The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Feb. 1, 2018, is named P13213-03_ST25.txt and is 6,378 bytes in size.
Lumbar disc disease (LDD) also known as intervertebral disc (IVD) degeneration, or degenerative disc disease or degenerative disc disorder (DDD), has long been documented as a disease of aging and is one of the most common musculoskeletal disorders. Degeneration has been detected as early as in teenage years, and severe degeneration is detected in 60% of 70-year olds. The numbers of people with associated lower back pain is at epidemic proportions worldwide, affecting up to 80% of individuals during their lifetime, and is the leading cause of disability. LDD imposes an enormous socio-economic burden, over $100 billion annually in the United States alone, and costs more than the combined costs of stroke, respiratory infection, diabetes, coronary artery disease and rheumatoid disease.
Despite the prevalence and significance of LDD, little is understood of its pathophysiology and there is no effective disease-modifying treatment. The intervertebral disc (IVD) can be separated macroscopically into two components; an outer network of collagen fibers, termed the annulus fibrosus (AF) which surrounds a hydrated, centrally located nucleus pulposus (NP). The NP is made up cells of notochordal origin surrounded by abundant proteoglycans, mainly aggrecan and collagen, which form the extracellular matrix (ECM). The NP functions to absorb axial compressive forces transmitted along the spine. The ECM is an essential element supporting NP cells for disc homeostasis. Proteoglycans with their water binding ability, provides resilience to compression whilst the collagen imparts tensile strength.
Individuals with mutations in ECM protein type II collagen have severe IVD degeneration. Genetic studies have reported associations between LDD and the genes encoding components of the ECM, specifically type IX collagen, aggrecan, and cartilage intermediate layer protein (CILP). CILP directly binds to TGF-β1 to inhibit TGF-β1-induced cartilage ECM protein synthesis. NP cells secrete TGF-β, which induces transcription of connective tissue growth factor (CTGF/CCN2) to increase extracellular matrix synthesis in the cartilage and discs. As such, TGF-β activity is critical for disc extracellular protein expression and function.
Parathyroid hormone (PTH), an FDA-approved anabolic therapy for osteoporosis, stimulates bone remodeling. PTH classically binds to the type 1 PTH receptor (PTH1R) and stimulates adenylate cyclase for formation of cyclic adenosine monophosphate (cAMP). Increased cAMP levels activate protein kinase A (PKA) to induce phosphorylation of cAMP response binding protein (CREB) a transcription factor involved in PTH mediated gene expression. PTH also regulates skeletal homeostasis by orchestrating signaling of local factors, including TGF-β via alternate pathways. Despite the well documented involvement of PTH in skeletal tissue homeostasis and calcium metabolism there is paucity of data regarding its role in disc degeneration.
Despite the prevalence and significance of DDD, thus far, there is currently no effective treatment to arrest the progression of degeneration or restore the disc function. Symptomatic relief of pain and surgeries such as golden standard spinal fusion are the widely adopted treatments for DDD nowadays, despite several drawbacks and obstacles of these treatment strategies. Many of the methods used to mitigate symptoms are either obscure or actually destructive to disc integrity. Even though tons of efforts have been made in recent years by injecting cells or biomaterials into the disc space, as well as replacement of bioengineered disc, none of which allowed truly backbone rebuilt, nor did these studies unveiled the mechanism underlying the homeostasis and rejuvenation of the disc tissues.
Thus, there still exists and unmet need for development of more effective methods for treating and reversing DDD in patients.
In accordance with one or more embodiments of the present invention, the inventors investigated the potential effect of intermittent PTH (iPTH, e.g., daily injection) on LDD. It was found that iPTH effectively attenuates disc degeneration by activation of latent TGF-β in ECM during aging in mice. PTH induces NP cell expression of integrin avβ6, which activates the TGF-β-CCN2-matrix protein signaling cascade. PTH is thus a native regulator of disc homeostasis and function during aging. These findings provide a novel mechanism of PTH signaling through NP cells to activate anabolic activity and its use for attenuating LDD and related disorders.
In accordance with an embodiment, the present invention provides a method for treatment of IVD degeneration and/or LDD in a subject having symptoms of IVD degeneration and/or LDD comprising administering to the subject an effective amount of Parathyroid hormone (PTH) or a functional fragment or analog thereof.
In accordance with an embodiment, the present invention provides a method for treatment of IVD degeneration and/or LDD in a subject having symptoms of IVD degeneration and/or LDD comprising administering to the subject an effective amount of a pharmaceutical composition comprising PTH or a functional fragment or analog thereof, and a pharmaceutically acceptable carrier.
In accordance with an embodiment, the present invention provides a method for regeneration of aged IVD in a subject comprising administering to the subject an effective amount of PTH or a functional fragment or analog thereof.
In accordance with another embodiment, the present invention provides a method for regeneration of aged IVD in a subject comprising administering to the subject an effective amount of a pharmaceutical composition comprising Parathyroid hormone (PTH) or a functional fragment or analog thereof, and a pharmaceutically acceptable carrier.
In accordance with an embodiment, the present invention provides a method for treatment of intravertebral disc (IVD) degeneration in a subject comprising administering to the subject an effective amount of Parathyroid hormone (PTH) or a functional fragment or analog thereof.
In accordance with another embodiment, the present invention provides a method for treatment of intravertebral disc (IVD) degeneration in a subject comprising administering to the subject an effective amount of a pharmaceutical composition comprising Parathyroid hormone (PTH) or a functional fragment or analog thereof, and a pharmaceutically acceptable carrier.
In accordance with an embodiment, the present invention provides a method for increasing total tissue volume of the nucleus pulposus (NP) and/or annulus fibrosus (AF) and/or cartilaginous endplates (EP) in the IVD of a subject comprising administering to the subject an effective amount of Parathyroid hormone (PTH) or a functional fragment or analog thereof
In accordance with yet another embodiment, the present invention provides a method for reducing NP cell apoptosis in the IVD of a subject comprising administering to the subject an effective amount of Parathyroid hormone (PTH) or a functional fragment or analog thereof
In accordance with still another embodiment, the present invention provides a method for increasing the levels of active TGF-β in the NP cells of the IVD of a subject comprising administering to the subject an effective amount of Parathyroid hormone (PTH) or a functional fragment or analog thereof.
The IVD can be viewed as an integrated functional joint unit that can be separated macroscopically into at least three distinct components: 1) the nucleus pulposus (NP) of notochord origin, representing a centrally located gelatinous homogenous mass (in juvenile discs); 2) the annulus fibrosus (AF) populated by fibrochondrocyte-like cells of mesenchymal origin, consisting of concentrically organized layers of collagen fibrils and containing the nucleus pulposus; 3) the cartilaginous endplates (EP), which separate the NP and AF from the adjacent vertebral bone. Any disturbance of the integrity and interplay of one of the three structures can result in a compromised function of the IVD unit. It is the NP that is thought to be required for generation and maintenance of the disc's structural integrity and is the first structure to be affected during degeneration.
Originated purely from the notochord anlage, the NP is enveloped by the AF and sandwiched by the EP. NP degeneration is characterized by a cell-driven imbalance between matrix synthesis and degradation. Physiologically in juvenile discs, NP cells synthesize proteoglycans, aggrecan and biglycan with negative charged side chains to retain large quantity of water in balance the compressive stress from the EP. With increase of age, calcium pyrophosphate dihydrate crystal deposits, a visible manifestation of a metabolic abnormality, are found frequently in the AF and cartilage EP of elderly patients with degenerative disc disease. This compromises the nutrient diffusion from EP to NP through capillary buds leading to a microenvironment that becomes increasingly acidic through the buildup of lactic acid. This decreases the ability of nucleus pulposus cells to produce ECM but does not inhibit the production of degradative enzymes, such as MMPs and ADAMTS. Aggrecan degradation becomes the most significant change leading to decrease of water content in the NP, narrowing of the disc space and accelerating the sclerosis of EP. This forms a negative feedback circuit and aggravates the disc degeneration. The NP eventually loses its ability to distribute the compressive forces between the vertebral bodies, which are non-uniformly transferred to the AF, generating areas of increased pressure and risk of microtrauma. This altered force distribution and micro-trauma results in tears and fissures along the AF and ultimately loss of disc height. It is thought that the maintenance of the NP matrix in the adult human disc is dependent on the functional integrity of the cartilage EP, and the loss of ECM producing cells accounts for IVD degeneration.
In accordance with an embodiment, the present invention provides a method for treatment of IVD degeneration and/or LDD in a subject having symptoms of IVD degeneration and/or LDD comprising administering to the subject an effective amount of Parathyroid hormone (PTH) or a functional fragment or analog thereof.
In accordance with an embodiment, the present invention provides a method for treatment of IVD degeneration and/or LDD in a subject having symptoms of IVD degeneration and/or LDD comprising administering to the subject an effective amount of a pharmaceutical composition comprising PTH or a functional fragment or analog thereof, and a pharmaceutically acceptable carrier.
In accordance with an embodiment, the present invention provides a composition comprising an effective amount of Parathyroid hormone (PTH) or a functional fragment or analog thereof for use in the treatment of IVD degeneration and/or LDD in a subject.
In accordance with an embodiment, the present invention provides a composition comprising an effective amount of Parathyroid hormone (PTH) or a functional fragment or analog thereof for use in regeneration of aged intravertebral discs (IVD) in a subject.
In accordance with an embodiment, the present invention provides a composition comprising an effective amount of Parathyroid hormone (PTH) or a functional fragment or analog thereof for use in increasing total tissue volume of the nucleus pulposus (NP) and/or anulus fibrosus (AF) and/or cartilaginous endplates (EP) in the IVD of a subject.
In accordance with an embodiment, the present invention provides a composition comprising an effective amount of Parathyroid hormone (PTH) or a functional fragment or analog thereof for use in reducing NP cell apoptosis in the IVD of a subject.
In accordance with an embodiment, the present invention provides a composition comprising an effective amount of Parathyroid hormone (PTH) or a functional fragment or analog thereof for use in increasing the levels of active TGF-β in the NP cells of the IVD of a subject.
In accordance with some embodiments, the parathyroid hormone administered to a subject can be in the form of a composition or solution may incorporate the full length, 84 amino acid form of parathyroid hormone, particularly the human form, hPTH (1-84), obtained either recombinantly, by peptide synthesis or by extraction from human fluid. See, for example, U.S. Pat. No. 5,208,041, incorporated herein by reference. The amino acid sequence for hPTH (1-84) is reported by Kimura et al. in Biochem. Biophys. Res. Comm., 114(2):493.
In alternative embodiments compositions or solutions comprising PTH may also incorporate as active ingredients, functional fragments or portions or variants of fragments of human PTH or of rat, porcine or bovine PTH that have human PTH activity as determined in the ovariectomized rat model of osteoporosis reported by Kimmel et al., Endocrinology, 1993, 32(4):1577.
The parathyroid hormone functional fragments or portions desirably incorporate at least the first 28 N-terminal residues, such as PTH(1-28), PTH(1-31), PTH(1-34), PTH(1-37), PTH(1-38) and PTH(1-41). Alternatives in the form of PTH variants incorporate from 1 to 5 amino acid substitutions that improve PTH stability and half-life, such as the replacement of methionine residues at positions 8 and/or 18 with leucine or other hydrophobic amino acid that improves PTH stability against oxidation and the replacement of amino acids in the 25-27 region with trypsin-insensitive amino acids such as histidine or other amino acid that improves PTH stability against protease. Other suitable forms of PTH include PTHrP, PTHrP(1-34), PTHrP(1-36) and analogs of PTH or PTHrP that activate the PTH1 receptor. These forms of PTH are embraced by the term “parathyroid hormone” as used generically herein. The hormones may be obtained by known recombinant or synthetic methods, such as described in U.S. Pat. Nos. 4,086,196 and 5,556,940, incorporated herein by reference.
In one embodiment, the methods of the present invention the PTH is human PTH(1-34), also known as teriparatide. Stabilized solutions of human PTH(1-34), such as recombinant human PTH(1-34) (rhPTH(1-34)), that can be employed in the present methods, including crystalline forms, are described in U.S. Pat. No. 6,590,081, incorporated herein by reference.
The term, “amino acid” includes the residues of the natural α-amino acids (e.g., Ala, Arg, Asn, Asp, Cys, Glu, Gln, Gly, His, Lys, Ile, Leu, Met, Phe, Pro, Ser, Thr, Trp, Tyr, and Val) in D or L form, as well as β-amino acids, synthetic and non-natural amino acids. Many types of amino acid residues are useful in the polypeptides and the invention is not limited to natural, genetically-encoded amino acids. Examples of amino acids that can be utilized in the peptides described herein can be found, for example, in Fasman, 1989, CRC Practical Handbook of Biochemistry and Molecular Biology, CRC Press, Inc., and the reference cited therein. Another source of a wide array of amino acid residues is provided by the website of RSP Amino Acids LLC.
Reference herein to “derivatives” includes parts, fragments and portions of the PTH peptides. A derivative also includes a single or multiple amino acid substitution, deletion and/or addition. Homologues include functionally, structurally or stereochemically similar peptides from the naturally occurring peptide or protein. All such homologs are contemplated by the present invention.
Analogs and mimetics include molecules which include molecules which contain non-naturally occurring amino acids or which do not contain amino acids but nevertheless behave functionally the same as the PTH peptide. Natural product screening is one useful strategy for identifying analogs and mimetics.
Examples of incorporating non-natural amino acids and derivatives during peptide synthesis include, but are not limited to, use of norleucine, 4-amino butyric acid, 4-amino-3-hydroxy-5-phenylpentanoic acid, 6-aminohexanoic acid, t-butylglycine, norvaline, phenylglycine, omithine, sarcosine, 4-amino-3-hydroxy-6-methylheptanoic acid, 2-thienyl alanine and/or D-isomers of amino acids. A partial list of known non-natural amino acid contemplated herein is shown in Table 1.
Analogs of the subject peptides contemplated herein include modifications to side chains, incorporation of non-natural amino acids and/or their derivatives during peptide synthesis and the use of crosslinkers and other methods which impose conformational constraints on the peptide molecule or their analogs.
Examples of side chain modifications contemplated by the present invention include modifications of amino groups such as by reductive alkylation by reaction with an aldehyde followed by reduction with NaBH4; amidination with methylacetimidate; acylation with acetic anhydride; carbamoylation of amino groups with cyanate; trinitrobenzylation of amino groups with 2, 4, 6-trinitrobenzene sulphonic acid (TNBS); acylation of amino groups with succinic anhydride and tetrahydrophthalic anhydride; and pyridoxylation of lysine with pyridoxal-5-phosphate followed by reduction with NaBH4.
The guanidine group of arginine residues may be modified by the formation of heterocyclic condensation products with reagents such as 2,3-butanedione, phenylglyoxal and glyoxal.
The carboxyl group may be modified by carbodiimide activation via O-acylisourea formation followed by subsequent derivitization, for example, to a corresponding amide.
Sulphydryl groups may be modified by methods such as carboxymethylation with iodoacetic acid or iodoacetamide; performic acid oxidation to cysteic acid; formation of a mixed disulphides with other thiol compounds; reaction with maleimide, maleic anhydride or other substituted maleimide; formation of mercurial derivatives using 4-chloromercuribenzoate, 4-chloromercuriphenylsulphonic acid, phenylmercury chloride, 2-chloromercuri-4-nitrophenol and other mercurials; carbamoylation with cyanate at alkaline pH.
Tryptophan residues may be modified by, for example, oxidation with N-bromosuccinimide or alkylation of the indole ring with 2-hydroxy-5-nitrobenzyl bromide or sulphenyl halides. Tyrosine residues on the other hand, may be altered by nitration with tetranitromethane to form a 3-nitrotyrosine derivative.
Modification of the imidazole ring of a histidine residue may be accomplished by alkylation with iodoacetic acid derivatives or N-carbethoxylation with diethylpyrocarbonate.
Crosslinkers can be used, for example, to stabilise 3D conformations, using homo-bifunctional crosslinkers such as the bifunctional imido esters having (CH2)n spacer groups with n=1 to n=6, glutaraldehyde, N-hydroxysuccinimide esters and hetero-bifunctional reagents which usually contain an amino-reactive moiety such as N-hydroxysuccinimide and another group specific-reactive moiety such as maleimido or dithio moiety (SH) or carbodiimide (COOH). In addition, peptides can be conformationally constrained by, for example, incorporation of Cα and Nα-methylamino acids, introduction of double bonds between Cα and Cβ atoms of amino acids and the formation of cyclic peptides or analogues by introducing covalent bonds such as forming an amide bond between the N and C termini, between two side chains or between a side chain and the N or C terminus.
The present invention further contemplates small chemical analogs of the naturally occurring Pep moiety. Chemical analogs may not necessarily be derived from the peptides themselves but may share certain conformational similarities. Alternatively, chemical analogs may be specifically designed to mimic certain physiochemical properties of the peptides. Chemical analogs may be chemically synthesized or may be detected following, for example, natural product screening.
Parathyroid hormone is an FDA-approved anabolic therapy for osteoporosis, and is capable of acting directly on bone matrix secreting osteoblasts and well known for its function in regulation of skeletal homeostasis. The parathyroid gland, the main production site of the PTH, evolved in amphibians and represents the transition of aquatic to terrestrial life, adapting terrestrial locomotion from aquatic vertebrates. PTH has been shown to activate resting cells for the skeletal integrity and remodeling such as converting lining cells to active osteoblasts and orchestrates signaling of local factors, including (but not limited to) TGFβ, Wnts, BMP and IGF-1. Thus, PTH regulates cellular activities-including those of MSCs, T cells, and other PTH-responsive cells-in the microenvironment to integrate systemic control of tissue homeostasis. Moreover, small blood vessels were spatially relocated closer to sites of new bone formation in PTH-stimulated bone remodeling. The closer proximity of blood vessels allows efficient delivery of nutrients for the skeletal tissue homeostasis, particularly for non-vasculature IVD.
In accordance with an embodiment, the present invention provides a method for regeneration of aged intravertebral discs (IVD) in a subject comprising administering to the subject an effective amount of PTH or a functional fragment or analog thereof.
In reference to the parent PTH polypeptide, the functional portion can comprise, for instance, about 90%, 95%, or more, of the PTH polypeptide.
The functional portion of the PTH can comprise additional amino acids at the amino or carboxy terminus of the portion, or at both termini, which additional amino acids are not found in the amino acid sequence of the PTH polypeptide. Desirably, the additional amino acids do not interfere with the biological function of the functional portion.
Included in the scope of the invention are functional variants of the inventive polypeptides, and proteins described herein. The term “functional variant” as used herein refers to PTH polypeptide, or protein having substantial or significant sequence identity or similarity to PTH polypeptide, or protein, which functional variant retains the biological activity of PTH polypeptide, or protein of which it is a variant. In reference to the parent PTH polypeptide, or protein, the functional variant can, for instance, be at least about 30%, 50%, 75%, 80%, 90%, 98% or more identical in amino acid sequence to the PTH polypeptide, or protein.
The functional variant can, for example, comprise the amino acid sequence of the PTH polypeptide, or protein with at least one conservative amino acid substitution. Conservative amino acid substitutions are known in the art, and include amino acid substitutions in which one amino acid having certain physical and/or chemical properties is exchanged for another amino acid that has the same chemical or physical properties. For instance, the conservative amino acid substitution can be an acidic amino acid substituted for another acidic amino acid (e.g., Asp or Glu), an amino acid with a nonpolar side chain substituted for another amino acid with a nonpolar side chain (e.g., Ala, Gly, Val, Ile, Leu, Met, Phe, Pro, Trp, Val, etc.), a basic amino acid substituted for another basic amino acid (Lys, Arg, etc.), an amino acid with a polar side chain substituted for another amino acid with a polar side chain (Asn, Cys, Gln, Ser, Thr, Tyr, etc.), etc.
Functional variants can also include extensions of the PTH polypeptide. For example, a functional variant of the PTH polypeptide can include 1, 2, 3, 4 and 5 additional amino acids from either the N-terminal or C-terminal end of the PTH polypeptide.
Alternatively or additionally, the functional variants can comprise the amino acid sequence of the PTH polypeptide, or protein with at least one non-conservative amino acid substitution. In this case, it is preferable for the non-conservative amino acid substitution to not interfere with or inhibit the biological activity of the functional variant. Preferably, the non-conservative amino acid substitution enhances the biological activity of the functional variant, such that the biological activity of the functional variant is increased as compared to the PTH polypeptide, or protein.
The PTH polypeptide, or protein can consist essentially of the specified amino acid sequence or sequences described herein, such that other components of the functional variant, e.g., other amino acids, do not materially change the biological activity of the functional variant.
The PTH polypeptide used in the methods of the invention (including functional portions and functional variants) of the invention can comprise synthetic amino acids in place of one or more naturally-occurring amino acids. Such synthetic amino acids are known in the art, and include, for example, aminocyclohexane carboxylic acid, norleucine, α-amino n-decanoic acid, homoserine, S-acetylaminomethyl-cysteine, trans-3- and trans-4-hydroxyproline, 4-aminophenylalanine, 4-nitrophenylalanine, 4-chlorophenylalanine, 4-carboxyphenylalanine, β-phenylserine β-hydroxyphenylalanine, phenylglycine, α-naphthylalanine, cyclohexylalanine, cyclohexylglycine, indoline-2-carboxylic acid, 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid, aminomalonic acid, aminomalonic acid monoamide, N′-benzyl-N′-methyl-lysine, N′,N′-dibenzyl-lysine, 6-hydroxylysine, ornithine, α-aminocyclopentane carboxylic acid, α-aminocyclohexane carboxylic acid, α-aminocycloheptane carboxylic acid, α-(2-amino-2-norbornane)-carboxylic acid, α,γ-diaminobutyric acid, α,β-diaminopropionic acid, homophenylalanine, and α-tert-butylglycine.
PTH polypeptides and proteins used in the methods of the invention (including functional portions and functional variants) can be glycosylated, amidated, carboxylated, phosphorylated, esterified, N-acylated, cyclized via, e.g., a disulfide bridge, or converted into an acid addition salt and/or optionally dimerized or polymerized, or conjugated.
When PTH polypeptides and proteins used in the invention (including functional portions and functional variants) are in the form of a salt, preferably, the polypeptides are in the form of a pharmaceutically acceptable salt. Suitable pharmaceutically acceptable acid addition salts include those derived from mineral acids, such as hydrochloric, hydrobromic, phosphoric, metaphosphoric, nitric, and sulphuric acids, and organic acids, such as tartaric, acetic, citric, malic, lactic, fumaric, benzoic, glycolic, gluconic, succinic, and arylsulphonic acids, for example, p-toluenesulphonic acid.
PTH polypeptides and/or proteins used in the methods of the invention (including functional portions and functional variants thereof) can be obtained by methods known in the art. Suitable methods of de novo synthesizing polypeptides and proteins are described in references, such as Chan et al., Fmoc Solid Phase Peptide Synthesis, Oxford University Press, Oxford, United Kingdom, 2005; Peptide and Protein Drug Analysis, ed. Reid, R., Marcel Dekker, Inc., 2000; Epitope Mapping, ed. Westw000d et al., Oxford University Press, Oxford, United Kingdom, 2000; and U.S. Pat. No. 5,449,752. Also, polypeptides and proteins can be recombinantly produced using the nucleic acids described herein using standard recombinant methods. See, for instance, Sambrook et al., Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor Press, Cold Spring Harbor, NY 2001; and Ausubel et al., Current Protocols in Molecular Biology, Greene Publishing Associates and John Wiley & Sons, NY, 1994. Further, some of the PTH polypeptides and proteins of the invention (including functional portions and functional variants thereof) can be isolated and/or purified from a source, such as a plant, a bacterium, an insect, a mammal, e.g., a rat, a human, etc. Methods of isolation and purification are well-known in the art. Alternatively, PTH polypeptides, and/or proteins described herein (including functional portions and functional variants thereof) can be commercially synthesized by companies, such as Synpep (Dublin, Calif.), Peptide Technologies Corp. (Gaithersburg, Md.), and Multiple Peptide Systems (San Diego, Calif.). In this respect, the PTH polypeptides, and proteins can be synthetic, recombinant, isolated, and/or purified.
Included in the scope of the invention are conjugates, e.g., bioconjugates, comprising any of the PTH polypeptides or proteins (including any of the functional portions or variants thereof), nucleic acids, recombinant expression vectors, host cells, populations of host cells, or antibodies, or antigen binding portions thereof. Conjugates, as well as methods of synthesizing conjugates in general, are known in the art (See, for instance, Hudecz, F., Methods Mol. Biol. 298: 209-223 (2005) and Kirin et al., Inorg Chem. 44(15): 5405-5415 (2005)).
In accordance with an embodiment, the present invention provides a method for treatment of IVD degeneration in a subject comprising administering to the subject an effective amount of PTH or a functional fragment or analog thereof.
As used herein, the term “IVD degeneration” or “degenerative disk disease” can mean the narrowing of IVD space, or decreasing extracellular matrix and cell numbers in either or both NP and AF, and also can mean the metabolic failure of matrix production in the NP and EP. In some embodiments, degeneration can include decreasing numbers of pSmad2/3+ cells in the NP and AF.
As used herein, the term “treat,” as well as words stemming therefrom, includes diagnostic and preventative as well as disorder remitative treatment. Furthermore, the treatment or prevention provided by the inventive method can include treatment or prevention of one or more conditions or symptoms of the disease, e.g., diarrhea, being treated or prevented. Also, for purposes herein, “prevention” can encompass delaying the onset of the disease, or a symptom or condition thereof.
As used herein, the term “subject” refers to any mammal, including, but not limited to, mammals of the order Rodentia, such as mice and hamsters, and mammals of the order Logomorpha, such as rabbits. It is preferred that the mammals are from the order Carnivora, including Felines (cats) and Canines (dogs). It is more preferred that the mammals are from the order Artiodactyla, including Bovines (cows) and Swines (pigs) or of the order Perssodactyla, including Equines (horses). It is most preferred that the mammals are of the order Primates, Ceboids, or Simoids (monkeys) or of the order Anthropoids (humans and apes). An especially preferred mammal is the human.
In accordance with an embodiment, the present invention provides a method for increasing total tissue volume of the nucleus pulposus (NP) and/or anulus fibrosus (AF) and/or cartilaginous endplates (EP) in the IVD of a subject comprising administering to the subject an effective amount of PTH or a functional fragment or analog thereof.
In accordance with yet another embodiment, the present invention provides a method for reducing NP cell apoptosis in the IVD of a subject comprising administering to the subject an effective amount of PTH or a functional fragment or analog thereof.
In accordance with still another embodiment, the present invention provides a method for increasing the levels of active TGF-β in the NP cells of the IVD of a subject comprising administering to the subject an effective amount of PTH or a functional fragment or analog thereof.
An effective amount of PTH or a functional fragment or analog thereof, to be employed therapeutically will depend, for example, upon the therapeutic and treatment objectives, the route of administration, the age, condition, and body mass of the subject undergoing treatment or therapy, and auxiliary or adjuvant therapies being provided to the subject. Accordingly, it will be necessary and routine for the practitioner to titer the dosage and modify the route of administration, as required, to obtain the optimal therapeutic effect. A typical daily dosage of PTH or a functional fragment or analog thereof might range from about 0.1 mg/kg to up to about 100 mg/kg or more, preferably from about 0.1 to about 10 mg/kg/day depending on the above-mentioned factors. Typically, the clinician will administer PTH or a functional fragment or analog thereof until a dosage is reached that achieves the desired effect. The progress of this therapy is easily monitored by conventional assays.
The dosage ranges for the administration of PTH peptides or derivatives thereof, are those large enough to produce the desired effect in which the symptoms of the malignant disease are ameliorated. The dosage should not be so large as to cause adverse side effects, such as unwanted cross-reactions, anaphylactic reactions, and the like. Generally, the dosage will vary with the age, condition, sex and extent of disease of the patient and can be determined by one of skill in the art. The dosage can be adjusted by the individual physician in the event of any complication.
As a non-limiting example, treatment of subjects can be provided as a one-time or periodic dosage of PTH peptides or derivatives thereof at about 0.1 mg to 100 mg/kg such as 0.1 0.5, 0.9, 1.0, 1.1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 40, 45, 50, 60, 70, 80, 90 or 100 mg/kg, per day, on at least one of day 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40, or alternatively or additionally, at least one of week 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, or 52, or alternatively or additionally, at least one of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 years, or any combination thereof, using single, or repeated doses.
Specifically, the PTH peptides or derivatives thereof may be administered at least once a day over the course of several weeks. In one embodiment, the pharmaceutical compositions are administered at least once a day over several weeks to several months. In another embodiment, the pharmaceutical compositions are administered several times a week over four to eight weeks, such as, for example, 2, 3, 4, 5 times a week. In yet another embodiment, the pharmaceutical compositions are administered once a week over four weeks or longer.
In accordance with another embodiment, the present invention provides a method for regeneration of aged IVD in a subject comprising administering to the subject an effective amount of a pharmaceutical composition comprising Parathyroid hormone (PTH) or a functional fragment or analog thereof, and a pharmaceutically acceptable carrier.
In accordance with an embodiment, the present invention provides a pharmaceutical composition comprising the peptides heretofore described above, and a pharmaceutically acceptable carrier.
In accordance with another embodiment, the present invention provides a pharmaceutical composition comprising the peptides heretofore described above, and a second therapeutic agent, and a pharmaceutically acceptable carrier.
With respect to peptide compositions described herein, the pharmaceutically acceptable carrier can be any of those conventionally used, and is limited only by physico-chemical considerations, such as solubility and lack of reactivity with the active compound(s), and by the route of administration. The carriers described herein, for example, vehicles, adjuvants, excipients, and diluents, are well-known to those skilled in the art and are readily available to the public. It is preferred that the carrier be one which is chemically inert to the active agent(s), and one which has little or no detrimental side effects or toxicity under the conditions of use. Examples of the carriers include soluble carriers such as known buffers which can be physiologically acceptable (e.g., phosphate buffer) as well as solid compositions such as solid-state carriers or latex beads.
The carriers or diluents used herein may be solid carriers or diluents for solid formulations, liquid carriers or diluents for liquid formulations, or mixtures thereof
Solid carriers or diluents include, but are not limited to, gums, starches (e.g., corn starch, pregelatinized starch), sugars (e.g., lactose, mannitol, sucrose, dextrose), cellulosic materials (e.g., microcrystalline cellulose), acrylates (e.g., polymethylacrylate), calcium carbonate, magnesium oxide, talc, or mixtures thereof.
For liquid formulations, pharmaceutically acceptable carriers may be, for example, aqueous or non-aqueous solutions, or suspensions. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, and injectable organic esters such as ethyl oleate. Aqueous carriers include, for example, water, alcoholic/aqueous solutions, cyclodextrins, emulsions or suspensions, including saline and buffered media.
Parenteral vehicles (for subcutaneous, intravenous, intraarterial, or intramuscular injection) include, for example, sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's and fixed oils. Formulations suitable for parenteral administration include, for example, aqueous and non-aqueous, isotonic sterile injection solutions, which can contain anti-oxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives.
It will be appreciated by one of skill in the art that, in addition to the above-described pharmaceutical compositions, the invention can be formulated as inclusion complexes, such as cyclodextrin inclusion complexes, or liposomes.
In addition, in an embodiment, the compositions comprising PTH or derivatives thereof, may further comprise binders (e.g., acacia, cornstarch, gelatin, carbomer, ethyl cellulose, guar gum, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, povidone), disintegrating agents (e.g., cornstarch, potato starch, alginic acid, silicon dioxide, croscarmelose sodium, crospovidone, guar gum, sodium starch glycolate), buffers (e.g., Tris-HCl., acetate, phosphate) of various pH and ionic strength, additives such as albumin or gelatin to prevent absorption to surfaces, detergents (e.g., Tween 20, Tween 80, Pluronic F68, bile acid salts), protease inhibitors, surfactants (e.g. sodium lauryl sulfate), permeation enhancers, solubilizing agents (e.g., cremophor, glycerol, polyethylene glycerol, benzlkonium chloride, benzyl benzoate, cyclodextrins, sorbitan esters, stearic acids), anti-oxidants (e.g., ascorbic acid, sodium metabisulfite, butylated hydroxyanisole), stabilizers (e.g., hydroxypropyl cellulose, hyroxypropylmethyl cellulose), viscosity increasing agents (e.g., carbomer, colloidal silicon dioxide, ethyl cellulose, guar gum), sweetners (e.g., aspartame, citric acid), preservatives (e.g., thimerosal, benzyl alcohol, parabens), lubricants (e.g., stearic acid, magnesium stearate, polyethylene glycol, sodium lauryl sulfate), flow-aids (e.g., colloidal silicon dioxide), plasticizers (e.g., diethyl phthalate, triethyl citrate), emulsifiers (e.g., carbomer, hydroxypropyl cellulose, sodium lauryl sulfate), polymer coatings (e.g., poloxamers or poloxamines), coating and film forming agents (e.g., ethyl cellulose, acrylates, polymethacrylates), and/or adjuvants.
The choice of carrier will be determined, in part, by the particular peptide containing compositions, as well as by the particular method used to administer the composition. Accordingly, there are a variety of suitable formulations of the pharmaceutical compositions of the invention. The following formulations for parenteral, subcutaneous, intramuscular, and interperitoneal administration are exemplary, and are in no way limiting. More than one route can be used to administer the compositions of the present invention, and in certain instances, a particular route can provide a more immediate and more effective response than another route.
Injectable formulations are in accordance with the invention. The requirements for effective pharmaceutical carriers for injectable compositions are well-known to those of ordinary skill in the art (see, e.g., Pharmaceutics and Pharmacy Practice, J.B. Lippincott Company, Philadelphia, Pa., Banker and Chalmers, eds., pages 238-250 (1982), and ASHP Handbook on Injectable Drugs, Trissel, 15th ed., pages 622-630 (2009)).
As used herein the term “pharmaceutically active compound” or “therapeutically active compound” means a compound useful for the treatment or modulation of a disease or condition in a subject suffering therefrom. Examples of pharmaceutically active compounds can include any drugs known in the art for treatment of disease indications.
Generally, when the PTH polypeptides or derivatives thereof, are administered together with additional therapeutic agents, lower dosages can be used. PTH or derivatives thereof, can be administered parenterally by injection or by gradual perfusion over time. PTH polypeptides or derivatives thereof, can be administered intraperitoneally, intramuscularly, subcutaneously, intracavity, or transdermally, alone or in combination with effector cells. Preparations for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, and emulsions. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. Parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's, or fixed oils. Preservatives and other additives may also be present such as, for example, antimicrobials, anti-oxidants, chelating agents, and inert gases and the like.
Human Subjects.
After approval by the Institutional Review Board of Johns Hopkins University, lumbar disc specimens were collected from five patients with different ages who were undergoing discectomy for lumbar intervertebral disc degeneration. The specimens were processed for Western blot examination.
Mice.
For ageing induced IVD degeneration model, 2 and 16 months-old C57BL/6J WT male mice were purchased from Charles River. We purchased (ROSA) 26Sortm1Sor/J mice from the Jackson Laboratory. Mice with floxed PTH1R (PTH1Rflox/flox) were obtained from the lab of Dr. Henry Kronenberg. We obtained the NotoCre mice strain from Dr. Cheryle A. Seguin.
Mice carrying the PTH1R gene flanked by loxP sites (PTH1Rflox/flox) were mated with NotoCre mice to generate mice bearing NotoCre and a floxed PTH1R allele in their germline. These mice were backcrossed to homozygous floxed mice (NotoCre/+/PTH1Rflox/+::PTH1Rflox/flox) to generate mice with inactivation of both alleles in notochord derived cells (genotype NotoCre/+:: PTH1Rflox/flox). Homozygous disruption of the Noto locus is perinatally lethal; viable offspring have genotypes of either NotoCre/30 ::PTH1Rflox/flox (mice with PTH1R conditional deletion in Noto lineage cells are referred to as “PTH1R−/−” in the text) or Noto+/+::PTH1Rflox/flox (wild-type littermates hereinafter referred to as “PTH1R+/+” in the text). The genotype of transgenic mice was determined by PCR analyses of genomic DNA isolated from mouse tails. The floxed PTH1R allele was identified with primers lox1F (5-TGGACGCAGACGATGTCTTTACCA-3) (SEQ ID NO: 1) and lox1R (5-ACATGGCCATGCCTGGGTCTGAGA-3) (SEQ ID NO: 2). The genotyping for the Cre transgene was performed by PCR with the primers Cre F (5-CAAATAGCCCTGGCAGAT-3) (SEQ ID NO: 3) and Cre R (5-TGATACAAGGGACATCTTCC-3) (SEQ ID NO: 4). We generated NotoCre/+::ROSA26-lacZflox/flox by crossing NotoCre mice with mice homozygous with a loxP-flanked DNA stop sequence, preventing expression of the downstream lacZ gene. IFT88flox/flox mouse model has been generated as descripted. A NP tissue-specific primary cilia knock-out (KO) mouse line was generated by crossing NotoCre mice with IFT88flox/flox mice, in which the primary cilia were deleted from the NP tissue. The loxP IFT88 allele was identified with the primers lox2F (5′-GACCACCTTTTTAGCCTCCTG-3′) (SEQ ID NO: 5) and lox2R (5′-AGGGAAGGGACTTAGGAATGA-3′) (SEQ ID NO: 6).
For Lumbar Spine instability mouse model (LSI): 2 month-old PTH1R+/+ and PTH1R−/− male mice were used for this experiment. After anesthetizing with ketamine and xylazine, mice were operated by resection of the Lumbar 3rd-Lumbar 4th (L3-L4) spinous processes along with the supraspinous and interspinous ligaments to induce instability of lumbar spine. Mice were euthanized at 0, 2, 4, and 8 weeks after the surgery (n=8 per group).
For the dosage screening experiments, 17 month old male C57BL/6J WT mice were assigned into four groups treated with different doses of PTH or vehicle; 20 μg/kg/d, 40 μg/kg/d and 80 μg/kg/d of human PTH (1-34) (Bachem California, Inc. King of Prussia, Pa., USA.) or vehicle groups. We chose the optimal dosage of PTH (1-34) for the rest of the experiment.
The 11 month-old PTH1R+/+ and PTH1R−/− male mice were randomized into four groups: PTH1R+/++PTH (1-34), PTH1R+/++Vehicle, PTH1R−/−+PTH (1-34) and PTH1R−/−+Vehicle groups (n=8 per group). The 11 month-olds IFT88+/+ and IFT88−/− male mice were randomized into four groups: IFT88+/++PTH (1-34), IFT88+/++Vehicle, IFT88−/−+PTH (1-34) and IFT88−/−+Vehicle groups (n=8 per group). Mice were subcutaneously injected with either PTH (1-34) or vehicle (1 mM acetic acid in phosphate buffered saline (PBS) with equivalent volume of PTH) daily, 5 days per week, and all mice were sacrificed 4 weeks after treatment with PTH (1-34)/vehicle.
All animals were maintained in the Animal Facility of the Johns Hopkins University School of Medicine. The experimental protocols for both species were reviewed and approved by the Institutional Animal Care and Use Committee of The Johns Hopkins University, Baltimore, Md., USA.
Primary NP Cell isolation and culture.
Green fluorescent protein (GFP) labeled NP cells of notochordal origin were isolated from 15-day old NotoCre/+::ROSA26-lacZflox/flox male mice as previously described. The NP cells from 15-day old PTH1R+/+ and PTH1R−/−, IFT88+/+ and IFT88−/− male mice. Briefly, the cells were isolated from the NP region of IVDs in the spinal column from mid thoracic to lower lumbar region and digested initially with TrypLE Express (Gibco) for 30 minutes on shaker, followed by 0.25 mg/ml Collagense-P (Roche) for another 30 hours at 37° C. The digested cells were washed twice with PBS, and cultured in α-MEM (Gibco) supplemented with 10% fetal calf serum (Atlanta Biologicals), and 1% penicillin-streptomycin (Mediatech) to 80-90% confluence at 37° C., 5% CO2 and 5% O2.
Primary cilia visualization and co-localization analysis.
The localization of PTH signaling components within NP cells was investigated through immunocytochemistry after 48 hours of serum starvation (DMEM, 0.5% FBS, 1% P/S). Cells were treated with PTH (recombinant human PTH, 100 nmol, Bachem California, Inc. King of Prussia, Pa., USA.) or shear stress (1 dyn/cm2) with times of exposure for 30 minutes, fixed and stained for acetylated α-tubulin of primary cilia, PTH1R (Abcam, 1:100) and pCREP (Abcam, 1:500). Coverslips were mounted with Fluoroshield-DAPI. All cells were imaged using a Zeiss LSM710 META Confocal Laser Scanning microscope fitted with a 63× objective. Region of interest were selected manually using ImageJ software. The intensity profiles along the cilia have been performed by tracing a line across the length of the primary cilia and measuring intensity along this line using ImageJ software. Average intensities in the ciliary region, were measured on at least 30 ciliated cells per condition.
Western blot analysis and Co-immunoprecipitation.
Western blot analyses were conducted on the protein lysates from in vitro cultured NP cells or NP tissues from mice at specific time points after PTH (1-34) treatment and human at different ages with lumbar disc degeneration. The protein extract was centrifuged, the concentration of supernatant evaluated by DC protein assay (Bio-Rad Laboratories), and then separated by SDS-PAGE and blotted on a polyvinylidene fluoride membrane (Bio-Rad Laboratories). Following incubation in specific antibodies, we detected proteins using an enhanced chemiluminescence kit (Amersham Biosciences). We used specific antibodies recognizing rabbit CTGF (CCN2) (Abcam, 1:1000), Aggrecan (ACAN) (Abcan, 1:1000), p-Smad2 (Cell Signaling Technology Inc., 1:1000), Smad2 (Cell Signaling Technology Inc., 1:1000), GAPDH (Cell Signaling Technology Inc., 1:1000), CREB (Abcam, 1:2500), pCREB (Abcam, 1:2500), PTH1R PRB-635P (Covance, 1:100), PTH1R PRB-640P (Covance, 1:500) and goat integrin (36 (Santa Cruz, 1:500) to examine the protein concentrations in the lysates. Co-immunoprecipitation analyses were conducted on the nuclear and cytoplasmic protein extraction using NE-PER Nuclear and Cytoplasmic Extraction Kit (Pierce Thermo Scientific, 78833) from in vitro cultured NP cells treated with PTH (1-34) or vehicle. PTH1R and pCREB expression were revealed with an anti-pCREB (Abcam, 1:500) and anti-PTH1R (Abcam, 1:500) antibodies.
Chromatin immunoprecipitation (ChIP) assay.
The ChIP assays were carried out using the Thermo Fisher ChIP Kit (catalog number: 26156). The crude homogenate from the NP cells was crosslinked with 1% formaldehyde at room temperature for 10 min. The reaction was stopped by adding glycine (0.25 M). After centrifugation, the pellet was collected and lysed in SDS lysis buffer containing protease inhibitor cocktail. The lysis was sonicated until the DNA was broken into fragments with a mean length of 200-1,000 bp. The samples were first pre-cleaned with protein G agarose and then subjected to immunoprecipitation overnight with 2 mg of rabbit antibodies against pCREB (CST, 1:50) With 2 mg of normal rabbit serum overnight at 4° C. The 10-20% of the sample for immunoprecipitation was used as an input (a positive control). After purification, the DNA fragments were amplified using Real-time PCR with the primers for (36 promoter listed in Table 1.
cAMP assays and ELISA analysis.
For cAMP assays, confluent cells were grown in 35-mm six-well plates starved overnight by incubation in serum-free α-MEM at 37° C. The cells were then treated with 100 nM human of human PTH (1-34; Bachem California, Inc.) for 1 h. Cellular cAMP was extracted and the concentration measured with the Biotrak enzyme immunoassay system (GE Healthare, Inc., Princeton, N.J). We determined the concentration of total and active TGF-β in the NP tissue using the ELISA Development Kit (R&D Systems) according to the manufacturer's instructions.
Quantitative RT-PCR.
After protein extraction, specimen from the same group of mice were prepared for RNA extraction using TRIzol reagent (Invitogen) according to the manufacturer's instruction. The purity of RNA was tested by measuring the absorbance at 260 and 280 nm. For qRT-PCR, two micrograms of RNA was reverse transcribed into cDNA using the SuperScript firststrand synthesis system (Invitrogen) and analyzed with SYBR Green-Master Mix (Qiagen) in the thermal cycler with two sets of primers specific for each target gene. Relative expression was calculated for each gene by the 2−{circumflex over ( )}{circumflex over ( )}CT method, with GAPDH for normalization. Primers used for qRT-PCR are listed in Table 2.
Immunocytochemistry, immunofluorescence and histomorphometry.
For immunocytochemical staining, we incubated GFP labeled NP cells co-stained with primary antibody to rabbit PTH1R PRB-635P (Covance, 1:100) for 1 h and subsequently stained with secondary antibodies conjugated with fluorescence at room temperature. At the time of euthanasia, we dissected and fixed the lumbar vertebral spine in 10% buffered formalin for 48 h, decalcified them in 10% EDTA (pH 7.4) for 14-21 days and embedded them in paraffin or optimal cutting temperature (OCT) compound (Sakura Finetek). Fourmicrometer-thick coronal-oriented sections of the L1-L6 spine were processed for safranin O and fast green staining. Sections for immunostaining was performed using a standard protocol and incubated with primary antibodies to rabbit ACAN (Abcam, 1:100), CCN2 (Abcam, 1:100), integrin β8 (Abcam, 1:200), pCREB (Abcam, 1:100) and PTH1R PRB-635P (Covance, 1:100), mouse pSmad2/3 (Santa Cruz, 1:100), integrin avβ6 (Millipore, 1:100), integrin avβ3 (Bioss, 1:100,), integrin avβ5 (Bioss, 1:100) at 4° C. overnight. For immunohistochemical staining, a horse radish peroxidase-streptavidin detection system (Dako) was subsequently used to detect the immunoactivity, followed by counterstaining with hematoxylin (Sigma-Aldrich). For immunofluorescent assay, the slides were incubated with secondary antibodies conjugated with fluorescence at room temperature for 1 h while avoiding light. We used isotype-matched controls, such as polyclonal rabbit IgG (R&D Systems, AB-105-C) under the same concentrations and conditions as negative controls. We micro photographed sections to perform histomorphometric measurements on the entire area of the L3-L4 of the spine (Olympus DP71).
Quantitative histomorphometric analysis was conducted in a blinded fashion with Image-Pro Plus Software version 6.0 (Media Cybernetics Inc). IVD histological score were obtained as previously described67. Five randomly selected sections per mice in each group at L3-L4 level were chosen for quantitative histomorphometric analysis. The percentage of pSmad2/3 and pCREB positive cells was obtained by counting the number of positive staining cells to the number of total cells in the NP region. The percentage area of CCN2 and ACAN positive staining was calculated by measuring the positive area to the whole area of the L3-L4 in each group.
Propagation phase contrast micro-tomography scanning.
Propagation phase contrast micro-tomography (PPCT) based on the Synchrotron radiation scanning was performed at the BL13W1 biomedical beamline in the Shanghai Synchrotron Radiation Facility (SSRF) in China (
PPCT based 3D finite element test.
For each model, PPCT images of one motion segment of L3-L4 were first subjected to noise elimination, and binarization was performed using thresholds obtained by discrimination analysis. Then 3D geometry models of bone tissue (including the cartilaginous endplate) and IVD were reconstructed from the segmentation results, such as shown in
In vivo micro-MRI.
In vivo Spinal IVD imaging was conducted with a horizontal 30-cm-bore 9.4T Bruker Biospec preclinical scanner equipped with custom-built, single-turn volume coil positioned orthogonal to the B0 magnetic field. Anesthetization of mice was initiated with 4% isoflurane and maintained with a 2% isoflurane and oxygen mixture. Mice were placed supine on a tray and taped to minimize the motion artifacts. We acquired T2-weighted images using a relaxation enhancement (RARE) sequence with the following parameter: an echo time/repetition time (TE/TR) of 15.17 ms/3,000 ms, 35 slices at thickness of 0.35 mm, field of view (FOV) of 1.75 cm×1.75 cm and matrix size of 256×128. All T2-weighted images were processed to a final matrix size of 256×256 with an isotropic resolution of 0.068 mm pixel-1. For quantification of signal intensity as an indicator of disc tissue hydration, the region of interest at L3-L4 level in each group was selected and measured using Image-Pro Plus Software version 6.
Statistics.
Data are presented as the mean±s.d. We used unpaired, two-tailed Student's t-tests for comparisons between two groups and one-way analysis of variance (ANOVA) with Bonferroni post hoc test for multiple comparisons. All data demonstrated a normal distribution and similar variation between groups. The level of significance was set at P<0.05. All data analyses were performed using SPSS 22.0 analysis software (SPSS Inc.)
TGF-α activity is decreased in IVD degeneration during aging.
We systematically examined changes of IVD during aging. Three dimensional (3D) changes of the IVD were visualized using propagation phase contrast micro-tomography (PPCT) based on synchrotron radiation showing 3D images of the IVD with adjoining vertebra (top) and intact IVD (bottom) in 2-month and 18-month-old mice (
PTH directly induces cAMP production and phosphorylation of CREB in NP cells.
We examined whether PTH activates its downstream signaling directly in NP cells as PTH gland evolved in amphibians suggests its function for adaptation of vertebrates on land. Immunostaining of L3-L4 disc sections showed that PTH1R was expressed in NP cells (brown area) (
To elucidate whether PTH stimulates downstream intracellular signaling, we measured the level of PTH-induced cyclic adenosine monophsphate (cAMP) production in NP cells. The cAMP level in NP cells peaked at 30 minutes with PTH (1-34) (100 nmol) treatment (
iPTH attenuates disc degeneration by inducing integrin avβ6 expression in activation of TGF-α.
To examine the potential effect of intermittent PTH (iPTH) on IVD degeneration, we injected aged mice with PTH, a C-terminal truncated synthetic analogue of human PTH (1-34) daily for eight weeks with different doses. iPTH 40 μg/kg and 80 μg/kg significantly improved the IVD morphology and the dose of 40 μg/kg was chosen for the rest of the study (
To determine the mechanism by which PTH induces the activation of TGF-β in IVD, we examined whether PTH increased the expression of avβ integrins, which mediate activation of latent TGF-β. IVD sections prepared from iPTH- or vehicle-treated 18-month-old mice were immunostained with individual antibodies against avβ3, avβ5, avβ6 and β8, respectively and integrin levels compared to those of 2-month-old mice. The results showed that the expressions of avβ5 and avβ6 integrin were significantly decreased in the 18-month-old mice relative to 2-month-old mice, while the expression levels of avβ3 and β8 remained relatively unchanged. Importantly, PTH only significantly increased the level of avβ6 in 18-month old mice (
To determine the mechanism of PTH-induced β6 integrin gene transcription, we performed chromatin immunoprecipitation assay with 4 different potential pCREB binding sites (Primers 1, 2, 3 and 4) in the β6 integrin promoter. Immunoprecipitation results revealed that pCREB specifically binds to the most distal CREB site in the β6-integrin promoter (Primer 1) (
Conditional Knockout of PTH1R in NP cells accelerates disc degeneration during aging.
To investigate the role of PTH signaling in NP cells during aging, we crossed NotoCre mice with PTH1Rflox/flox mice to delete PTH1R gene specifically in notochord-derived NP cells (NotoCre::PTH1Rflox/flox, named “PTH1R KO mice” thereafter). PTH1R expression was undetectable in the NP cells in disc sections of PTH1R KO mice (
We then examined whether deletion of PTH1R in NP cells could affect iPTH anabolic effect on IVD. Increase of IVD volumes by iPTH in 12-month-old PTH1R+/+ mice was abolished in PTH1R KO mice (
PTH stimulates transport of PTH1R to cilia of NP cells.
To understand if mechanical stress regulates PTH signaling in NP cells, we investigated whether primary cilia in the NP cells regulates PTH signaling as PTH1R is a GPCR and found in primary cilia. Immunostaining of acetylated tubulin demonstrated that primary cilia were present in the NP cells of wild-type mice and the length of primary cilia significantly decreased in PTH1R KO mice (
We then examined whether mechanical stress regulates PTH signaling through cilia. NP cells were applied with sheer stress, and translocation of PTH1R to cilia was significantly enhanced by sheer stress (
Disruption of cilia decreases IVD volume, PTH signaling and TGF-β activity in NP cells.
To examine the role of cilia in maintaining IVD function, we crossed IFT88flox/flox mice with NotoCre/+ mice to generate IFT88::Noto-Cre mice (IFT88−/−) with disruption of cilia specifically in NP cells. The IVD volume was significantly decreased with disruption of cilia specifically in NP cells in IFT88−/− mice relative to their wild-type mice (
All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
This application claims the benefit of U.S. Provisional Patent Application No. 62/453,044, filed on Feb. 1, 2017, which is hereby incorporated by reference for all purposes as if fully set forth herein.
This invention was made with government support under grant no. AR 063943, awarded by the National Institutes of Health. The government has certain rights in the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/016429 | 2/1/2018 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62453044 | Feb 2017 | US |