The present invention relates in general to heart valve replacement and, in particular, to collapsible prosthetic heart valves. More particularly, the present invention relates to devices and methods for positioning and sealing of collapsible prosthetic heart valves.
Prosthetic heart valves that are collapsible to a relatively small circumferential size can be delivered into a patient less invasively than valves that are not collapsible. For example, a collapsible valve may be delivered into a patient via a tube-like delivery apparatus such as a catheter, a trocar, a laparoscopic instrument, or the like. This collapsibility can avoid the need for a more invasive procedure such as full open-chest, open-heart surgery.
Collapsible prosthetic heart valves typically take the form of a valve structure mounted on a stent. There are two types of stents on which the valve structures are ordinarily mounted: a self-expanding stent or a balloon-expandable stent. To place such valves into a delivery apparatus and ultimately into a patient, the valve must first be collapsed or crimped to reduce its circumferential size.
When a collapsed prosthetic valve has reached the desired implant site in the patient (e.g., at or near the annulus of the patient's heart valve that is to be replaced by the prosthetic valve), the prosthetic valve can be deployed or released from the delivery apparatus and re-expanded to full operating size. For balloon-expandable valves, this generally involves releasing the entire valve, and then expanding a balloon positioned within the valve stent. For self-expanding valves, on the other hand, the stent automatically expands as the sheath covering the valve is withdrawn.
In some embodiments, a prosthetic heart valve includes a collapsible and expandable stent having a proximal end and a distal end, a cuff coupled to the stent, a valve assembly including a plurality of leaflets coupled to at least one of the stent or the cuff and a conformable band having an inner surface disposed near the perimeter of the stent adjacent the plurality of leaflets and an outer surface adapted for contacting body tissue, the conformable band being configured to seal the valve assembly against leakage by filling gaps between the prosthetic heart valve and the body tissue.
In some embodiments, a method of sealing a prosthetic heart valve in a patient includes positioning the prosthetic heart valve within body tissue, the prosthetic heart valve comprising (i) a collapsible and expandable stent, (ii) a valve assembly including a plurality of leaflets coupled to the stent and (iii) a conformable band having an inner surface disposed about the plurality of leaflets and an outer surface adapted for contacting body tissue, and expanding the stent until the conformable band is in sealing contact with the body tissue.
In some embodiments, a prosthetic heart valve includes a collapsible and expandable stent having a proximal end and a distal end, a valve assembly including a plurality of leaflets coupled to the stent, and a conformable band disposed about the stent between the proximal and distal ends thereof, the band adapted for creating a fluid seal about the circumference of the stent with an adjacent body tissue.
Various embodiments of the present invention are described herein with reference to the drawings, wherein:
Various embodiments of the present invention will now be described with reference to the appended drawings. It is appreciated that these drawings depict only some embodiments of the invention and are therefore not to be considered limiting of its scope.
Despite the various improvements that have been made to the collapsible prosthetic heart valve delivery process, conventional devices suffer from some shortcomings. For example, with conventional self-expanding valves, clinical success of the valve is dependent on accurate deployment and anchoring. Inaccurate deployment and anchoring of the valve increases risks such as valve migration, which may result in severe complications due to obstruction of the left ventricular outflow tract. Additionally, calcification of the aortic valve may affect performance and the interaction between the implanted valve and the calcified tissue is believed to be relevant to leakage as will be outlined below.
Moreover, anatomical variations between patients may require removal of a fully deployed heart valve from the patient if it appears that the valve is not functioning properly. Removing a fully deployed heart valve increases the length of the procedure and increases the risk of infection and/or damage to heart tissue. Thus, methods and devices are desirable that would reduce the likelihood of removal. Methods and devices are also desirable that would reduce the likelihood of valve leakage due to gaps formed between the implanted heart valve and patient tissue known as paravalvular leaks.
There therefore is a need for further improvements to the devices, systems, and methods for transcatheter delivery and positioning of collapsible prosthetic heart valves. Specifically, there is a need for further improvements to the devices, systems, and methods for accurately implanting a prosthetic heart valve. Among other advantages, the present invention may address one or more of these needs.
As used herein, the term “proximal,” when used in connection with a prosthetic heart valve, refers to the end of the heart valve closest to the heart when the heart valve is implanted in a patient, whereas the term “distal,” when used in connection with a prosthetic heart valve, refers to the end of the heart valve farthest from the heart when the heart valve is implanted in a patient. When used in connection with devices for delivering a prosthetic heart valve into a patient, the terms “trailing” and “leading” are to be taken as relative to the user of the delivery devices. “Trailing” is to be understood as relatively close to the user, and “leading” is to be understood as relatively farther away from the user.
The prosthetic heart valve will be discussed in more detail with reference to
Prosthetic heart valve 100 includes an expandable stent 102 which may be formed from materials that are capable of self-expansion. Stent 102 extends from a proximal or annulus end 130 to a distal or aortic end 132, and includes an annulus section 140 adjacent the proximal end and an aortic section 142 adjacent the distal end. The annulus section 140 has a relatively small cross-section in the expanded condition, while the aortic section 142 has a relatively large cross-section in the expanded condition. Preferably, annulus section 140 is in the form of a cylinder having a substantially constant diameter along its length. A transition section 141 may taper outwardly from the annulus section 140 to the aortic section 142. Each of the sections of the stent 102 includes a plurality of cells 112 connected to one another in one or more annular rows around the stent. For example, as shown in
Stent 102 may include one or more retaining elements 118 at the distal end 132 thereof, the retaining elements being sized and shaped to cooperate with female retaining structures (not shown) provided on the deployment device. The engagement of retaining elements 118 with the female retaining structures on the deployment device helps maintain prosthetic heart valve 100 in assembled relationship with the deployment device, minimizes longitudinal movement of the prosthetic heart valve relative to the deployment device during unsheathing or resheathing procedures, and helps prevent rotation of the prosthetic heart valve relative to the deployment device as the deployment device is advanced to the target location and during deployment.
The stent 102 may also include a plurality of commissure points 116 for attaching the commissure between two adjacent leaflets to the stent. As can be seen in
Preferably, commissure points 116 are positioned entirely within annulus section 140 or at the juncture of annulus section 140 and transition section 141. Commissure points 116 may include one or more eyelets which facilitate the suturing of the leaflet commissure to the stent.
The prosthetic heart valve 100 includes a valve assembly 105 positioned in the annulus section 140. Valve assembly 105 may be secured to stent 102 in the various manners described above. Valve assembly 105 includes a cuff 106 and a plurality of leaflets 108 which collectively function as a one-way valve by contacting one another.
Although cuff 106 is shown in
As is shown in
In operation, the embodiments of the prosthetic heart valve described above may be used to replace a native heart valve, such as the aortic valve, a surgical heart valve or a heart valve that has undergone a surgical procedure. The prosthetic heart valve may be delivered to the desired site (e.g., near a native aortic annulus) using any suitable delivery device, including the delivery devices described in detail below. During delivery, the prosthetic heart valve is disposed inside the delivery device in the collapsed condition. The delivery device may be introduced into a patient using a transfemoral, transapical or transseptal approach. Once the delivery device has reached the target site, the user may deploy any of the prosthetic heart valves described above. Upon deployment, the prosthetic heart valve expands into secure engagement within the native aortic annulus. When the prosthetic heart valve is properly positioned inside the heart, it works as a one-way valve, allowing blood to flow in one direction and preventing blood from flowing in the opposite direction.
Problems may be encountered when implanting the prosthetic heart valve. For example, in certain procedures, collapsible valves may be implanted in a native valve annulus without first resecting the native valve leaflets. The collapsible valves may have critical clinical issues because of the nature of the stenotic leaflets that are left in place. Additionally, patients with uneven calcification, bi-cuspid aortic valve disease, and/or valve insufficiency could not be treated well, if at all, with the current collapsible valve designs.
The reliance on unevenly calcified leaflets for proper valve placement and seating could lead to several problems, such as paravalvular leakage (PV leak), which can have severely adverse clinical outcomes. To reduce these adverse events, the optimal valve would seal and anchor adequately without the need for excessive radial force that could harm nearby anatomy and physiology.
Conformable band 300 may include a body 310 formed of a ring-like metallic structure in the shape of a toroid having an inner surface 330 defining a central aperture 320 for coupling to heart valve 100 and an outer surface 340 for contacting body tissue. In its relaxed condition, body 310 may have a diameter that is equal to or greater than the diameter of the annulus where it will be implanted. Body 310 of conformable band 300 may be flexible and capable of contracting in the radial direction when a force is applied thereto to conform to the shape of the annulus in which it will be implanted.
In one example, body 310 comprises a braided metal fabric that is both resilient and capable of heat treatment to substantially set a desired preset shape. One class of materials which meets these qualifications is shape memory alloys. One example of a shape memory alloy is Nitinol. It is also understood body 310 may comprise various materials other than Nitinol that have elastic and/or memory properties, such as spring stainless steel, trade named alloys such as Elgiloy®, Hastelloy®, CoCrNi alloys (e.g., trade name Phynox), MP35N®, CoCrMo alloys, or a mixture of metal and polymer fibers. Depending on the individual material selected, strand diameter, number of strands, and pitch may be altered to achieve the desired properties of body 310. Body 310 may be formed, for example, of a braided nitinol mesh and may include a shape-memory material or a super-elastic material that is capable of collapsing and expanding to conform to patient vasculature. It is also contemplated that the body 310 can be constructed from bio-compatible polymer material. In at least some examples, body 310 may be hollow and/or loaded with a filler 345 of fabric or fibers of various materials that is intertwined and/or located within the mesh of the conformable band to assist with, sealing, occlusion and healing. For example, conformable band 300 may include a filler 345 of polyester threads or polyester fabric as well as any suitable implantable fiber material to increase density and/or promote tissue growth. Filler 345 may also include a foam material such as a closed cell sponge. The density of conformable band 300 may be such that it impedes the flow of blood through it. In at least some examples, conformable band 300 and/or filler 345 may be formed of a hydrophobic material that expands with moisture. Additionally, conformable band 300 and/or filler 345 may be configured from a hydrophobic material that expands upon blood contact.
While conformable band 300 is shown in
Once heart valve 100 has reached the desired site of deployment, outer sheath 410 may be retracted toward the distal end of catheter 400 in the direction of arrow S to expose heart valve 100 (
As outer sheath 410 is further retracted, more of heart valve 100 is exposed and heart valve expands further into the native valve annulus 250. As seen in
Retaining elements 118 may be disconnected by being moved radially outward from receiving elements of accepting member 430 to free the heart valve 100 from catheter 400.
It will also be noted that while the inventions herein are predominately described in connection with the replacement of a tricuspid valve, the inventions are equally applicable to the replacement of other valves, including a bicuspid valve, such as the mitral valve. Moreover, the stent could have different shapes, such as a flared or conical annulus section, a less-bulbous aortic section, and the like, and a differently shaped transition section. Additionally, though the conformable band has been described in connection with expandable transcatheter aortic valve replacement, it may also be used in connection with surgical valves, sutureless valves and other device where sealing is between the periphery and body tissue. Though a transfemoral approach has been described, it will be understood that a transapical or any other suitable approach for implanting the heart valve may be used.
Moreover, although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.
It will be appreciated that the various dependent claims and the features set forth therein can be combined in different ways than presented in the initial claims. It will also be appreciated that the features described in connection with individual embodiments may be shared with others of the described embodiments.
In some embodiments, a prosthetic heart valve includes a collapsible and expandable stent having a proximal end and a distal end, a cuff coupled to the stent, a valve assembly including a plurality of leaflets coupled to at least one of the stent or the cuff and a conformable band having an inner surface disposed near the perimeter of the stent adjacent the plurality of leaflets and an outer surface adapted for contacting body tissue, the conformable band being configured to seal the valve assembly against leakage by filling gaps between the prosthetic heart valve and the body tissue.
In some examples, the conformable band may include at least one of a metallic mesh, a braided nitinol mesh or a shape-memory material. The conformable band may be constructed in the shape of a toroid. The conformable band may further include polyester fiber intertwined with the metal mesh to increase density of the conformable band. The conformable band may further include a polyester fabric intertwined with the metal mesh to increase density of the conformable band. The stent may include a plurality of struts and the conformable band is coupled to at least one of the plurality of the struts of the stent.
In some examples, the conformable band may be coupled to an inner surface of the stent. The cuff may have a lumenal surface and an ablumenal surface and the conformable band may be coupled to the ablumenal surface of the cuff. The conformable band may have a non-circular cross-section. The conformable band may have varying heights along the perimeter. The conformable band may include a biological agent for promoting tissue growth. The conformable band may include a chemical agent for promoting tissue growth. The conformable band may be continuously formed about the perimeter of the stent. The conformable band may include at least two rings formed about the stent.
In some embodiments, a method of sealing a prosthetic heart valve in a patient includes positioning the prosthetic heart valve within body tissue, the prosthetic heart valve comprising (i) a collapsible and expandable stent, (ii) a valve assembly including a plurality of leaflets coupled to the stent and (iii) a conformable band having an inner surface disposed about the plurality of leaflets and an outer surface adapted for contacting body tissue, and expanding the stent until the conformable band is in sealing contact with the body tissue.
In some embodiments, a prosthetic heart valve includes a collapsible and expandable stent having a proximal end and a distal end, a valve assembly including a plurality of leaflets coupled to the stent, and a conformable band disposed about the stent between the proximal and distal ends thereof, the band adapted for creating a fluid seal about the circumference of the stent with an adjacent body tissue. In some examples, the conformable band may be attached about an outer surface of the stent.
In some examples, the conformable band may be attached about an inner surface of the stent. The conformable band may be disposed adjacent the plurality of leaflets. The conformable band may include at least two rings formed about the stent. The band may include an inner surface disposed concentric with a perimeter of the stent.
Number | Name | Date | Kind |
---|---|---|---|
3657744 | Ersek | Apr 1972 | A |
4275469 | Gabbay | Jun 1981 | A |
4491986 | Gabbay | Jan 1985 | A |
4759758 | Gabbay | Jul 1988 | A |
4878906 | Lindemann et al. | Nov 1989 | A |
4922905 | Strecker | May 1990 | A |
4994077 | Dobben | Feb 1991 | A |
5411552 | Andersen et al. | May 1995 | A |
5480423 | Ravenscroft et al. | Jan 1996 | A |
5843167 | Dwyer et al. | Dec 1998 | A |
5855601 | Bessler et al. | Jan 1999 | A |
5935163 | Gabbay | Aug 1999 | A |
5961549 | Nguyen et al. | Oct 1999 | A |
6077297 | Robinson et al. | Jun 2000 | A |
6083257 | Taylor et al. | Jul 2000 | A |
6090140 | Gabbay | Jul 2000 | A |
6214036 | Letendre et al. | Apr 2001 | B1 |
6264691 | Gabbay | Jul 2001 | B1 |
6267783 | Letendre et al. | Jul 2001 | B1 |
6368348 | Gabbay | Apr 2002 | B1 |
6419695 | Gabbay | Jul 2002 | B1 |
6468660 | Ogle et al. | Oct 2002 | B2 |
6488702 | Besselink | Dec 2002 | B1 |
6517576 | Gabbay | Feb 2003 | B2 |
6533810 | Hankh et al. | Mar 2003 | B2 |
6582464 | Gabbay | Jun 2003 | B2 |
6610088 | Gabbay | Aug 2003 | B1 |
6623518 | Thompson et al. | Sep 2003 | B2 |
6685625 | Gabbay | Feb 2004 | B2 |
6719789 | Cox | Apr 2004 | B2 |
6730118 | Spenser et al. | May 2004 | B2 |
6783556 | Gabbay | Aug 2004 | B1 |
6790230 | Beyersdorf et al. | Sep 2004 | B2 |
6814746 | Thompson et al. | Nov 2004 | B2 |
6830584 | Seguin | Dec 2004 | B1 |
6869444 | Gabbay | Mar 2005 | B2 |
6893460 | Spenser et al. | May 2005 | B2 |
6908481 | Cribier | Jun 2005 | B2 |
7018406 | Seguin et al. | Mar 2006 | B2 |
7025780 | Gabbay | Apr 2006 | B2 |
7137184 | Schreck | Nov 2006 | B2 |
7160322 | Gabbay | Jan 2007 | B2 |
7247167 | Gabbay | Jul 2007 | B2 |
7267686 | DiMatteo et al. | Sep 2007 | B2 |
7311730 | Gabbay | Dec 2007 | B2 |
7374573 | Gabbay | May 2008 | B2 |
7381218 | Schreck | Jun 2008 | B2 |
7452371 | Pavcnik et al. | Nov 2008 | B2 |
7510572 | Gabbay | Mar 2009 | B2 |
7524331 | Birdsall | Apr 2009 | B2 |
RE40816 | Taylor et al. | Jun 2009 | E |
7585321 | Cribier | Sep 2009 | B2 |
7682390 | Seguin | Mar 2010 | B2 |
7731742 | Schlick et al. | Jun 2010 | B2 |
7803185 | Gabbay | Sep 2010 | B2 |
7846203 | Cribier | Dec 2010 | B2 |
7846204 | Letac et al. | Dec 2010 | B2 |
7914569 | Nguyen et al. | Mar 2011 | B2 |
D648854 | Braido | Nov 2011 | S |
D652926 | Braido | Jan 2012 | S |
D652927 | Braido et al. | Jan 2012 | S |
D653341 | Braido et al. | Jan 2012 | S |
D653342 | Braido et al. | Jan 2012 | S |
D653343 | Ness et al. | Jan 2012 | S |
D654169 | Braido | Feb 2012 | S |
D654170 | Braido et al. | Feb 2012 | S |
D660432 | Braido | May 2012 | S |
D660433 | Braido et al. | May 2012 | S |
D660967 | Braido et al. | May 2012 | S |
20020036220 | Gabbay | Mar 2002 | A1 |
20030023303 | Palmaz et al. | Jan 2003 | A1 |
20030050694 | Yang et al. | Mar 2003 | A1 |
20030130726 | Thorpe et al. | Jul 2003 | A1 |
20040049262 | Obermiller et al. | Mar 2004 | A1 |
20040093075 | Kuehne | May 2004 | A1 |
20040210304 | Seguin et al. | Oct 2004 | A1 |
20050096726 | Sequin et al. | May 2005 | A1 |
20050137695 | Salahieh et al. | Jun 2005 | A1 |
20050137697 | Salahieh et al. | Jun 2005 | A1 |
20050256566 | Gabbay | Nov 2005 | A1 |
20060008497 | Gabbay | Jan 2006 | A1 |
20060058872 | Salahieh et al. | Mar 2006 | A1 |
20060074484 | Huber | Apr 2006 | A1 |
20060122692 | Gilad et al. | Jun 2006 | A1 |
20060149360 | Schwammenthal et al. | Jul 2006 | A1 |
20060173532 | Flagle et al. | Aug 2006 | A1 |
20060178740 | Stacchino et al. | Aug 2006 | A1 |
20060206202 | Bonhoeffer et al. | Sep 2006 | A1 |
20060241744 | Beith | Oct 2006 | A1 |
20060241745 | Solem | Oct 2006 | A1 |
20060259120 | Vongphakdy et al. | Nov 2006 | A1 |
20060259136 | Nguyen et al. | Nov 2006 | A1 |
20060259137 | Artof et al. | Nov 2006 | A1 |
20060265056 | Nguyen et al. | Nov 2006 | A1 |
20060276813 | Greenberg | Dec 2006 | A1 |
20070010876 | Salahieh et al. | Jan 2007 | A1 |
20070027534 | Bergheim et al. | Feb 2007 | A1 |
20070043435 | Seguin et al. | Feb 2007 | A1 |
20070055358 | Krolik et al. | Mar 2007 | A1 |
20070067029 | Gabbay | Mar 2007 | A1 |
20070073387 | Forster et al. | Mar 2007 | A1 |
20070093890 | Eliasen et al. | Apr 2007 | A1 |
20070100435 | Case et al. | May 2007 | A1 |
20070118210 | Pinchuk | May 2007 | A1 |
20070213813 | Von Segesser et al. | Sep 2007 | A1 |
20070233228 | Eberhardt et al. | Oct 2007 | A1 |
20070244545 | Birdsall et al. | Oct 2007 | A1 |
20070244552 | Salahieh et al. | Oct 2007 | A1 |
20070288087 | Fearnot et al. | Dec 2007 | A1 |
20080021552 | Gabbay | Jan 2008 | A1 |
20080039934 | Styrc | Feb 2008 | A1 |
20080071369 | Tuval et al. | Mar 2008 | A1 |
20080082164 | Friedman | Apr 2008 | A1 |
20080097595 | Gabbay | Apr 2008 | A1 |
20080114452 | Gabbay | May 2008 | A1 |
20080125853 | Bailey et al. | May 2008 | A1 |
20080140189 | Nguyen et al. | Jun 2008 | A1 |
20080147183 | Styrc | Jun 2008 | A1 |
20080154355 | Benichou et al. | Jun 2008 | A1 |
20080154356 | Obermiller et al. | Jun 2008 | A1 |
20080243245 | Thambar et al. | Oct 2008 | A1 |
20080255662 | Stacchino et al. | Oct 2008 | A1 |
20080262602 | Wilk et al. | Oct 2008 | A1 |
20080269879 | Sathe et al. | Oct 2008 | A1 |
20090062841 | Amplatz | Mar 2009 | A1 |
20090112309 | Jaramillo et al. | Apr 2009 | A1 |
20090138079 | Tuval et al. | May 2009 | A1 |
20090192591 | Ryan et al. | Jul 2009 | A1 |
20100004740 | Seguin et al. | Jan 2010 | A1 |
20100036484 | Hariton et al. | Feb 2010 | A1 |
20100049306 | House et al. | Feb 2010 | A1 |
20100087907 | Lattouf | Apr 2010 | A1 |
20100131055 | Case et al. | May 2010 | A1 |
20100168778 | Braido | Jul 2010 | A1 |
20100168839 | Braido et al. | Jul 2010 | A1 |
20100168844 | Toomes et al. | Jul 2010 | A1 |
20100185277 | Braido et al. | Jul 2010 | A1 |
20100191326 | Alkhatib | Jul 2010 | A1 |
20100204781 | Alkhatib | Aug 2010 | A1 |
20100204785 | Alkhatib | Aug 2010 | A1 |
20100217382 | Chau et al. | Aug 2010 | A1 |
20100249911 | Alkhatib | Sep 2010 | A1 |
20100249923 | Alkhatib et al. | Sep 2010 | A1 |
20100286768 | Alkhatib | Nov 2010 | A1 |
20100298931 | Quadri et al. | Nov 2010 | A1 |
20110029072 | Gabbay | Feb 2011 | A1 |
20110066237 | Matheny | Mar 2011 | A1 |
20130018458 | Yohanan et al. | Jan 2013 | A1 |
20140155997 | Braido | Jun 2014 | A1 |
20140194981 | Menk et al. | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
19857887 | Jul 2000 | DE |
10121210 | Nov 2002 | DE |
202008009610 | Dec 2008 | DE |
0122744 | Oct 1984 | EP |
0850607 | Jul 1998 | EP |
1000590 | May 2000 | EP |
1360942 | Nov 2003 | EP |
1584306 | Oct 2005 | EP |
1598031 | Nov 2005 | EP |
2047824 | Apr 2009 | EP |
2847800 | Jun 2004 | FR |
2850008 | Jul 2004 | FR |
9117720 | Nov 1991 | WO |
9716133 | May 1997 | WO |
9832412 | Jul 1998 | WO |
9913801 | Mar 1999 | WO |
0128459 | Apr 2001 | WO |
0149213 | Jul 2001 | WO |
0154625 | Aug 2001 | WO |
0156500 | Aug 2001 | WO |
0176510 | Oct 2001 | WO |
0236048 | May 2002 | WO |
0247575 | Jun 2002 | WO |
03047468 | Jun 2003 | WO |
2006073626 | Jul 2006 | WO |
2007071436 | Jun 2007 | WO |
2008070797 | Jun 2008 | WO |
2008092101 | Jul 2008 | WO |
2010008548 | Jan 2010 | WO |
2010008549 | Jan 2010 | WO |
2010096176 | Aug 2010 | WO |
2010098857 | Sep 2010 | WO |
2013033791 | Mar 2013 | WO |
2013036167 | Mar 2013 | WO |
Entry |
---|
Catheter-implanted prosthetic heart valves, Knudsen, L.L., et al., The International Journal of Artificial Organs, vol. 16, No. 5 1993, pp. 253-262. |
Is It Reasonable to Treat All Calcified Stenotic Aortic Valves With a Valved Stent?, 579-584, Zegdi, Rachid, MD, PhD et al., J. of the American College of Cardiology, vol. 51, No. 5, Feb. 5, 2008. |
Quaden et al., “Percutaneous aortic valve replacement: resection before implantation”, pp. 836-840, European J. of Cardio-thoracic Surgery, 27 (2005). |
Ruiz, Carlos, Overview of PRE-CE Mark Transcatheter Aortic Valve Technologies, Euro PCR, dated May 25, 2010. |
Transluminal Aortic Valve Placement, Moazami, Nader, et al., ASAIO Journal, 1996; 42:M381-M385. |
Transluminal Catheter Implanted Prosthetic Heart Valves, Andersen, Henning Rud, International Journal of Angiology 7:102-106 (1998). |
Transluminal implantation of artificial heart valves, Andersen, H. R., et al., European Heart Journal (1992) 13, 704-708. |
U.S. Appl. No. 29/375,243, filed Sep. 20, 2010. |
U.S. Appl. No. 29/375,260, filed Sep. 20, 2010. |
International Search Report and Written Opinion for Application No. PCT/US2013/078296 dated Apr. 4, 2014. |
Number | Date | Country | |
---|---|---|---|
20140277424 A1 | Sep 2014 | US |