This invention relates to a medical device and more particularly to an implantable endovascular device.
This invention will be discussed in general with respect to aortic aneurysms and the use of an implantable device such as a stent graft to bridge an aneurysm and in particular in the descending aorta but the invention is not so limited and may be used for any region of the human or animal body and any type of implantable device.
A stent graft can be used to bridge an aortic aneurysm but where there are side branch arteries from the aorta it is necessary to have side branches extending from the stent graft to give a blood supply to as many side branch arteries as possible.
There are four main side branch arteries in the descending aorta. These are the celiac artery, the superior mesenteric artery, the right renal artery and the left renal artery. There are also a number of other minor side branch arteries but these are smaller and generally cannot be catheterized to enable placement of a side branch graft. One of these sets of arteries are the intercostal arteries.
After an endovascular operation to place a stent graft into the descending aorta, the human or animal body can in time adapt to lack of blood supply from some arteries which are excluded by the stent graft. For instance blood supply via the intercostal arteries to the spinal cord can be alternatively achieved via other arteries such as for instance the celiac artery, the superior mesenteric artery, lumbar and internal iliac arteries.
There can be a problem, however, of blood supply immediately after an operation, at least in part relating to blood pressure and it is the object of this invention to provide a possible solution or at least provide the physician with a useful alternative.
Throughout this specification the term distal with respect to a portion of the aorta, a deployment device or a prosthesis means the end of the aorta, deployment device or prosthesis further away in the direction of blood flow away from the heart and the term proximal means the portion of the aorta, deployment device or end of the prosthesis nearer to the heart. When applied to other vessels similar terms such as caudal and cranial should be understood.
In one form therefore the invention is said to reside in an implantable device comprising a tubular body of a biocompatible graft material, the tubular body defining a main lumen therethrough, a plurality of low profile side arms in the tubular body, each low profile side arm comprising a respective side arm lumen therethrough and the main lumen being in fluid communication with the respective side arm lumens, the side arms each being intended, and so constructed and arranged, for connection of an arm extension to a branch vessel, a paraplegia prevention vent tube in fluid communication with the main lumen and open externally in a proximal direction to external of the tubular body, wherein the paraplegia prevention vent tube is not intended to be connected to a side branch vessel; but wherein the paraplegia prevention vent tube is intended, and is so constructed and arranged, to provide perfusion to external of the implantable device after deployment of the implantable device into a vessel of the human or animal body; and wherein the paraplegia prevention vent tube is intended, and is so constructed and arranged, to be subsequently blocked.
In a preferred embodiment the implantable device is intended for deployment into the descending aorta and the plurality of low profile side arms comprises four low profile side arms which are constructed and arranged for connection to the celiac artery, superior mesenteric artery, the right renal artery and the left renal artery; and the paraplegia prevention vent tube is intended for, and is constructed and arranged for, temporary perfusion of the intercostal arteries.
In an alternative form the invention comprises a stent graft for deployment into the aorta of a patient, the stent graft comprising a tubular body of a biocompatible graft material, the tubular body defining a main lumen therethrough, the tubular body comprising a proximal portion of a selected diameter and a portion of reduced diameter which is less than the selected diameter distal of the proximal portion and a tapered portion extending between the proximal portion and the portion of reduced diameter, a plurality of low profile side arms in the portion of reduced diameter or the tapered portion, each low profile side arm comprising a respective side arm lumen therethrough and the main lumen being in fluid communication with the respective side arm lumens, the side arms each being intended for, and so constructed and arranged for connection of an arm extension to an aortic branch vessel, a paraplegia prevention vent tube in fluid communication with the main lumen and open externally in a proximal direction to external of the tubular body in the region defined by the portion of reduced diameter or the tapered portion, wherein the paraplegia prevention vent tube is not intended to be connected to a side branch of the aorta but is intended, and is so constructed and arranged, to provide temporary perfusion externally in a proximal direction to external of the stent graft after deployment of the stent graft into the aorta; and is intended, and is so constructed and arranged, to be subsequently blocked.
Preferably the paraplegia prevention vent tube has an open external end in a proximal direction from where it is mounted to the stent graft which gives an open internal end opening distally to allow for subsequent endoluminal access for instance from an femoral access point for the subsequent blocking.
The paraplegia prevention vent tube can be positioned on the tubular body proximally or distally of the plurality of low profile side arms.
Preferably the paraplegia prevention vent tube has a diameter of approximately 6 mm and a length of from 10 to 32 mm.
Preferably the plurality of low profile side arms in the portion of reduced diameter or the tapered portion comprises four low profile side arms which are intended, and are so constructed and arranged, for connection to the celiac artery, superior mesenteric artery, the right renal artery and the left renal artery.
The tubular body can comprise a distal portion with a diameter less than the selected diameter and greater than that of the portion of reduced diameter distal of the proximal portion and a distal tapered portion extending between the distal portion and the portion of reduced diameter.
In one embodiment the proximal portion has a diameter of approximately 34 mm, the distal portion has a diameter of approximately 24 mm and the portion of reduced diameter can have a diameter of approximately 20 mm.
Preferably the paraplegia prevention vent tube comprises radiopaque markers at its proximal and distal ends to assist with later location by radiographic techniques. For instance there may be to markers in line at the proximal end and three markers in line at the distal end.
In an alternative form the invention comprises an implantable device comprising a tubular body of a biocompatible graft material, the tubular body defining a main lumen therethrough and a paraplegia prevention vent tube in fluid communication with the main lumen and open externally in a proximal direction to external of the tubular body, wherein the paraplegia prevention vent tube is not intended to be connected to a side branch vessel, but is intended, and is so constructed and arranged to provide temporary perfusion to external of the implantable device after deployment of the implantable device into a vessel of the human or animal body; and is intended, and is so constructed and arranged, to be subsequently blocked.
Hence it will be seen that by the various forms of the invention there is provided an arrangement by which, at the time of placement of the implantable device such as a stent graft and side branches, an annular space is defined outside the stent graft by there being the portion of reduced diameter of the stent graft and in the region of the intercostal arteries and these are not closed off to blood supply because blood can still exit the stent graft through the paraplegia prevention vent tube into that annular space. In particular the paraplegia prevention vent tube enables temporary perfusion to that portion of the descending aorta which is occluded by placement of the implantable device to enable temporary continued perfusion of any of the intercostal arteries which may extend from the descending aorta in that region.
This is counter intuitive to normal endovascular device placement because one of the aims of endovascular bridging of an aneurysm is to avoid endoleaks into the excluded portion of the aorta.
Immediately after an operation to deploy an endovascular stent graft, blood pressure in a patient can be low and there may be insufficient blood supplied through the side branch stent grafts to the branch arteries. The continued perfusion of the excluded annular space outside the stent graft in the region of the intercostal arteries enables a continued supply of blood to the vertebral region which can prevent paraplegia. Subsequently, perhaps a week later when blood pressure has risen generally in the patient, the vent tube can be closed off by placement of a vascular plug by endovascular techniques. Continued supply of blood to the vertebral region can then be obtained by blood supply from the placed side branches.
This then generally describes the invention but to assist with understanding reference will now be made to the accompanying drawings.
In the drawings:
Now looking at the
Each of the proximal portion, the distal portion and the portion of reduced diameter are supported by stents 24 affixed to the graft material by stitching, adhesive or other method of affixation. The stents may be inside or outside of the tubular body. Each of the stents is preferably a self expanding Gianturco Z-stent formed from Nitinol or stainless steel wire.
There are four low profile side arms 26, 28, 30 and 32 extending from fenestrations in the portion of reduced diameter 16 or the proximal tapered portion 18. Each low profile side arm comprises a respective side arm lumen therethrough and the main lumen is in fluid communication with the respective side arm lumens. Each of the four low profile side arms 26, 28, 30 and 32 are supported by stent structures and can have reinforcing rings at their internal and external ends.
The four low profile side arms 26, 28, 30 and 32 are intended in use to receive extension side arms for entry into the celiac artery, the superior mesenteric artery, the right renal artery and the left renal artery respectively.
US Patent Application Publication Number 20070219621 entitled “Side Branch Stent Graft Construction”, now Hartley et al. U.S. Pat. No. 7,914,572, discloses various forms of low profile side arms and the teachings therein are incorporated herein in their entirety.
The tubular body 12 also includes a paraplegia prevention vent tube 34 extending from a fenestration 35 in the proximal tapered portion 18 and in fluid communication with the main lumen 11. The paraplegia prevention vent tube 34 is open to external of the tubular body at 36 in the region defined by the portion of reduced diameter and the tapered portion. The paraplegia prevention vent tube 34 is not intended to be connected to a side branch artery of the aorta but is used to provide temporary perfusion to external of the stent graft after deployment of the stent graft into the aorta and intended to be subsequently blocked.
The paraplegia prevention vent tube 34 can be formed from a biocompatible graft material and have a diameter of 6 mm and a length of from 16 to 32 mm.
The paraplegia prevention vent tube 34 has radiopaque markers 37 at its proximal end to assist with later location by radiographic techniques.
Now looking at the
Each of the proximal portion, the distal portion and the portion of reduced diameter are supported by stents 24 affixed to the graft material by stitching, adhesive or other method of affixation. The stents may be inside or outside of the tubular body. Each of the stents is preferably a self expanding Gianturco Z-stent formed from Nitinol or stainless steel wire.
There are four low profile side arms 26, 28, 30 and 32 extending from fenestrations in the portion of reduced diameter 16 or the proximal tapered portion 18. Each low profile side arm comprises a respective side arm lumen therethrough and the main lumen is in fluid communication with the respective side arm lumens. Each of the four low profile side arms 26, 28, 30 and 32 are supported by stent structures and can have reinforcing rings at their internal and external ends.
The four low profile side arms 26, 28, 30 and 32 are intended in use to receive extension side arms for entry into the celiac artery, the superior mesenteric artery, the right renal artery and the left renal artery respectively.
The tubular body 12 also includes a paraplegia prevention vent tube 52 extending from a fenestration 54 in the portion of reduced diameter 16 and in fluid communication with the main lumen 11. The paraplegia prevention vent tube 52 is open to external of the tubular body at 56 in the region defined by the portion of reduced diameter and the tapered portion. The paraplegia prevention vent tube 52 is not intended to be connected to a side branch artery of the aorta but is used to provide temporary perfusion to external of the stent graft after deployment of the stent graft into the aorta and intended to be subsequently blocked.
The paraplegia prevention vent tube 52 can be formed from a biocompatible graft material and have a diameter of 6 mm and a length of from 16 to 32 mm. The paraplegia prevention vent tube 52 can comprise supporting stents 58 and reinforcing rings 60a and 60b at the internal and external ends respectively.
The paraplegia prevention vent tube comprises radiopaque markers at its proximal and distal ends to assist with later location by radiographic techniques. In this embodiment there are two markers 64 in line at the proximal end and three markers 66 in line on the outside of the tubular body 12 at the distal end of the paraplegia prevention vent.
In a preferred embodiment of the invention the stent graft may have dimensions as follows:
In a preferred embodiment of the invention taking the circumference of the stent graft as a clock face with the anterior point a 12 o'clock the side arms and paraplegia prevention vent tube may be placed as follows:
Throughout this specification various indications have been given as to the scope of this invention but the invention is not limited to any one of these but may reside in two or more of these combined together. The examples are given for illustration only and not for limitation.
Throughout this specification and the claims that follow unless the context requires otherwise, the words ‘comprise’ and ‘include’ and variations such as ‘comprising’ and ‘including’ will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.
This is an Application filed under 35 USC 371 from PCT Application PCT/US2010/052446, filed Oct. 13, 2010, which claims priority of U.S. Provisional Application No. 61/278,814, filed Oct. 13, 2009.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2010/052446 | 10/13/2010 | WO | 00 | 5/16/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/047004 | 4/21/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5387235 | Chuter | Feb 1995 | A |
5425765 | Tiefenbrun et al. | Jun 1995 | A |
5445600 | Abdulla | Aug 1995 | A |
5609627 | Goicoechea et al. | Mar 1997 | A |
5628783 | Quiachon et al. | May 1997 | A |
5676696 | Marcade | Oct 1997 | A |
5676697 | McDonald | Oct 1997 | A |
5720776 | Chuter et al. | Feb 1998 | A |
5746766 | Edoga | May 1998 | A |
5776142 | Gunderson | Jul 1998 | A |
5824055 | Spiridigliozzi et al. | Oct 1998 | A |
5948017 | Taheri | Sep 1999 | A |
5984955 | Wisselink | Nov 1999 | A |
6019788 | Butters et al. | Feb 2000 | A |
6099548 | Taheri | Aug 2000 | A |
6106549 | Taheri | Aug 2000 | A |
6187033 | Schmitt et al. | Feb 2001 | B1 |
6206931 | Cook et al. | Mar 2001 | B1 |
6210429 | Vardi et al. | Apr 2001 | B1 |
6287315 | Wijeratne et al. | Sep 2001 | B1 |
6478817 | Schmitt et al. | Nov 2002 | B2 |
6524335 | Hartley et al. | Feb 2003 | B1 |
6576009 | Ryan et al. | Jun 2003 | B2 |
6645242 | Quinn | Nov 2003 | B1 |
6663666 | Quiachon et al. | Dec 2003 | B1 |
6695875 | Stelter et al. | Feb 2004 | B2 |
6723116 | Taheri | Apr 2004 | B2 |
6793672 | Khosravi et al. | Sep 2004 | B2 |
6827726 | Parodi | Dec 2004 | B2 |
6849087 | Chuter | Feb 2005 | B1 |
6918925 | Tehrani | Jul 2005 | B2 |
6939370 | Hartley et al. | Sep 2005 | B2 |
6974471 | Van Schie et al. | Dec 2005 | B2 |
7014653 | Ouriel et al. | Mar 2006 | B2 |
7144421 | Carpenter et al. | Dec 2006 | B2 |
7169176 | Lauterjung | Jan 2007 | B2 |
7232459 | Greenberg et al. | Jun 2007 | B2 |
7238198 | Hartley et al. | Jul 2007 | B2 |
7294147 | Hartley | Nov 2007 | B2 |
7306623 | Watson | Dec 2007 | B2 |
7407509 | Greenberg et al. | Aug 2008 | B2 |
7435253 | Hartley et al. | Oct 2008 | B1 |
7537606 | Hartley et al. | May 2009 | B2 |
7645298 | Hartley et al. | Jan 2010 | B2 |
7699883 | Douglas | Apr 2010 | B2 |
7771462 | Davidson et al. | Aug 2010 | B1 |
7806917 | Xiao | Oct 2010 | B2 |
7828837 | Khoury | Nov 2010 | B2 |
7914572 | Hartley et al. | Mar 2011 | B2 |
7927367 | Chuter | Apr 2011 | B2 |
20010012943 | Shaolian et al. | Aug 2001 | A1 |
20010012962 | Schmitt et al. | Aug 2001 | A1 |
20010049534 | Lachat | Dec 2001 | A1 |
20020045930 | Burg et al. | Apr 2002 | A1 |
20030088305 | Van Schie et al. | May 2003 | A1 |
20030120332 | Hartley | Jun 2003 | A1 |
20030199967 | Hartley et al. | Oct 2003 | A1 |
20030233140 | Hartley et al. | Dec 2003 | A1 |
20040073289 | Hartley | Apr 2004 | A1 |
20040098079 | Hartley et al. | May 2004 | A1 |
20040106972 | Deaton | Jun 2004 | A1 |
20040106978 | Greenberg et al. | Jun 2004 | A1 |
20040215327 | Doig et al. | Oct 2004 | A1 |
20050102018 | Carpenter et al. | May 2005 | A1 |
20050102021 | Osborne | May 2005 | A1 |
20050131518 | Hartley et al. | Jun 2005 | A1 |
20050149166 | Schaeffer et al. | Jul 2005 | A1 |
20050171597 | Boatman et al. | Aug 2005 | A1 |
20050171598 | Schaeffer | Aug 2005 | A1 |
20050182476 | Hartley et al. | Aug 2005 | A1 |
20050222668 | Schaeffer et al. | Oct 2005 | A1 |
20050222669 | Purdy | Oct 2005 | A1 |
20050222672 | Shmulewitz | Oct 2005 | A1 |
20050273155 | Bahler et al. | Dec 2005 | A1 |
20060058864 | Schaeffer et al. | Mar 2006 | A1 |
20060089704 | Douglas | Apr 2006 | A1 |
20060184228 | Khoury | Aug 2006 | A1 |
20060229707 | Khoury | Oct 2006 | A1 |
20070083215 | Hamer et al. | Apr 2007 | A1 |
20070219614 | Hartley | Sep 2007 | A1 |
20070219621 | Hartley et al. | Sep 2007 | A1 |
20070233220 | Greenan | Oct 2007 | A1 |
20070244547 | Greenan | Oct 2007 | A1 |
20070250154 | Greenberg et al. | Oct 2007 | A1 |
20070299499 | Hartley et al. | Dec 2007 | A1 |
20090030502 | Sun et al. | Jan 2009 | A1 |
20090048663 | Greenberg | Feb 2009 | A1 |
20090125098 | Chuter | May 2009 | A1 |
20090171438 | Chuter et al. | Jul 2009 | A1 |
20100023110 | Schaeffer | Jan 2010 | A1 |
20100063576 | Schaeffer et al. | Mar 2010 | A1 |
20100249899 | Chuter et al. | Sep 2010 | A1 |
20100268327 | Bruszewski et al. | Oct 2010 | A1 |
20110054594 | Mayberry et al. | Mar 2011 | A1 |
20120041535 | Huser et al. | Feb 2012 | A1 |
20120323303 | Ivancev | Dec 2012 | A1 |
20130046371 | Greenberg et al. | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
WO 9911198 | Mar 1999 | WO |
WO 0025847 | May 2000 | WO |
WO 2004002365 | Jan 2004 | WO |
WO 2004002370 | Jan 2004 | WO |
WO 2004017867 | Mar 2004 | WO |
WO 2004017868 | Mar 2004 | WO |
WO 2004028399 | Apr 2004 | WO |
WO 2005034808 | Apr 2005 | WO |
WO 2005034810 | Apr 2005 | WO |
WO 2008007397 | Jan 2008 | WO |
WO 2010127040 | Nov 2010 | WO |
WO 2011047004 | Apr 2011 | WO |
WO 2011116308 | Sep 2011 | WO |
Entry |
---|
International Search Report and Written Opinion of the International Searching Authority, or the Declaration, for PCT/US2010/052446, mailed Jan. 17, 2011 (13p). |
Extended European Search Report, dated Mar. 5, 2014 for corresponding European Patent Application No. 13275292.4 (5 pages). |
Partial European Search Report, dated Dec. 14, 2012, European Patent Application No. 12164809.1, European Patent Office, The Netherlands (6 pages). |
Extended European Search Report, dated Apr. 16, 2013 for corresponding European Patent Application No. 12164809.1 (14 pages). |
Number | Date | Country | |
---|---|---|---|
20120323303 A1 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
61278814 | Oct 2009 | US |