1
6579285 Sinofsky Jun 2003 B2
6585639 Kotmel et al. Jul 2003 B1
6585717 Wittenberger et al. Jul 2003 B1
6585794 Shimoda et al. Jul 2003 B2
6589237 Woloszko et al. Jul 2003 B2
6591130 Shahidi Jul 2003 B2
6596009 Jelic Jul 2003 B1
6607546 Murken Aug 2003 B1
6612999 Brennan et al. Sep 2003 B2
6613066 Fukaya et al. Sep 2003 B1
6616601 Hayakawa Sep 2003 B2
6616659 de la Torre et al. Sep 2003 B1
6616678 Nishtala et al. Sep 2003 B2
6616913 Mautone Sep 2003 B1
6619085 Hsieh Sep 2003 B1
6634684 Spiessl Oct 2003 B2
6638233 Corvi et al. Oct 2003 B2
6638268 Niazi Oct 2003 B2
6638291 Ferrera et al. Oct 2003 B1
6645193 Mangosong Nov 2003 B2
6652472 Jafari et al. Nov 2003 B2
6652480 Imran et al. Nov 2003 B1
6656166 Lurie et al. Dec 2003 B2
6663589 Halevy Dec 2003 B1
6669689 Lehmann et al. Dec 2003 B2
6669711 Noda Dec 2003 B1
6672773 Glenn et al. Jan 2004 B1
6673025 Richardson et al. Jan 2004 B1
6679871 Hahnen Jan 2004 B2
6685648 Flaherty et al. Feb 2004 B2
6689096 Loubens et al. Feb 2004 B1
6689146 Himes Feb 2004 B1
6702735 Kelly Mar 2004 B2
6712757 Becker et al. Mar 2004 B2
6714809 Lee et al. Mar 2004 B2
6716183 Clayman et al. Apr 2004 B2
6716216 Boucher et al. Apr 2004 B1
6716813 Lim et al. Apr 2004 B2
6719749 Schweikert et al. Apr 2004 B1
6719763 Chung et al. Apr 2004 B2
6726701 Gilson et al. Apr 2004 B2
6755812 Peterson et al. Jun 2004 B2
6776772 de Vrijer et al. Aug 2004 B1
6780168 Jellie Aug 2004 B2
6783522 Fischell Aug 2004 B2
6783536 Vilsmeier et al. Aug 2004 B2
6786864 Matsuura et al. Sep 2004 B2
6796960 Cioanta et al. Sep 2004 B2
6811544 Schaer Nov 2004 B2
6817364 Garibaldi et al. Nov 2004 B2
6817976 Rovegno Nov 2004 B2
6827683 Otawara Dec 2004 B2
6827701 MacMahon et al. Dec 2004 B2
6832715 Eungard et al. Dec 2004 B2
D501677 Becker Feb 2005 S
6849062 Kantor Feb 2005 B2
6851290 Meier et al. Feb 2005 B1
6860264 Christopher Mar 2005 B2
6860849 Matsushita et al. Mar 2005 B2
6878106 Herrmann Apr 2005 B1
6890329 Carroll et al. May 2005 B2
6899672 Chin et al. May 2005 B2
6902556 Grimes et al. Jun 2005 B2
6913763 Lerner Jul 2005 B2
6927478 Paek Aug 2005 B2
6939361 Kleshinski Sep 2005 B1
6939374 Banik et al. Sep 2005 B2
6955657 Webler Oct 2005 B1
6966906 Brown Nov 2005 B2
6971998 Rosenman et al. Dec 2005 B2
6979290 Mourlas et al. Dec 2005 B2
6984203 Tartaglia et al. Jan 2006 B2
6991597 Gellman et al. Jan 2006 B2
6997931 Sauer et al. Feb 2006 B2
6997941 Sharkey et al. Feb 2006 B2
7004173 Sparks et al. Feb 2006 B2
7008412 Maginot Mar 2006 B2
7011654 Dubrul et al. Mar 2006 B2
7022105 Edwards Apr 2006 B1
7043961 Pandey May 2006 B2
7048711 Rosenmann et al. May 2006 B2
7052474 Castell et al. May 2006 B2
7056284 Martone et al. Jun 2006 B2
7056303 Dennis et al. Jun 2006 B2
7056314 Florio et al. Jun 2006 B1
7074197 Reynolds et al. Jul 2006 B2
7074426 Kochinke Jul 2006 B2
7097612 Bertolero et al. Aug 2006 B2
7108677 Courtney et al. Sep 2006 B2
7108706 Hogle Sep 2006 B2
7117039 Manning et al. Oct 2006 B2
7128718 Hojeibane et al. Oct 2006 B2
7131969 Hovda et al. Nov 2006 B1
7140480 Drussel et al. Nov 2006 B2
D534216 Makower et al. Dec 2006 S
7160255 Saadat Jan 2007 B2
7169140 Kume Jan 2007 B1
7169163 Becker Jan 2007 B2
7172562 McKinley Feb 2007 B2
7174774 Pawar et al. Feb 2007 B2
7182735 Shireman et al. Feb 2007 B2
7184827 Edwards Feb 2007 B1
7214201 Burmeister et al. May 2007 B2
7233820 Gilboa Jun 2007 B2
7235099 Duncavage et al. Jun 2007 B1
7237313 Skujins et al. Jul 2007 B2
7252677 Burwell et al. Aug 2007 B2
7282057 Surti et al. Oct 2007 B2
7294345 Haapakumpu et al. Nov 2007 B2
7294365 Hayakawa et al. Nov 2007 B2
7313430 Urquhart et al. Dec 2007 B2
7316168 van der Knokke et al. Jan 2008 B2
7316656 Shireman et al. Jan 2008 B2
7318831 Alvarez et al. Jan 2008 B2
7322934 Miyake et al. Jan 2008 B2
7326235 Edwards Feb 2008 B2
7338467 Lutter Mar 2008 B2
7343920 Toby et al. Mar 2008 B2
7359755 Jones et al. Apr 2008 B2
7361168 Makower et al. Apr 2008 B2
7366562 Dukesherer Apr 2008 B2
7371210 Brock et al. May 2008 B2
7381205 Thommen Jun 2008 B2
7410480 Muni et al. Aug 2008 B2
7419497 Muni et al. Sep 2008 B2
7438701 Theeuwes et al. Oct 2008 B2
7442191 Hovda et al. Oct 2008 B2
7452351 Miller et al. Nov 2008 B2
7454244 Kassab et al. Nov 2008 B2
7462175 Chang et al. Dec 2008 B2
7471994 Ford et al. Dec 2008 B2
7481218 Djupesland Jan 2009 B2
7481800 Jacques Jan 2009 B2
D586465 Faulkner et al. Feb 2009 S
D586916 Faulkner et al. Feb 2009 S
7488313 Segal et al. Feb 2009 B2
7488337 Saab et al. Feb 2009 B2
7493156 Manning et al. Feb 2009 B2
7500971 Chang et al. Mar 2009 B2
D590502 Geisser et al. Apr 2009 S
7520876 Ressemann et al. Apr 2009 B2
7532920 Ainsworth et al. May 2009 B1
7544192 Eaton et al. Jun 2009 B2
7559925 Goldfarb et al. Jul 2009 B2
7610104 Kaplan et al. Oct 2009 B2
7615005 Stefanchik et al. Nov 2009 B2
7618450 Zarowski et al. Nov 2009 B2
7625335 Deichmann et al. Dec 2009 B2
7632291 Stephens et al. Dec 2009 B2
7634233 Deng et al. Dec 2009 B2
7641644 Chang et al. Jan 2010 B2
7641668 Perry et al. Jan 2010 B2
7645272 Chang et al. Jan 2010 B2
7648367 Makower et al. Jan 2010 B1
7654997 Makower et al. Feb 2010 B2
7680244 Gertner et al. Mar 2010 B2
7686798 Eaton et al. Mar 2010 B2
7691120 Shluzas et al. Apr 2010 B2
7717933 Becker May 2010 B2
7720521 Chang et al. May 2010 B2
7727186 Makower et al. Jun 2010 B2
7736301 Webler et al. Jun 2010 B1
7740642 Becker Jun 2010 B2
7753929 Becker Jul 2010 B2
7753930 Becker Jul 2010 B2
7771409 Chang et al. Aug 2010 B2
7775968 Mathis Aug 2010 B2
7799048 Hudson et al. Sep 2010 B2
7803150 Chang et al. Sep 2010 B2
7833282 Mandpe Nov 2010 B2
7837672 Intoccia Nov 2010 B2
7840254 Glossop Nov 2010 B2
7854744 Becker Dec 2010 B2
D630321 Hamilton, Jr. Jan 2011 S
7875050 Samson et al. Jan 2011 B2
D632791 Murner Feb 2011 S
7883717 Varner et al. Feb 2011 B2
7896891 Catanese, III et al. Mar 2011 B2
7951132 Eaton et al. May 2011 B2
7988705 Galdonik et al. Aug 2011 B2
7993353 Roßner et al. Aug 2011 B2
8002740 Willink et al. Aug 2011 B2
8014849 Peckham Sep 2011 B2
8016752 Armstrong et al. Sep 2011 B2
8025635 Eaton et al. Sep 2011 B2
8080000 Makower et al. Dec 2011 B2
8088063 Fujikura et al. Jan 2012 B2
8088101 Chang et al. Jan 2012 B2
8090433 Makower et al. Jan 2012 B2
8100933 Becker Jan 2012 B2
8104483 Taylor Jan 2012 B2
8114062 Muni et al. Feb 2012 B2
8114113 Becker Feb 2012 B2
8123722 Chang et al. Feb 2012 B2
8142422 Makower et al. Mar 2012 B2
8147545 Avior Apr 2012 B2
8167821 Sharrow May 2012 B2
8190389 Kim et al. May 2012 B2
8197433 Cohen Jun 2012 B2
8197552 Mandpe Jun 2012 B2
8249700 Clifford et al. Aug 2012 B2
8277386 Ahmed et al. Oct 2012 B2
8282667 Drontle et al. Oct 2012 B2
8317816 Becker Nov 2012 B2
8337454 Eaton et al. Dec 2012 B2
8388642 Muni et al. Mar 2013 B2
8403954 Santin et al. Mar 2013 B2
8439687 Morriss et al. May 2013 B1
8535707 Arensdorf et al. Sep 2013 B2
8864778 Fortson et al. Oct 2014 B2
20010004644 Levin Jun 2001 A1
20010034530 Malackowski et al. Oct 2001 A1
20020006961 Katz et al. Jan 2002 A1
20020055746 Burke et al. May 2002 A1
20020090388 Humes et al. Jul 2002 A1
20030013985 Saadat Jan 2003 A1
20030017111 Rabito Jan 2003 A1
20030018291 Hill et al. Jan 2003 A1
20030040697 Pass et al. Feb 2003 A1
20030083608 Evans et al. May 2003 A1
20030114732 Webler et al. Jun 2003 A1
20030163154 Miyata et al. Aug 2003 A1
20040015150 Zadno-Azizi Jan 2004 A1
20040018980 Gurney et al. Jan 2004 A1
20040034311 Mihakcik Feb 2004 A1
20040043052 Hunter et al. Mar 2004 A1
20040058992 Marinello et al. Mar 2004 A1
20040064105 Capes et al. Apr 2004 A1
20040116958 Gopferich et al. Jun 2004 A1
20040127820 Clayman et al. Jul 2004 A1
20040158229 Quinn Aug 2004 A1
20040181175 Clayman et al. Sep 2004 A1
20040193073 DeMello et al. Sep 2004 A1
20040230156 Schreck et al. Nov 2004 A1
20040236231 Knighton et al. Nov 2004 A1
20040249243 Kleiner Dec 2004 A1
20040267347 Cervantes Dec 2004 A1
20050027249 Reifart et al. Feb 2005 A1
20050055077 Marco Mar 2005 A1
20050059931 Garrison et al. Mar 2005 A1
20050089670 Large Apr 2005 A1
20050107738 Slater et al. May 2005 A1
20050113687 Herweck et al. May 2005 A1
20050113850 Tagge May 2005 A1
20050119590 Burmeister et al. Jun 2005 A1
20050131316 Flagle et al. Jun 2005 A1
20050143687 Rosenblatt et al. Jun 2005 A1
20050182319 Glossop Aug 2005 A1
20050234507 Geske et al. Oct 2005 A1
20050244472 Hughes et al. Nov 2005 A1
20050283221 Mann et al. Dec 2005 A1
20060004323 Chang et al. Jan 2006 A1
20060063973 Makower et al. Mar 2006 A1
20060173382 Schreiner Aug 2006 A1
20060190022 Beyar et al. Aug 2006 A1
20060211752 Kohn et al. Sep 2006 A1
20060271024 Gertner et al. Nov 2006 A1
20070020196 Pipkin et al. Jan 2007 A1
20070112358 Abbott May 2007 A1
20070129751 Muni et al. Jun 2007 A1
20070135789 Chang et al. Jun 2007 A1
20070167682 Goldfarb et al. Jul 2007 A1
20070207186 Scanlon et al. Sep 2007 A1
20070208252 Makower Sep 2007 A1
20070208301 Evard et al. Sep 2007 A1
20070249896 Goldfarb et al. Oct 2007 A1
20070269385 Yun et al. Nov 2007 A1
20070282305 Goldfarb et al. Dec 2007 A1
20070293727 Goldfarb et al. Dec 2007 A1
20070293946 Gonzales et al. Dec 2007 A1
20080015544 Keith et al. Jan 2008 A1
20080033519 Burwell et al. Feb 2008 A1
20080051804 Cottler et al. Feb 2008 A1
20080097516 Chang et al. Apr 2008 A1
20080103521 Makower et al. May 2008 A1
20080119693 Makower et al. May 2008 A1
20080125626 Chang et al. May 2008 A1
20080132938 Chang et al. Jun 2008 A1
20080183128 Morriss et al. Jul 2008 A1
20080188870 Andre et al. Aug 2008 A1
20080195041 Goldfarb et al. Aug 2008 A1
20080228085 Jenkins et al. Sep 2008 A1
20080262508 Clifford et al. Oct 2008 A1
20080275483 Makower et al. Nov 2008 A1
20080281156 Makower et al. Nov 2008 A1
20080287908 Muni et al. Nov 2008 A1
20080319424 Muni et al. Dec 2008 A1
20090030274 Goldfarb et al. Jan 2009 A1
20090088728 Dollar et al. Apr 2009 A1
20090156980 Eaton et al. Jun 2009 A1
20090163890 Clifford et al. Jun 2009 A1
20090187089 Say et al. Jul 2009 A1
20090187098 Makower et al. Jul 2009 A1
20090198216 Muni et al. Aug 2009 A1
20090240112 Goldfarb et al. Sep 2009 A1
20090240237 Goldfarb et al. Sep 2009 A1
20090312745 Goldfarb et al. Dec 2009 A1
20100030031 Goldfarb et al. Feb 2010 A1
20100087811 Herrin et al. Apr 2010 A1
20100114066 Makower et al. May 2010 A1
20100174308 Chang et al. Jul 2010 A1
20100198191 Clifford et al. Aug 2010 A1
20100198302 Shalev Aug 2010 A1
20100274188 Chang et al. Oct 2010 A1
20100290244 Nath Nov 2010 A1
20110166190 Anderson et al. Jul 2011 A1
20170347869 Morriss et al. Dec 2017 A1
Foreign Referenced Citations (107)
Number Date Country
668188 Dec 1988 CH
2151720 Jan 1994 CN
2352818 Dec 1999 CN
3202878 Aug 1983 DE
4032096 Apr 1992 DE
4406077 Sep 1994 DE
8810044 Nov 1998 DE
29923582 Dec 2000 DE
10104663 Aug 2002 DE
10105592 Aug 2002 DE
129634 Jan 1985 EP
257605 Mar 1988 EP
355996 Feb 1990 EP
418391 Mar 1991 EP
427852 May 1991 EP
623582 Nov 1994 EP
624349 Nov 1994 EP
744400 Nov 1996 EP
585757 Jun 1997 EP
893426 Jan 1999 EP
1042998 Oct 2000 EP
1166710 Jan 2002 EP
1413258 Apr 2004 EP
1944053 Jul 2008 EP
2859377 Mar 2005 FR
2916144 Nov 2008 FR
2125874 Mar 1984 GB
2305174 Apr 1997 GB
53-67935 Jun 1978 JP
10-24098 Jan 1989 JP
10-34376 Feb 1989 JP
3-503011 Jul 1991 JP
3-504935 Oct 1991 JP
4-221313 Aug 1992 JP
5-211985 Aug 1993 JP
6-017751 Mar 1994 JP
6-277296 Oct 1994 JP
7-327916 Dec 1995 JP
8-317989 Dec 1996 JP
11-507251 Jun 1999 JP
2000-501634 Feb 2000 JP
2000-126303 May 2000 JP
2001-501846 Feb 2001 JP
2001-095815 Apr 2001 JP
2001-526077 Dec 2001 JP
2002-028166 Jan 2002 JP
2002-508214 Mar 2002 JP
2002-537908 Nov 2002 JP
2002-538850 Nov 2002 JP
2003-507140 Feb 2003 JP
2003-062080 Mar 2003 JP
2003-521327 Jul 2003 JP
2004-049583 Feb 2004 JP
2004-357728 Dec 2004 JP
2005-323702 Nov 2005 JP
2005-532869 Nov 2005 JP
2213530 Oct 2003 RU
1662571 Jul 1991 SU
WO 90011053 Oct 1990 WO
WO 90014865 Dec 1990 WO
WO 91017787 Nov 1991 WO
WO 92014286 Sep 1992 WO
WO 92022350 Dec 1992 WO
WO 94012095 Jun 1994 WO
WO 96029071 Sep 1996 WO
WO 97021461 Jun 1997 WO
WO 99024106 May 1999 WO
WO 99030655 Jun 1999 WO
WO 99032041 Jul 1999 WO
WO 00009192 Feb 2000 WO
WO 00023009 Apr 2000 WO
WO 00051672 Sep 2000 WO
WO 00053252 Sep 2000 WO
WO 00067834 Nov 2000 WO
WO 01045572 Jun 2001 WO
WO 01054558 Aug 2001 WO
WO 01056481 Aug 2001 WO
WO 01068178 Sep 2001 WO
WO 01070325 Sep 2001 WO
WO 01074266 Oct 2001 WO
WO 01097895 Dec 2001 WO
WO 02062269 Aug 2002 WO
WO 03049603 Jun 2003 WO
WO 03063703 Aug 2003 WO
WO 03105657 Dec 2003 WO
WO 04006788 Jan 2004 WO
WO 04018980 Mar 2004 WO
WO 04026391 Apr 2004 WO
WO 04082525 Sep 2004 WO
WO 04082525 Sep 2004 WO
WO 05018730 Mar 2005 WO
WO 05077450 Aug 2005 WO
WO 05089670 Sep 2005 WO
WO 05117755 Dec 2005 WO
WO 06034008 Mar 2006 WO
WO 06078884 Jul 2006 WO
WO 06107957 Oct 2006 WO
WO 06116597 Nov 2006 WO
WO 06118737 Nov 2006 WO
WO 06135853 Dec 2006 WO
WO 07035204 Mar 2007 WO
WO 07111636 Oct 2007 WO
WO 07124260 Nov 2007 WO
WO 08036149 Mar 2008 WO
WO 08045242 Apr 2008 WO
WO 08051918 May 2008 WO
WO 08134382 Nov 2008 WO
Non-Patent Literature Citations (252)
Entry
Argon Medical. Maxxim Medical. Ad for Sniper EliteTM Hydrophilic Ni—Ti Alloy Guidewire (2001).
Aust, R., et al. ‘The Functional Size of the Human Maxillary Ostium in Vivo’ Acta. Otolaryn. (9178) vol. 78 pp. 432-435.
Baim, D.S., MD ‘Grossman's Cardiac Catheterization, Angiography, and Intervention’ (2000) Lippincott Williams & Wilkins pp. 76, 84 & 214.
Barrett, S. ‘Be Wary of Neurocranial Restructuring (NCR)’ Chirobase; Jul. 2003; www.chirobase.org/06DD/ncr.html.
Bartal, N. ‘An Improved stent for Use in the Surgical Management of Congenital Posterior Choanal Atresia’ J. Laryngol. Otol (1988) vol. 102 pp. 146-7.
Becker, A.E. ‘Restenosis After Angioplasty’ The Lancet (1988) vol. 331, No. 8584 p. 532.
Bellis, M. History of the Catheter-Balloon Catheter—Thomas Fogarty. www.inventors.about.com/library/inventors/blcatheter.htm?p=1.
Benninger et al.; Adult Chronic Rhinosinusitis: Definitions, Diagnosis, Epidemiology, and Pathophysiology Arch Otolarygol Head and Neck Surg. vol. 129 (Sep. 2003 ) pp. A1-S32.
Bent et al. ‘The Frontal Cell as a Cause of Frontal Sinus Obstruction’ American Journal of Rhinology, vol. 8, No. 4 (1994) pp. 185-191.
Binner et al. ‘Fibre-Optic Transillumination of the Sinuses: A Comparison of the Value of Radiography and Transillumination in Antral Disease’ Clinical Otolaryngology. vol. 3 (1978) pp. 1-11.
Brown, C.L. et al., ‘Safety and Feasibility of Balloon Catheter Dilation of Paranasal Sinus Ostia: A Preliminary Investigation’ Annals of Otology, Rhinology & Laryngology (2006) vol. 115, No. 4 pp. 293-299.
Cakmak, 0., et al., “Effects of paranasal sinus ostia and volume on acoustic rhinometry measurements: a model study,” J Appl Physiol, 2003, 94:1527-1535, XP055155532, 9 pgs.
Casiano et al. ‘Endoscopic Lothrop Procedure: The University of Miami Experience’ American Journal of Rhinology, vol. 12, No. 5 (1998) pp. 335-339.
Casserly, I.P. et al., Chapter 7. ‘Guides and Wires in Percutaneous Coronary Intervention’ Strategic Approaches in Coronary Intervention (2006) Lippincott Williams & Wilkins pp. 91-99.
Chien, Y.W. et al. ‘Nasal Systemic Drug Delivery’ Drugs and Pharmaceutical Sciences, vol. 39, pp. 60-63.
Cohen et al. ‘Endoscopic Sinus Surgery: Where we are and where we're going’ Current Opinion in Otolaryngology & Head and Neck Surgery, vol. 13 (2005) pp. 32-38.
Colla, A. et al., ‘Trihaloacetylated Enol Ethers-General Synthetic Procedure and Heterocyclic Ring Closure Reactions with Hydroxylamine’ Synthesis, (Jun. 1991) pp. 483-486.
Costa, M.N. et al. ‘Endoscopic Study of the Intranasal Ostium in External Dacryocystorhinostomy Postoperative. Influence of Saline Solution and 5-Flurorouracil’ Clinics (2007) vol. 62, Issue1, pp. 41-46.
Cussler, E.L. ‘Diffusion: Mass transfer in Fluid Systems’ Cambridge University Press (1996).
Davis, G.E. et al. ‘A Complication from Neurocranial Restructuring’ Arch Otolaryngol Head Neck Surg. vol. 129 (Apr. 2003) pp. 472-474.
Deutschmann, R. et al. ‘A Contribution to the Topical Treatment of [Maxillary] Sinusitis Preliminary Communication’ Stomat DDR 26, (1976) pp. 585-592.
Domb, A. et al. ‘Handbook of Biodegradable Polymers’ Harwood Academic Publishers (1997).
Doyle Nasal Splints, Jan. 25, 2007; www.doylemedical.com/nasalsplints.htm.
Draf, W. ‘Endonasal Micro-Endoscopic Frontal Sinus Surgery: the Fulda Concept’ Op Tech Otolaryngol Head Neck Surg. vol. 2 (1991) pp. 234-240.
Edmond, C. et al. ‘ENT Surgical Stimulator’ Nov. 1989.
ENT Checklist; Physical Examination Performance Checklist [date of publication unknown].
Eremychev, V.A. ‘Needles for Puncture and Drainage of the Maxillary Sinus’ Meditsinskaya Tekhnika, No. 5 (1974) pp. 54.55.
Feldman, R.L. et al., ‘New Steerable, Ultra-Low-Profile, Fixed Wire Angioplasty Catheter: Initial Experience with the Cordis OrionTM Steerable PTCA Balloon Catheter’ Cathet. Cardiovasc. Diagn. (1990) vol. 19, No. 2 pp. 142-145.
Ford, C.N. ‘A Multipurpose Laryngeal Injector Device’ Otolaryngol. Head Neck Surg. (1990) vol. 103, No. 1 pp. 135-137.
Friedman, M., M.D., et al. ‘Frontal Sinus Surgery: Endoscopic Technique’ Operative Techniques in Otolarynology—Head and Neck Surgery. vol. 12, No. 2 (Jun. 2001) pp. 60-65.
Friedman, et al. ‘Intraoperative and Postoperative Assessment of Frontal Sinus Patency by Transillumination’ Laryngoscope. vol. 110 (Apr. 2000) pp. 683-684.
Friedman, et al ‘Middle Turbinate Medialization and Preservation in Endoscopic Surgery’ Otolaryngology—Head and Neck Surgery. (2000) vol. 123, No. 1, part 1, pp. 76-80.
Fung, M.K.T. ‘Template for Frontal Osteoplastic Flap’ Laryngoscope. vol. 96 (1986) pp. 578-579.
Gatot, A. et al. ‘Early treatment of Orbital Floor Fractures with Catheter Balloon in Children’ Int J. Pediatric Otorhinolaryngol (1991) vol. 21 pp. 97-101.
Gerus, I.I. et al. ‘β-Ethoxyvinyl Polyfluroroalkyl Ketones—Versatile Synthones in Fluoroorganic Chemistry’ Journal of Fluorine Chemistry. vol. 69 (1994) pp. 195-198. Elsevier Science S.A.
Good, R.H. ‘An Intranasal Method for Opening the Frontal Sinus Establishing the Largest Possible Drainage’ Laryngoscope. vol. 18 (1908) pp. 266-274.
Gopferich ‘Polymer Degradation and Erosion: Mechanisms and Application’ Eur. J. Parm. Biophar. vol. 42 (1996) pp. 1-11.
Gorlov, D.V. et al ‘Acylation of 2-Methoxypropene with Anhydrides and Halides of Perflurocarboxylic Acids in the Presence of Tertiary Amines’ Russian Chemical Bulletin. vol. 48 No. 9 (Sep. 1999) pp. 1791-1792. Kluwer Academic/Plenum Publishers.
Gottmann, et al. ‘Balloon Dilatation in the Nasal Cavity and Paranasal Sinuses’ CIRSE. (Sep. 25, 2004) pp. 1-27.
Gottmann, et al. ‘Balloon Dilatation of Recurrent Ostial Occlusion of the Frontal Sinus’ CIRSE Abstract (Mar. 2001) B-04353.
Gottman, et al., Balloon Dilatation of Recurrent Ostial Occlusion of the Front Sinus OASIS-Online Abstract Submission and Invitation System, 1996-2006, Coe Truman Technologies, Inc.
Gottmann, et al. ‘Successful Treatment of Recurrent Post-Operative Frontal Sinus Stenoses by Balloon Dilatation’ CIRSE. (Oct. 5, 2002).
Gupta, D. et al., ‘Dacrystitis Secondary to an Iatrogenic Foreign Body in the Lacrimal Apparatus’ Ear, Nose & Throat Journal (2009) www.findarticles.com/p/articles/mi_m0BUM/is_7_88/ai_n32428620/.
Hashim, et al. ‘Balloon Compression of the Intermaxillary Sinus for Intractable Post Traumatic Bleeding from the Maxillary Artery’ Scandinavian Journal of Plastic and Reconstruction Surgery and Hand Surgery (1999) vol. 33 pp. 321-324.
Hojo, M. et al, ‘Electrophilic Substitutions of Olefmic Hydrogens II. Acylation of Vinyl Ethers and N Vinyl Amides Chemistry Letters’ (1976) pp. 499-502. Chemical Society of Japan.
Hopf, J.U.G. et al. ‘Minatare Endoscopes in Otorhinolaryngologic Applications’ Min Invas Ther & Allied Technol. (1998) vol. 7, No. 3 pp. 209-218.
Hosemann, W. et al. A Dissection Course on Endoscopic Endonasal Sinus Surgery (2005) Endo-Press, Tuttlingen pp. 4-37.
Hosemann, W. et al. ‘Endonasal Frontal Sinusotomy in Surgical Management of Chronic Sinusitis: A Critical Evaluation’ American Journal of Rhinology. vol. 11, No. 1 (1997 ) pp. 1-9.
Hosemann, M.E. et al. ‘Experimentelle Untersuchungen sur Wundheilung in den Nasennebenholhlen. II. Spontaner Wundschluss und medikamentose Effekte im standardisierten Wundmodell.’ HNO 39 (1991) pp. 48-54. ‘Experimental investigations on wound healing of the paranasal sinuses. II. Spontaneous wound closure and pharmacological effects in a standardized animal model.’ HNO 39 (1991) pp. 48-54.
Hosemann, W.G. et al. ‘Minimally Invasive Endonasal Sinus Surgery’ Thieme, Stuttgart, New York (2000).
Hosemann, M.E. et al. ‘Normal Wound Healing of the Paranasal Sinuses—Clinical and Experimental Investigations’ Eur Arch Otorhinolarygol. vol. 248, (1991) pp. 390-394.
Hosemann, W. et al. ‘Behandlung nach Nasennebenhohleneingriffen, part 2: Theapeutische Maßnahem’ HNO akutell 7 (1999) pp. 291-302.
Hospital Corpsman Sickcall Screener's Handbook. Naval Hospital Great Lakes (Apr. 1999) www.brooksidepress.org/Products/Operationa.Medicine/DATA. 2001 pp. 1-6.
Hybels, R.L. ‘Transillumination During Osteoplastic Frontal Sinusotomy’ The Laryngoscope. vol. 91 (Sep. 1981 ) pp. 1560.
Ijaduola, T.G.A. ‘Use of a Foley Catheter for Short-Term Drainage in Frontal Sinus Surery’ The Journal of Laryngology and Otology. (1989) vol. 103. pp. 375.378.
Ingals, E.F. ‘New Operation and Instruments for Draining the Frontal Sinus’ Ann. Otol. Rhinol. Layyngol. vol. 14 (1905) pp. 644-649.
Iro, H. et al., ‘A New Device for Frontal Sinus Endoscopy: First Clinical Report’ Otolaryngol. Head Neck Surg. (2001) vol. 125 No. 6 pp. 613-616.
Jacobs, J.B. ‘100 Years of Frontal Sinus Surgery’ Laryngoscope. vol. 107 (1997) pp. 1-36.
K-Splint Internal Nasal Splints; Jan. 25, 2007; www.invotec.net/rhinology/ksplint.html.
Kaiser, H. et al ‘Cortizontherapie, Corticoide in Klinik und Praxis’ Thieme, Stuggart (1992) pp. 390-401.
Kennedy, D.W., M.D. et al. ‘Diseases of the Sinuses: Diagnosis and Management’ (Copyright 2001) by B.C. Decker Inc.
Khomutov, S.M. et al. ‘Dissolution of a Mixture of Steroids in Cyclodextrin Solutions: A Model Description’ Pharmaceutical Chemistry Journal. vol. 35, No. 11 (Nov. 2001) pp. 627-629.
Kingdom, T.T. et al. ‘Image-Guided Surgery of the Sinuses: Current Technology and Applications’ Otolaryngol. Clin. North Am. vol. 37, No. 2 (Apr. 2004) pp. 381-400.
Klossek, J.M. et al. ‘Local Safety of Intranasal Trimcinolone Acentonide: Clinical and Histological Aspects of Nasal Mucosa in the Long-Term Treatment of Perennial Allergic Rhinitis’ Rhinology. vol. 39, No. 1 (2001) pp. 17-22.
Kozlov et al. ‘Diagnosis and Treatment of Sinusitis by YAMIK Sinus Catheters’ Rhinology (1996) vol. 34, pp. 123-124.
Kuhn, et al. ‘The Agger Nasi Cell in Frontal Recess Obstruction: An Anatomic, Radiology and Clinical Correlation’ Operative Techniques in Otolaryngology-Head and Neck Surgery. vol. 2, No. 4 (1991) pp. 226-231.
Laliberte, F. et al. ‘Clinical and Pathologic Methods to Assess the Long-Term Safety of Nasal Corticosteroids’ Allergy. vol. 55, No. 8 (2000) pp. 718-722.
Lang, E.V., et al., ‘Access Systems for Puncture at an Acute Angle’ J. Vasc. Interv. Radiol. (1995) vol. 6, No. 5 pp. 711-713.
Lanza, D.C. ‘Postoperative Care and Avoiding Frontal Recess Stenosis’ International Advanced Sinus Symposium (1993) Jul. 21-24.
Large, G.C. ‘Crystalline Tetracycline Hydrochloride in the Treatment of Acute and Chronic Maxillary Sinusitis’ Canada. M.A.J. (1958) vol. 79 pp. 15-16.
Lund, V.J. ‘Maximal Medical Therapy for Chronic Rhinosinusitis’ Otolaryngol Clin N. Am. vol. 38 (2005) pp. 1301-1310.
Maran, A.G.D. et al. ‘The Use of the Foley Balloon Catheter in the Tripod Fracture’ J. Laryngol. Otol. (1971) vol. 85, Issue 9, pp. 897-902.
May, M. et al. ‘Frontal Sinus Surgery: Endonasal Drainage Instead of an External Osteopolstic Approach’ Op Tech Otolaryngo Head Neck Surgery. 6 (1995) pp. 184-192.
Medtronic, xomed.com-MicroFrance Catalog Browser. www.xomcat.com/xomfrance/index.php?zone=both&cat=18&sub=58&prodline=1272 (Dec. 31, 2003) pp. 1-2.
Mehan, V.K. et al., ‘Coronary Angioplasty through 4 French Diagnostic Catheters’ Cathet. Cardiovasc. Diagn. (1993) vol. 30, No. 1 pp. 22-26.
Mellor, J.M. et al ‘Synthesis of Trifluromethylnaphthalenes’ Tetrahedron. vol. 56 (2000) pp. 10067-10074. Elsevier Science Ltd.
Metson, R., et al., ‘Endoscopic Treatment of Sphenoid Sinusitis’ Otolaryngol. Head Neck Surg. (1996) vol. 114, No. 6 pp. 736-744.
Metson, R. ‘Holmium: YAG Laser Endoscopic Sinus Surgery: A Randomized Controlled Study’ Laryngoscope. vol. 106, Issue 1, Supplement 77 (Jan. 1996 ) pp. 1-18.
Miller, et al. ‘Management of Fractures of the Supraorbital Rim’ Journal of Trauma. vol. 18, No. 7 (Jul. 1978) pp. 507-512.
Min, Y-G et al. ‘Mucociliary Activity and Histopathology of Sinus Mucosa in Experimental Maxillary Sinusitis: A Comparison of Systemic Administration of Antibiotic and Antibiotic Delivery by Polylactic Acid Polymer’ Laryngoscope. vol. 105 (Aug. 1995) pp. 835-842.
Mols, B. ‘Movable Tool Tip for Keyhole Surgery’ Delft Outlook, vol. 3 (2005) pp. 13-17.
Mooney, M.R., et al., ‘Monorail™ Piccolino Catheter: A New Rapid Exchange/Ultralow Profile Coronary Angioplasty System’ Cathet. Cardiovasc. Diagn. (1990) vol. 20, No. 2 pp. 114-119.
Moriguchi, T. et al. ‘Additional-Elimination Reaction in the Trifluoroacetylation of Electron-Rich Olefins’ J. Org. Chem. vol. 60, No. 11 (1995) pp. 3523.3528. American Chemical Society.
Nasal Surgery and Accessories, Jan. 25, 2007; www.technologyforlife.com.au/ent/nasal.html.
Park, K. et al. ‘Biodegradable Hydrogels for Drug Delivery’ (1993) Technomic Publishing Inc. Lancaster.
Piccirillo, J.F. et al. ‘Psychometric and Clinometric Validity of the 20-Item Sino-Nasal Outcome test(SNOT-20)’ Copyright 1996 Washington Universfty, St. Louis, MO.
Piers, et al. ‘A Flexible Distal Tip with Two Degrees of Freedom for Enhanced Dexterity in Endoscopic Robot Surgery’ Proceedings 13th Micromechanics Europe Workshop (2002) pp. 271-274.
Podoshin, L et al. ‘Balloon Technique for Treatment of Frontal Sinus Fractures’ The journal of Laryngology & Otology (1967), vol. 81. pp. 1157-1161.
Pownell, P.H. et al., ‘Diagnostic Nasal Endoscopy’ plastic & Reconstructive Surgery (1997) vol. 99, Iss5 pp. 1451-1458.
Prince, et al. ‘Analysis of the Intranasal Distribution of Ointment’ J Otolaryngol. vol. 26 (1997) pp. 357-360.
Ramsdale, D.R., Illustrated Coronary Intervention: A case-oriented approach, (2001) Martin Dunitz Ltd. pp. 1-5.
Ritter, F.N. et al., Atlas of Paranasal Sinus Surgery (1991) Igaku-Shoin Medical Pub. pp.1-81.
Robison, J. Mathews, M.D. ‘Pressure Treatment of Maxillary Sinusitis’ J.A.M.A. (May 31, 1952) pp. 436-440.
Robison, J. Mathews, M.D. ‘Pressure Treatment of Purulent Maxillary Sinusitis’ Texas State Journal of Medicine (May 1952 ) pp. 281-288.
St. Croix et al. ‘Genes Expressed in Human Tumor Endothelium’ Science, vol. 289 (May 15, 2000) pp. 1197-1202.
Sama, A., et al., ‘Current Opinions on the Surgical Management of Frontal Sinus Disease’ ENT News. Www.pinpointmedical.com/ent-news (2009) vol. 17, No. 6 pp. 60-63.
Sanborn, T.A. et al., ‘Percutaneous Endocardial Transfer and Expression of Genes to the Myocardium Utilizing Fluoroscopic Guidance’ Catheter Cardiovasc. Interv. (2001) vol. 52, No. 2 pp. 260-266.
Sawbones Catalog 2001, Pacific Research Laboratories, Inc., Vashon Washington 98070 USA.
Saxon, R.R. et al., ‘Technical Aspects of Accessing the Portal Vein During the TIPS Procedure’ J. Vasc. Interv. Radiol. (1997) vol. 8, No. 5 pp. 733-744.
Schaefer, S.D., M.D. ‘Rhinology and Sinus Disease: A Problem-Oriented Approach’ (Copyright 1988) by Mosby, Inc.
Schneider. Pfizer Ad for Softip [date of publication unknown].
Shah, N.J. et al., ‘Endoscopic Pituitary Surgery—A Beginner's Guide’ Indian Journal of Otolaryngology and Head and Neck Surgery (2004) vol. 56, No. 1 pp. 71-78.
Shah, N.J. ‘Functional Endoscopic Sinus Surgery’ (1999); found at bhj.org/journal/1999_4104_oct99/sp_659.htm.
Single-Pole and Multi-Pole Lightguides for UV Spot Light Curing Systems.
Sobol, et al. ‘Sinusitis, Maxillary, Acute Surgical Treatment.’ eMedicine. Retrieved from the Internet: <<http://emedicine.medscape.com/article/862030-print>> (Nov. 16, 2010) pp. 1-11.
Stammberger, H. ‘Komplikationen entzundlicher Nasennebenhohlenerkrankungen eischließ iatrogen bedingter Komplikationen’Eur Arch Oti-Rhino-Laryngol Supple. (1993/1) pp. 61-102.
Stammberger, et al. Chapter 3 ‘Special Endoscopic Anatomy of the Lateral Nasal Wall and Ethmoidal Sinuses’ Functional Endoscopic Sinus Surgery. (1991) Ch. 3, pp. 49-87.
Strohm, et al. Die Behandlung von Stenosen der oberen Luftwege mittels rontgenologisch gesteuerter Ballondilation (Sep. 25, 1999) pp. 1-4.
Strohm, et al ‘Le Traitenment des Stenoses Voies Aeriennes Superieures Par Dilation Ay Balloon’ Sep. 25, 1999.
Strohm, et al. ‘Treatment of Stenoses of the Upper Airways by Balloon Dilation’ Sudwestdeutscher Abstract 45 (Sep. 25, 1999) pp. 1-3.
SurgTrainer Product Information ‘Incisive Human Nasal Model for ESS Training’ SurgTrainer, Ltd. Ibaraki, Japan (2004) www1.accsnet.ne.jp/˜juliy/st/en/partslist.html.
Tabor, M.H. et al., ‘Symptomatic Bilateral Duct Cysts in a Newborn—Rhinoscopic Clinic’ Ear, Nose & Throat Journal (2003) www.findarticles.com/p/articles/mi_m0BUM/is_2_82/ai_98248244 pp. 1-3.
Tarasov, D.I. et al. ‘Application of Drugs Based on Polymers in the Treatment of Acute and Chronic Maxillary Sinusitis’ Vestn Otorinoloaringol. vol. 6 (1978) pp. 45-47.
Terumo. Medi-Tech. Boston Scientific. (1993) Ad of Glidewire.
Operating Theatre Journal (www.otjonline.com) ‘Disposable Medical Device for Wond Disclosure/The Tristel Purple Promotion—A Collaboration between Tristel PLC and Karl Storz Ednoscopy (UK) Ltd.’ p. 4.
Weber, R. et al. ‘Endonasale Stirnhohlenchirugie mit Langzeiteinlage eines Platzhalters’ Laryngol. Rhinol. Otol. vol. 76 (1997) pp. 728-734. (English Abstract).
Weber, R. et al., ‘Videoendoscopic Analysis of Nasal Steroid Distribution’ Rhinology. vol. 37 (1999) pp. 69-73.
Weiner, R.I., D.O., et al., ‘Development and Application of Transseptal Left Heart Catheterization’ Cathet. Cardiovasc. Diagn. (1988) vol. 15, No. 2, pp. 112-120.
Wiatrak, B.J., et al., ‘Unilateral Choanal Atresia: Initial Presentation and Endoscopic Repair’ International Journal of Pediatric Otorhinolaryngology (1998) vol. 46, pp. 27-35.
Woog, et al. ‘Paranasal Sinus Endoscopy and Orbital Fracture Repair’ Arch Ophthalmol. vol. 116 (May 1998) pp. 688-691.
Wormald, P.J., et al., ‘The ‘Swing-Door’ Technique for Uncinectomy in Endoscopic Sinus Surgery’ The Journal of Laryngology and Otology (1998) vol. 112, pp. 547-551.
Xomed-Treace. Bristol-Myers Squibb. Ad for Laser Shield II. Setting the Standards for Tomorrow. [date of publication unknown].
Yamauchi, Y. et al., ‘Development of a Silicone Model for Endoscopic Sinus Surgery’ Proc International Journal of Computer Assisted Radiology and Surgery vol. 99 (1999) p. 1039.
Yamauchi, Y., et al., ‘A Training System for Endoscopic Sinus Surgery with Skill Evaluation’ Computer Assisted Radiology and Surgery (2001) with accompanying copy of poster presentation.
Yanagisawa et al. ‘Anterior and Posterior Fontanelles.’ Ear, Nose & Throat Journal (2001) vol. 80. pp. 10-12.
Zimarino, M., M.D., et al., ‘Initial Experience with the EuropassTM: A new Ultra-Low-Profile Monorail Balloon Catheter’ Cathet. Cardiovasc. Diagn. (1994) vol. 33, No. 1, pp. 76-79.
Australian Office Action, Examiners First Report dated Apr. 8, 2010 for Application No. AU 2005274794.
Australian Office Action, First Examination Report, dated Apr. 11, 2014 for Application No. 2009276553.
Canadian Office Action dated Jun. 18, 2015 for Application No. 2,732,769.
Chinese Office Action, First Office Action, dated Nov. 21, 2012 for Application No. 200980130717.5.
Chinese Office Action, Second Office Action, dated Jul. 22, 2013 for Application No. 200980130717.5.
Chinese Office Action, Third Office Action, dated Jan. 17, 2014 for Application No. 200980130717.5.
Chinese Search Report dated Nov. 9, 2012 for Application No. 200980130717.5.
European Written Opinion dated Jul. 7, 2014 for Application No. EP 13180296.9.
European Written Opinion dated Dec. 5, 2014 for Application No. EP 13180296.9.
European Written Opinion dated Oct. 29, 2015 for Application No. EP 13180296.9.
European Written Opinion dated Aug. 22, 2016 for Application No. EP 13180296.9.
European Communication dated Sep. 4, 2008 for Application No. EP 05773189.
European Communication dated Jun. 19, 2009 for Application No. EP 05773189.
European Exam Report dated Feb. 22, 2006 for Application No. EP 02716734.5.
European Exam Report dated Feb. 8, 2007 for Application No. EP 02716734.5.
European Search Report and Written Opinion dated Sep. 11, 2009 for Application No. EP 06815174.
European Examination Report dated Aug. 3, 2011 for Application No. 09790994.9, 4 pages.
European Examination Report dated Jan. 26, 2015 for Application No. 09790994.9, 4 pages.
European Examination Report dated Nov. 25, 2015 for application No. 09790994.9, 4 pages.
European Examination Report dated Nov. 3, 2016 for Application No. 09790994.9, 5 pages.
European Examination Report dated May 23, 2017 for Application No. 13180296.9, 4 pages.
European Search Report dated Sep. 27, 2011 for Application No. EP 10182961.
European Search Report dated Sep. 29, 2011 for Application No. EP 10182893.
Partial European Search Report dated Sep. 20, 2007 for Application No. EP 07252018.
Partial European Search Report dated Mar. 25, 2008 for Application No. EP 07252018.
Supplemental Partial European Search Report dated Jun. 2, 2008 for Application No. EP 05773189.
Supplemental Partial European Search Report dated Jul. 1, 2009 for Application No. EP 06815285.
Supplemental Partial European Search Report dated Nov. 19, 2010 for Application No. EP 06751637.
Supplemental European Search Report dated Jan. 29, 2010 for Application No. EP 07836108.
Supplemental European Search Report dated Feb. 2, 2010 for Application No. EP 07836109.
Supplemental European Search Report dated Feb. 17, 2010 for Application No. EP 07836110.
Supplemental European Search Report dated Mar. 1, 2010 for Application No. EP 05778834.
Supplemental European Search Report dated Mar. 16, 2010 for Application No. EP 06718986.
Supplemental European Search Report dated Jun. 22, 2010 for Application No. EP 06784759.
Supplemental European Search Report dated Sep. 23, 2010 for Application No. EP 08746715.
Supplemental European Search Report dated Jan. 28, 2011 for Application No. EP 07777004.
Supplemental European Search Report dated Mar. 31, 2011 for Application No. EP 05798331.
Supplemental European Search Report dated Aug. 30, 2011 for Application No. EP 06800540.
Supplemental European Search Report dated Sep. 29, 2011 for Application No. EP 07750248.
Extended European Search Report dated Oct. 10, 2013 for Application No. 13180296.9.
PCT Search Report dated Nov. 30, 2009 for Application No. UPCT/US2009/057203.
International Preliminary Report on Patentability dated Aug. 7, 2006 for Application No. PCT/US05/25371.
International Preliminary Report on Patentability and Written Opinion dated Sep. 25, 2007 for Application No. PCT/US06/002004.
International Preliminary Report on Patentability dated Feb. 15, 2008 for Application No. PCT/US05/13617.
International Preliminary Report on Patentability and Written Opinion dated Nov. 18, 2008 for Application No. PCT/US07/11449.
International Preliminary Report on Patentability and Written Opinion dated Apr. 7, 2009 for Application No. PCT/US07/021170.
International Preliminary Report on Patentability and Written Opinion dated May 5, 2009 for Application No. PCT/US06/036960.
International Preliminary Report on Patentability and Written Opinion dated Oct. 13, 2009 for Application No. PCT/US08/059786.
International Preliminary Report on Patentability and Written Opinion dated Oct. 27, 2009 for Application No. PCT/US08/061343.
International Preliminary Report on Patentability and Written Opinion dated Feb. 1, 2011 for Application No. PCT/US2009/052236.
International Search Report dated Jun. 3, 2002 for Application No. PCT/EP02/01228.
International Search Report and Written Opinion dated Apr. 10, 2006 for Application No. PCT/US05/25371.
International Search Report dated May 8, 2007 for Application No. PCT/US2006/16026.
International Search Report and Written Opinion dated Jul. 21, 2008 for Application No. PCT/US05/033090.
International Search Report dated Aug. 25, 2008 for Application No. PCT/US2008/000911.
International Search Report dated Sep. 10, 2008 for Application No. PCT/US07/016212.
International Search Report and Written Opinion dated Sep. 12, 2008 for Application No. PCT/US07/16214.
International Search Report and Written Opinion dated Sep. 17, 2008 for Application No. PCT/US08/059786.
International Search Report and Written Opinion dated Sep. 17, 2008 for Application No. PCT/US08/061343.
International Search Report and Written Opinion dated Oct. 1, 2008 for Application No. PCT/US07/011449.
International Search Report dated Oct. 15, 2008 for Application No. PCT/US2008/061048.
International Search Report dated Nov. 30, 2009 for Application No. PCT/US2009/057203.
International Search Report dated Dec. 10, 2009 for Application No. PCT/US2009/052236.
International Search Report dated Dec. 16, 2009 for Application No. PCT/US2009/050800.
International Search Report dated Mar. 31, 2010 for Application No. PCT/US2009/069143.
International Search Report dated Jul. 8, 2010 for Application No. PCT/US2010/027837.
International Search Report and Written Opinion dated Oct. 6, 2010 for Application No. PCT/US2010/040548.
International Search Report dated Mar. 25, 2011 for Application No. PCT/US2010/062161.
International Search Report dated Mar. 28, 2011 for Application No. PCT/US2010/061850.
International Search Report dated Mar. 31, 2011 for Application No. PCT/US2010/060898.
International Search Report dated Aug. 9, 2011 for Application No. PCT/US2011/038751.
International Search Report dated May 18, 2012 for Application No. PCT/US2011/052321.
Partial International Search Report dated Feb. 7, 2012 for Application No. PCT/US2011/052321.
Japanese Office Action, Notification of Reasons for Refusal, dated Jul. 2, 2013 for Application No. 2011-521316.
Korean Notice of Preliminary Rejection dated Oct. 19, 2015 for Application No. 10-2011-7004167, 5 pages.
Mexican Examination Report dated Aug. 15, 2013 for Application No. MX/a/2011/001099.
Mexican Examination Report dated Nov. 15, 2013 for Application No. MX/a/2011/001099.
Mexican Examination Report dated Mar. 14, 2014 for Application No. MX/a/2011001099, 4 pages.
Russian Examination Report dated unknown for Application No. 201107229, 4 pages.
USPTO Office Action dated Sep. 16, 2005 for U.S. Appl. No. 10/259,300.
USPTO Office Action dated Jul. 7, 2006 for U.S. Appl. No. 10/259,300.
USPTO Office Action dated Feb. 13, 2007 for U.S. Appl. No. 10/259,300.
USPTO Office Action dated Oct. 9, 2007 for U.S. Appl. No. 10/259,300.
USPTO Office Action dated Jan. 24, 2008 for U.S. Appl. No. 10/259,300.
USPTO Office Action dated Oct. 6, 2008 for U.S. Appl. No. 10/259,300.
USPTO Office Action dated May 29, 2007 for U.S. Appl. No. 10/912,578.
USPTO Office Action dated Nov. 14, 2007 for U.S. Appl. No. 10/912,578.
USPTO Office Action dated Dec. 10, 2007 for U.S. Appl. No. 10/912,578.
USPTO Office Action dated Oct. 18, 2007 for U.S. Appl. No. 11/037,548.
USPTO Office Action dated Dec. 6, 2007 for U.S. Appl. No. 11/037,548.
USPTO Office Action dated Apr. 9, 2008 for U.S. Appl. No. 11/037,548.
USPTO Office Action dated Nov. 28, 2007 for U.S. Appl. No. 11/234,395.
USPTO Office Action dated Sep. 12, 2008 for U.S. Appl. No. 10/829,917.
USPTO Office Action dated Nov. 17, 2008 for U.S. Appl. No. 10/829,917.
USPTO Office Action dated Mar. 18, 2009 for U.S. Appl. No. 10/829,917.
USPTO Office Action dated Nov. 9, 2009 for U.S. Appl. No. 10/829,917.
USPTO Office Action dated Oct. 29, 2008 for U.S. Appl. No. 11/347,147.
USPTO Office Action dated Feb. 4, 2009 for U.S. Appl. No. 11/347,147.
USPTO Office Action dated Aug. 6, 2009 for U.S. Appl. No. 11/347,147.
USPTO Office Action dated Nov. 7, 2008 for U.S. Appl. No. 10/944,270.
USPTO Office Action dated Jan. 28, 2009 for U.S. Appl. No. 10/944,270.
USPTO Office Action dated Apr. 21, 2009 for U.S. Appl. No. 10/944,270.
USPTO Office Action dated Nov. 17, 2008 for U.S. Appl. No. 12/117,582.
USPTO Office Action dated Mar. 3, 2009 for U.S. Appl. No. 12/117,582.
USPTO Office Action dated Aug. 6, 2009 for U.S. Appl. No. 12/117,582.
USPTO Office Action dated Nov. 17, 2008 for U.S. Appl. No. 12/118,931.
USPTO Office Action dated Mar. 4, 2009 for U.S. Appl. No. 12/118,931.
USPTO Office Action dated Jul. 30, 2009 for U.S. Appl. No. 12/118,931.
USPTO Office Action dated Nov. 25, 2008 for U.S. Appl. No. 12/117,961.
USPTO Office Action dated Aug. 6, 2009 for U.S. Appl. No. 12/117,961.
USPTO Office Action dated Dec. 5, 2008 for U.S. Appl. No. 12/120,902.
USPTO Office Action dated Oct. 21, 2009 for U.S. Appl. No. 12/120,902.
USPTO Office Action dated Mar. 17, 2009 for U.S. Appl. No. 11/690,127.
USPTO Office Action dated Mar. 23, 2009 for U.S. Appl. No. 11/804,309.
USPTO Office Action dated Mar. 23, 2009 for U.S. Appl. No. 11/926,326.
USPTO Office Action dated Aug. 28, 2009 for U.S. Appl. No. 11/150,847.
U.S. Appl. No. 60/844,874, filed Sep. 15, 2006.
U.S. Appl. No. 60/922,730, filed Apr. 9, 2007.
U.S. Appl. No. 61/052,413, filed May 12, 2008.
U.S. Appl. No. 61/084,949, filed Jul. 30, 2008.
U.S. Appl. No. 11/789,705, filed Apr. 24, 2007.
U.S. Appl. No. 12/512,420, filed Jul. 30, 2009.
U.S. Appl. No. 14/446,537, filed Jul. 30, 2014.
Canadian Office Action dated Apr. 4, 2016 for Application No. 2,732,769, 3 pages.
Chinese Office Action dated Jul. 11, 2014 for Application No. 200980130717.5, 5 pages.
Japanese Notification of Reasons for Refusal dated Jul. 30, 2014 for Application No. 2011-521316, 2 pages.
Related Publications (1)
Number Date Country
20190167089 A1 Jun 2019 US
Provisional Applications (1)
Number Date Country
61084965 Jul 2008 US
Continuations (3)
Number Date Country
Parent 15625013 Jun 2017 US
Child 16210186 US
Parent 14446537 Jul 2014 US
Child 15625013 US
Parent 12512420 Jul 2009 US
Child 14446537 US