Paravalvular leak sealing mechanism

Information

  • Patent Grant
  • 11446143
  • Patent Number
    11,446,143
  • Date Filed
    Thursday, September 24, 2020
    3 years ago
  • Date Issued
    Tuesday, September 20, 2022
    a year ago
Abstract
A collapsible and expandable stent body includes a generally tubular annulus section, one or more prosthetic valve elements mounted to the stent body, and a cuff attached to the stent body. The prosthetic valve is operative to allow flow in an antegrade direction but to substantially block flow in a retrograde direction. The prosthetic heart valve may include paravalvular leak mitigation features in the form of first and second sealing members. The sealing members are attached to the cuff and extend circumferentially around an abluminal surface of the stent body. The sealing members each have an open side facing in a first axial direction and a closed side facing in an opposite second axial direction. Flow of blood in the second axial direction will tend to force blood into the sealing members and cause the sealing members to billow outwardly relative to the stent body, helping to mitigate paravalvular leak.
Description
BACKGROUND

The present disclosure relates to heart valve replacement and, in particular, to collapsible prosthetic heart valves. More particularly, the present disclosure relates to collapsible prosthetic heart valves having improved mechanisms to seal against paravalvular leak.


Prosthetic heart valves that are collapsible to a relatively small circumferential size can be delivered into a patient less invasively than valves that are not collapsible. For example, a collapsible valve may be delivered into a patient via a tube-like delivery apparatus such as a catheter, a trocar, a laparoscopic instrument, or the like. This collapsibility can avoid the need for a more invasive procedure such as full open-chest, open-heart surgery.


Collapsible prosthetic heart valves typically take the form of a valve structure mounted on a stent. There are two types of stents on which the valve structures are ordinarily mounted: a self-expanding stent and a balloon-expandable stent. To place such valves into a delivery apparatus and ultimately into a patient, the valve must first be collapsed or crimped to reduce its circumferential size.


When a collapsed prosthetic valve has reached the desired implant site in the patient (e.g., at or near the annulus of the patient's heart valve that is to be replaced by the prosthetic valve), the prosthetic valve can be deployed or released from the delivery apparatus and re-expanded to full operating size. For balloon-expandable valves, this generally involves releasing the valve, assuring its proper location, and then expanding a balloon positioned within the valve stent. For self-expanding valves, on the other hand, the stent automatically expands as the sheath covering the valve is withdrawn.


Clinical success of a self-expanding valve may be at least partially dependent on accurate deployment and sealing. For example, inaccurate deployment and anchoring may result in the leakage of blood between the implanted heart valve and the native valve annulus, commonly referred to as perivalvular or paravalvular leakage (“PV leak”). In aortic valves, this leakage enables blood to flow from the aorta back into the left ventricle, reducing cardiac efficiency and putting a greater strain on the heart muscle. Additionally, calcification of the aortic valve may affect performance and the interaction between the implanted valve and the calcified tissue is believed to be relevant to leakage. Additionally, in certain procedures, collapsible valves may be implanted in a native valve annulus without first resecting the native valve leaflets.


BRIEF SUMMARY

One aspect of the present disclosure relates to mechanisms and features for prosthetic valves to facilitate sealing against paravalvular leaks. These mechanisms may include, for example, patches or other types of material that expand or billow open upon PV leak to create a better seal between the prosthetic valve and the native tissue in which the prosthetic valve is implanted.


In one embodiment of the disclosure, a prosthetic heart valve includes a stent body including a generally tubular annulus section defining a first circumferential row of cells. The prosthetic heart valve may include one or more prosthetic valve elements mounted to the stent body and operative to allow flow in an antegrade direction but to substantially block flow in a retrograde direction through the annulus section. The prosthetic heart valve may further include a cuff attached to the stent body and positioned on a luminal surface of the stent body. At least one sealing member may be attached to the cuff, the at least one sealing member having an open side facing in a first axial direction and a closed side facing in a second axial direction opposite to the first axial direction so that a flow of blood in the second axial direction will tend to force blood into the at least one sealing member and cause the sealing member to billow outwardly relative to the stent body. The at least one sealing member may have a shape chosen from the group consisting of generally triangular, generally trapezoidal, and generally semicircular.


In another embodiment of the disclosure, a prosthetic heart valve includes a stent body including a generally tubular annulus section defining a first circumferential row of cells and a second circumferential row of cells distal to the first circumferential row of cells. The prosthetic heart valve may also include one or more prosthetic valve elements mounted to the stent body and operative to allow flow in an antegrade direction but to substantially block flow in a retrograde direction through the annulus section. The prosthetic heart valve my further include a cuff attached to the stent body and positioned on a luminal surface of the stent body. At least one proximal sealing member may be attached to the cuff and positioned substantially within a cell in the first circumferential row of cells, the proximal sealing member having an open side facing in a first axial direction and a closed side facing in a second axial direction opposite the first axial direction so that a flow of blood in the second axial direction will tend to force blood into the proximal sealing member and cause the proximal sealing member to billow outwardly relative to the stent body. At least one distal sealing member may be attached to the cuff and positioned substantially within a cell in the second circumferential row of cells, the distal sealing member having an open side facing in the first axial direction and a closed side facing in the second axial direction so that the flow of blood in the second axial direction will tend to force blood into the distal sealing member and cause the distal sealing member to billow outwardly relative to the stent body.


In yet a further embodiment of the disclosure, a prosthetic heart valve includes a stent body including a generally tubular annulus section and one or more prosthetic valve elements mounted to the stent body and operative to allow flow in an antegrade direction but to substantially block flow in a retrograde direction through the annulus section. A cuff may be attached to the stent body and positioned on a luminal surface of the stent body. A sealing member may be attached to the cuff, the sealing member being generally rectangular and having an open side facing in a first axial direction and a closed side facing in a second axial direction opposite to the first axial direction so that a flow of blood in the second axial direction will tend to force blood into the sealing member and cause the sealing member to billow outwardly relative to the stent body. The sealing member may be wrapped around an entire circumference of the stent body and define a pocket divided into a plurality of regions, each of the regions being in fluid communication with adjacent ones of the regions.


In still a further embodiment of the disclosure, a prosthetic heart valve includes a stent body including a generally tubular annulus section, and one or more prosthetic valve elements mounted to the stent body and operative to allow flow in an antegrade direction but to substantially block flow in a retrograde direction through the annulus section. A cuff may be attached to the stent body and positioned on a luminal surface of the stent body. At least one strut may form a finger at a proximal end thereof. The finger may be configured to lie substantially parallel to the stent body when the stent body is in a collapsed condition and may be configured to curve radially outwardly and distally when the stent body is in an expanded condition, the cuff being attached to the finger.


In a further embodiment of the disclosure, a prosthetic heart valve includes a collapsible and expandable stent body including a generally tubular annulus section and one or more prosthetic valve elements mounted to the stent body and operative to allow flow in an antegrade direction but to substantially block flow in a retrograde direction through the annulus section. A cuff may be attached to the stent body. A first sealing member is attached to the cuff, the first sealing member extending circumferentially around an abluminal surface of the stent body and having an open side facing in a first axial direction and a closed side facing in a second axial direction opposite to the first axial direction so that a flow of blood in the second axial direction will tend to force blood into the first sealing member and cause the first sealing member to billow outwardly relative to the stent body. A second sealing member is attached to the cuff, the second sealing member extending circumferentially around the abluminal surface of the stent body and having an open side facing in the first axial direction and a closed side facing in the second axial direction so that the flow of blood in the second axial direction will tend to force blood into the second sealing member and cause the second sealing member to billow outwardly relative to the stent body. The first sealing member may define a first pocket having a plurality of first regions, each of the first regions being in fluid communication with adjacent ones of the first regions. Similarly, the second sealing member may define a second pocket having a plurality of second regions, each of the second regions being in fluid communication with adjacent ones of the second regions. The first sealing member and/or the second sealing member may be wrapped around an entire circumference of the stent body. The open side of the first sealing member and/or the open side of the second sealing member may be attached to the cuff at spaced locations around a circumference of the stent body. The open side of the first sealing member may include a first plurality of openings and the open side of the second sealing members may include a second plurality of openings, the first plurality of openings being offset in a circumferential direction from the second plurality of openings. The first sealing member may be positioned nearer an inflow end of the stent body than the second sealing member. The open side of the first sealing member may be axially spaced apart from the closed side of the second sealing member. The first sealing member may comprise an extension of the cuff, the extension being wrapped around an inflow end of the stent body such that the extension is positioned on an abluminal surface of the stent body. A proximal portion of the extension on the abluminal surface of the stent body may be connected to a proximal portion of the cuff on the luminal surface of the stent body with a seam. The first sealing member and/or the second sealing member may be formed from a separate piece of material from the cuff. The first sealing member and/or the second sealing member may be formed of a single piece of material or a plurality of pieces of material. The first sealing member and/or the second sealing member may be substantially rectangular.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side elevational view of a conventional prosthetic heart valve.



FIG. 2 is a highly schematic cross-sectional view taken along line A-A of FIG. 1 and showing the prosthetic heart valve disposed within a native valve annulus.



FIG. 3A is an enlarged partial schematic view of a sealing member attached to a stent according to an embodiment of the disclosure.



FIG. 3B is a schematic view of an isolated individual sealing member.



FIG. 3C is a schematic view of an isolated series of sealing members.



FIGS. 3D-E are enlarged views showing portions of sealing members having different fiber orientations.



FIGS. 3F-G are highly schematic longitudinal cross-sections showing a sealing member of a valve billowing open to different extents.



FIGS. 3H-I are schematic views of isolated individual sealing members with different shapes.



FIG. 4A is an enlarged partial schematic view of a sealing member attached to a stent according to another embodiment of the disclosure.



FIG. 4B is an enlarged partial schematic view of a sealing member attached to a stent according to a further embodiment of the disclosure.



FIG. 4C is a schematic view of isolated sealing members arranged in a staggered pattern.



FIG. 5 is an enlarged partial schematic view of a sealing member attached to a stent according to still another embodiment of the disclosure.



FIG. 6A is a highly schematic partial longitudinal cross-section of a sealing member attached to a stent, with the stent in an expanded configuration, according to yet another embodiment of the disclosure.



FIG. 6B is a highly schematic partial longitudinal cross-section of the sealing member and stent of FIG. 6A in a collapsed configuration.



FIG. 7 is an enlarged partial schematic view of two sealing members attached to a stent according to yet a further embodiment of the disclosure.





Various embodiments of the present disclosure will now be described with reference to the appended drawings. It is to be appreciated that these drawings depict only some embodiments of the heart valve according to the descriptions herein and are therefore not to be considered limiting of the scope of the present disclosure.


DETAILED DESCRIPTION

As used herein, the term “proximal,” when used in connection with a prosthetic heart valve, refers to the end of the heart valve closest to the heart when the heart valve is implanted in a patient, whereas the term “distal,” when used in connection with a prosthetic heart valve, refers to the end of the heart valve farthest from the heart when the heart valve is implanted in a patient. The term “circumferential,” when used in connection with a prosthetic heart valve, refers to the direction around the perimeter of the valve. Also, when used herein, the words “generally” and “substantially” are intended to mean that slight variations from absolute are included within the scope of the structure or process recited.



FIG. 1 shows a collapsible stent-supported prosthetic heart valve 100 known in the art. The prosthetic heart valve 100 is designed to replace the function of a native tricuspid, bicuspid or unicuspid valve of a patient, such as a native aortic valve. It should be noted that while the present disclosure is described predominantly in connection with prosthetic aortic valves and a stent having a shape as illustrated in FIG. 1, the concepts described herein may also be used with prosthetic bicuspid valves, such as prosthetic mitral valves, and with stents having different shapes, such as those having a flared or conical annulus section, a less-bulbous aortic section, and the like, and a differently shaped transition section. Examples of collapsible prosthetic heart valves are described in International Patent Application Publication No. WO/2009/042196; U.S. Pat. Nos. 7,018,406; and 7,329,278, the disclosures of all of which are hereby incorporated herein by reference.


Prosthetic heart valve 100 will be described in more detail with reference to FIG. 1. Prosthetic heart valve 100 includes expandable stent 102, which may be formed from biocompatible materials that are capable of self-expansion, such as, for example, shape memory alloys such as nitinol. Stent 102 extends from proximal or annulus end 130 to distal or aortic end 132, and includes tubular annulus section 140 adjacent the proximal end and aortic section 142 adjacent the distal end. Annulus section 140 has a relatively small cross-section in the expanded condition, while aortic section 142 has a relatively large cross-section in the expanded condition. Preferably, annulus section 140 is in the form of a cylinder having a substantially round cross-section and a substantially constant diameter along its length. Transition section 141 may taper outwardly from annulus section 140 to aortic section 142. Each of the sections of stent 102 includes a plurality of cells 112 connected to one another in one or more annular rows around the stent. For example, as shown in FIG. 1, annulus section 140 may have two annular rows of cells 112 and aortic section 142 and transition section 141 may each have one or more annular rows of cells. Cells 112 in aortic section 142 may be larger than the cells in annulus section 140. The larger cells in aortic section 142 better enable prosthetic valve 100 to be positioned in the native valve annulus without the stent structure interfering with blood flow to the coronary arteries.


Stent 102 may include one or more retaining elements 118 at distal end 132 thereof, the retaining elements being sized and shaped to cooperate with retaining structures provided on the deployment device (not shown). The engagement of retaining elements 118 with retaining structures on the deployment device helps maintain prosthetic heart valve 100 in assembled relationship with the deployment device, minimizes longitudinal movement of the prosthetic heart valve relative to the deployment device during unsheathing or resheathing procedures, and helps prevent rotation of the prosthetic heart valve relative to the deployment device as the deployment device is advanced to the target location and the heart valve deployed. In some variations, retaining elements 118 may be disposed near proximal end 130 of heart valve 100.


Prosthetic heart valve 100 includes one or more prosthetic valve elements, such as valve assembly 104, preferably positioned in the annulus section 140 of stent 102 and secured to the stent. Valve assembly 104 includes cuff 106 and a plurality of leaflets 108, which collectively function as a one-way valve by coapting with one another, generally allowing blood to flow in an antegrade direction while substantially blocking blood from flowing in a retrograde direction. As a prosthetic aortic valve, valve 100 has three leaflets 108. However, it will be appreciated that other prosthetic heart valves with which the active sealing mechanisms of the present disclosure may be used may have a greater or lesser number of leaflets.


Although cuff 106 is shown in FIG. 1 as being disposed on the luminal or inner surface of annulus section 140, it is contemplated that the cuff may be disposed on the abluminal or outer surface of the annulus section or may cover all or part of either or both of the luminal and abluminal surfaces. Both cuff 106 and leaflets 108 may be wholly or partly formed of any suitable biological material or polymer such as, for example, polytetrafluoroethylene (PTFE), ultra high molecular weight polyethylene (UHMWPE), polyethylene terephthalate (PET), silicone, urethane, and combinations of the preceding materials.


Leaflets 108 may be attached along their belly portions to cells 112 of stent 102, with the commissure between adjacent leaflets attached to commissure attachment features (“CAFs”) 116. The particular size and shape of CAFs 116 may vary in different valves, for example valves with larger or smaller diameters may include CAFs that are sized or shaped differently than the illustrated CAFs. As can be seen in FIG. 1, each CAF 116 may lie at the intersection of four cells 112 of stent 102, two of the cells being adjacent one another in the same annular row, and the other two cells being in different annular rows and lying in end-to-end relationship. Preferably, CAFs 116 are positioned entirely within the annulus section 140 of stent 102 or at the juncture of annulus section 140 and transition section 141. CAFs 116 may include one or more eyelets which facilitate the suturing of the leaflet commis sure to the stent.


Prosthetic heart valve 100 may be used to replace, for example, a native aortic valve, a surgical heart valve, a repair device or a heart valve that has undergone a surgical procedure. The prosthetic heart valve may be delivered to the desired site (e.g., near the native aortic annulus) using any suitable delivery device. During delivery, the prosthetic heart valve is disposed inside the delivery device in the collapsed condition. The delivery device may be introduced into a patient using a transfemoral, transapical, transseptal, transaortic, subclavian or any other percutaneous approach. Once the delivery device has reached the target site, the user may deploy prosthetic heart valve 100. Upon deployment, prosthetic heart valve 100 expands so that annulus section 140 is in secure engagement within the native aortic annulus. When the prosthetic heart valve is properly positioned inside the heart, it works as a one-way valve, allowing blood to flow from the left ventricle of the heart to the aorta, and preventing blood from flowing in the opposite direction. However, as described in greater detail below, some amount of blood may unintentionally flow in the opposite direction around the outside of the prosthetic heart valve due to PV leak.



FIG. 2 is a highly schematic cross-sectional illustration of prosthetic heart valve 100 disposed within native valve annulus 250. As seen in the figure, annulus section 140 of stent 102 has a substantially circular cross-section which is disposed within non-circular native valve annulus 250. It should be understood that the depiction of native valve annulus 250 in FIG. 2, represented as diagonal lines, is not intended to represent the anatomical shape of the native valve annulus. At certain locations around the perimeter of heart valve 100, crescent-shaped gaps 200 form between the heart valve and native valve annulus 250. Blood flowing through these gaps and past valve assembly 104 of prosthetic heart valve 100 can cause regurgitation and other inefficiencies which reduce cardiac performance. Such improper fitment may be due to bending of stent 102 upon application of force, or due to suboptimal native valve annulus geometry due, for example, to calcification of native valve annulus 250 or to unresected native leaflets. Embodiments of prosthetic heart valves disclosed herein address PV leak that may occur through gaps 200.



FIG. 3A illustrates a portion of prosthetic heart valve 300 according to an embodiment of the disclosure. In particular, prosthetic heart valve 300 includes an active sealing mechanism for sealing against PV leak in the form of one or more sealing members 320. In this example, sealing members 320 take the form of parachute-like elements that billow open when blood flows in a retrograde direction DR into the parachute-like elements. If retrograde flow occurs on the abluminal side of valve 300, the blood may enter one or more sealing members 320, causing the sealing members to billow open and facilitating the sealing of gap spaces between the patient's anatomy and the valve. It should also be noted, for this and other embodiments described herein, sealing members 320 may help seal a gap space between prosthetic valve 300 and the native anatomy, even if there is little or no PV leak to cause the sealing members to billow open. This may be due to, for example, the additional material of sealing members 320 filling gap spaces by virtue of the material being positioned in those gap spaces.


In the illustrated embodiment, prosthetic heart valve 300 includes an expandable stent 302 with a plurality of CAFs 316 (only one illustrated in FIG. 3A), which may be similar in many or all respects to stent 102 and CAFs 116 of FIG. 1. Stent 302 extends from proximal or annulus end 330 to a distal or aortic end (not shown), and includes annulus section 340 adjacent the proximal end and an aortic section (not shown) adjacent the distal end. Each of the sections of stent 302 includes a plurality of cells 312 connected to one another in one or more annular rows around the stent. For example, as shown in FIG. 3A, annulus section 340 may have two annular rows of cells 312, including a first proximalmost circumferential row of cells 312a and a second circumferential row of cells 312b distal to the first row. Valve 300 may also include cuff 306, which may be substantially similar to cuff 106 of FIG. 1. Preferably, cuff 306 has a relatively straight proximal end. In the illustrated embodiment, cuff 306 is positioned on the luminal side of stent 302 and attached to the stent, for example, by sutures (not illustrated).


Sealing members 320 may take the form of generally triangular patches of material, although other shapes may be suitable. The triangular patches may be attached to cuff 306 during valve assembly, or after valve assembly is otherwise complete. Any suitable attachment method, such as sewing, may be used. Preferably, a distal or open side 321 of each sealing member 320, in this case the distal side of the triangular patch, is left partially or completely unconnected to cuff 306. For example, if sewing the triangular patch to cuff 306, two proximal sides 322, 323 of the triangle, meeting at a proximalmost point, are sewn to the cuff, but the open side 321 of the triangle is not. With this configuration, the open side 321 of sealing member 320 remains capable of opening upon retrograde blood flow, with the open side facing the distal end of valve 300. Further, the closed proximal sides 322, 323 that are connected to cuff 306 restrict blood from exiting through the proximal sides of sealing member 320. Proximal sides 322, 323 may be sewn such that open side 321 is loose or floppy, and not taut, thereby enabling blood to flow into sealing member 320. As described above, if retrograde blood flow does occur on the abluminal side of valve 300, the parachuting or billowing action of sealing members 320 upon blood flowing into the sealing members facilitates active sealing between the prosthetic heart valve and the native tissue surrounding the valve.


When taking the form of triangular patches, sealing members 320 may be individual elements, as illustrated in FIG. 3B, or a continuous series of elements, as illustrated in FIG. 3C. With sealing members 320 that are individual elements, a user may individually attach any desired number of the sealing members to corresponding portions of valve 300 in any desired pattern or location. Generally, the more sealing members 320 that are used, the greater the profile and general bulkiness of valve 300. If certain areas of valve 300 are particularly prone to PV leak, it may be desirable to strategically attach individual sealing members 320 to the valve only in those prone areas. For example, an area of valve 300 proximal to each CAF 316 may be particularly prone to PV leak. During operation, when valve 300 is closed and the pressure distal to the valve is greater than the pressure proximal to the valve, a proximally directed force may cause portions of stent 302, such as CAFs 316, to pull radially inward, exposing areas of the valve to potential PV leak. By using individual sealing members 320 only in those areas, sealing against PV leak may be maximized while minimizing the profile and/or bulkiness of valve 300.


Alternatively, sealing members 320 may take the form of a plurality of triangular patches in series. Although FIG. 3C illustrates three sealing members 320 in series, more or less may be acceptable. For example, if the first row 312a of cells 312 includes nine cells spanning the circumference of annulus section 340, it may be preferable to use nine sealing members 320 connected together as a single element. This configuration may be particularly convenient, enabling the user to handle only a single piece of material. In this configuration, sealing members 320 may be attached to cuff 306 such that, for each cell 312 in a particular row of cells, one sealing member is positioned substantially within each cell. However, this may also be achieved by attaching nine individual sealing members 320 to cuff 306, or by using a combination of individual sealing members and sealing members attached to one another in series. The term “substantially within” refers to the fact that, although each sealing member 320 is preferably positioned mostly within a particular cell 312 such that it may billow open through the cell with relatively little resistance, some minimal amount of the cell structure may overlap a portion of the sealing member.


Each sealing member 320 may be attached to cuff 306, or to both the cuff and stent body 302. Preferably, each sealing member 320 is attached only to cuff 306 and is capable of parachuting or billowing open through a cell 312 of stent body 302 upon blood entering the sealing member. By attaching sealing members 320 to cuff 306 only, rather than to both the cuff and stent body 302, the overall bulkiness and/or profile of valve 300 may be reduced.


For this and other embodiments described herein, it should also be noted that sealing members 320, when valve 300 is implanted in a patient, may be situated sub-annularly, intra-annularly, and/or supra-annularly. The particular position of sealing members 320 with respect to the native annulus may be affected by, for example, the particular position of the sealing members on stent body 302. There may be particular advantages and disadvantages of each position. For example, if the sealing members are positioned supra-annularly, they may be less likely to be distorted by the shape of the native annulus. However, this positioning may be more likely to result in coronary blockage, a larger profile in a relatively bulky area of the valve, and the positioning may be coincident with the most calcified areas of the native anatomy. If the sealing members are positioned intra-annularly, they may provide for sealing above and below the annulus without causing other physiological issues. However, this positioning may lead to interference with anchoring features of a prosthetic valve, which may lead to a higher likelihood of valve migration or a larger profile in a relatively bulky area of the valve. Finally, if the sealing members are positioned sub-annularly, the valve may have a relatively small profile and the sealing members may be coincident with the least calcified portions of the native anatomy. However, this positioning may increase the likelihood of mitral valve or conduction interference, may require a longer delivery device and may result in a decreased tracking ability of the valve.


A number of variables may be manipulated to change the way in which, and how much, each sealing member 320 billows open during retrograde blood flow. For example, the type of material forming sealing member 320 may influence how it billows open. In particular, forming sealing member 320 from a material with high compliance, such as tissue, including bovine or porcine tissue, may cause the sealing member to open to a greater extent upon retrograde blood flow in comparison to a lower compliance material. Similarly, forming sealing member 320 from a thin material may lead the sealing member to open to a greater extent upon retrograde blood flow in comparison to a thicker material. The method of attaching sealing members 320 to valve 300 may also affect how the sealing members open. For example, loosely sewing sealing members 320 to cuff 306, such that the sealing members have a relatively large amount of slack, may lead the sealing members to open to a greater extent upon retrograde blood flow in comparison to a method in which the sealing members have relatively little slack from being sewn tightly to the cuff.


Still further, features such as orientation of fibers in the material used to form sealing members 320 may affect performance. For example, if sealing member 320 is formed from tissue and is attached to valve 300 with the fibers of the tissue oriented predominantly circumferentially, the fibers may have a spring-like effect and resist opening. This may result in relatively little billowing of sealing member 320 upon retrograde blood flow in comparison to a sealing member attached to the valve with tissue fibers oriented predominantly longitudinally. Regarding the fiber orientation, FIG. 3D illustrates tissue portion Tc in which tissue fibers Fc are oriented predominantly in a direction that is substantially circumferential. That is, when sealing member 320 is attached to valve 300, tissue fibers Fc would predominantly align along the circumferential direction of the valve. FIG. 3E illustrates tissue portion TL in which tissue fibers FL are oriented predominantly in a direction that is substantially longitudinal, i.e., a direction that, when sealing member 320 is assembled to valve 300, is substantially parallel to the longitudinal axis of the valve. Sealing members 320 may also be formed so that the predominant fiber orientation of the tissue is between circumferential and longitudinal, and may provide for intermediate extents of billowing of the sealing members. Various methods, such as polarized light microscopy, deflection testing and/or tensioning, may be used to determine the dominant tissue fiber orientation. The above description regarding fiber orientation may also apply to other materials. For example, a sealing member made from fabric may also function differently depending on the orientation of the fibers in the fabric. However, the difference in opening of tissue with longitudinal versus circumferential fiber orientation may be exaggerated in comparison to the difference in opening of fabric with longitudinal versus circumferential fiber orientation.



FIGS. 3F-G illustrate a schematic cross-section of a portion of valve 300 with sealing member 320′ (or 320″) attached to cuff 306 and billowed open through an open portion of stent body 302. In FIG. 3F, sealing member 320′ may, for example, be thin, with longitudinally oriented fibers, and may be loosely sewn to cuff 306 so that the sealing member has a relatively large amount of slack. In FIG. 3G, sealing member 320″ may, for example, be thick, with circumferentially oriented fibers, and may be tightly sewn to cuff 306 so that the sealing member has a relatively small amount of slack. All else being equal, a given amount of retrograde blood flow may cause sealing member 320′ of FIG. 3F to billow open to a greater extent than sealing member 320″ of FIG. 3G. These variables may be manipulated such that sealing member 320 opens a desired amount upon exposure to retrograde blood flow. In fact, it may be desirable to pre-shape the sealing members such that they have an open configuration, but still may be crimped along with the prosthetic valve during delivery such that, upon delivery into a final expanded configuration, the sealing member returns to an original open shape that tends to maximize the ability to capture retrograde blood flow therein.


Sealing member 320 may also take shapes other than generally triangular. For example, FIG. 3H shows a sealing member 325 that has a generally semicircular shape, while FIG. 3I shows a sealing member 326 that has a generally trapezoidal shape. However, it should be understood that shapes other than those specifically disclosed herein may be suitable for use as a sealing member. Considerations that may be relevant to the suitability of such an alternate shape include the extent to which the alternate shape matches the shape of the cell 312 through which it billows open. For example, when attaching a sealing member with an alternate shape to cuff 306 and inside stent body 302, the shape preferably allows the sealing member to open through the open portion of the particular cell 312. A sealing member with a shape similar to that of the cell 312 through which it opens may be able to open relatively easily upon retrograde blood flow, while the matching shape may maximize the volume of blood capable of entering the sealing member. Further, a sealing member with a straight, curved, or otherwise non-pointed proximal side, such as the curved proximal side of sealing member 325 or the straight proximal side of sealing member 326, may provide benefits over sealing members with pointed proximal sides, such as generally triangular sealing member 320. In particular, a pointed proximal side may tend to cause blood trapped therein to stagnate, while a non-pointed proximal side may reduce the tendency for blood to stagnate, thereby reducing the likelihood of the formation of a thrombus, for example. Further, the pointed proximal side of such a sealing member may not provide an adequate volume into which blood may flow compared to a similar shape with a non-pointed proximal side.


The width of the open sides of the sealing members, such as open side 321 of sealing member 320, may also be varied. For example, the sealing members may have wider openings than those illustrated to maximize the likelihood of capturing retrograde blood flow. The wide openings, or any other sealing member openings described herein, may also alternately be punctuated by frequent stitches or other mechanisms to close portions of the open side. The effect of frequently spaced sutures, for example, may create a number of smaller openings that still allow blood flow to enter the particular sealing member. However, if a thrombus forms within the sealing member, the reduced sized openings may make it less likely that the thrombus may exit the sealing member into the blood flow.



FIG. 4A illustrates a portion of prosthetic heart valve 400 according to another embodiment of the disclosure. Prosthetic heart valve 400 may be similar or identical to prosthetic heart valve 300 in all respects other than the active sealing mechanism. For example, prosthetic heart valve 400 includes an expandable stent 402 with a plurality of CAFs 416 (only one illustrated in FIG. 4A). Stent 402 extends from proximal or annulus end 430 to a distal or aortic end (not shown), and includes annulus section 440 adjacent the proximal end and an aortic section (not shown) adjacent the distal end. Each of the sections of stent 402 includes a plurality of cells 412 connected to one another in one or more annular rows around the stent. For example, as shown in FIG. 4A, annulus section 440 may have two annular rows of cells 412, including a first proximalmost row of cells 412a and a second row of cells 412b distal to the first row. Valve 400 may also include cuff 406, which may be substantially similar to cuff 306 of FIG. 3A. In the illustrated embodiment, cuff 406 is positioned on the luminal side of stent 402 and attached to the stent, for example, by sutures (not illustrated).


Prosthetic heart valve 400 includes sealing members 420 that provide an active sealing mechanism for sealing against PV leak. Similar to valve 300, the sealing members 420 take the form of generally triangular patches or parachute-like members that billow open when blood flows into them. However, valve 400 includes proximal sealing members 420a positioned along the first row of cells 412a as well as distal sealing members 420b positioned along the second row of cells 412b. All of the considerations discussed above with respect to sealing members 320 of FIG. 3A apply with equal force to sealing members 420a and 420b of FIG. 4A. Sealing members 420b on the second row of cells 412b may provide for additional sealing against PV leak. For example, points at which open sides 421a of two adjacent sealing members 420a meet may be less likely to catch retrograde blood flow. In the illustrated embodiment, a second row of sealing members 420b is positioned such that center portions of the open sides 421b of sealing members 420b generally align longitudinally with points at which open sides 421a of two adjacent sealing members 420a meet. In other words, the position of the center of open sides 421a of the first row of sealing members 420a is circumferentially staggered or offset from the position of the center of open sides 421b of the second row of sealing members 420b. This configuration may decrease the likelihood that retrograde blood flow will travel proximally between two adjacent sealing members 420a without being caught in any sealing member.


As described with respect to sealing members 320, sealing members 420a, 420b may be individually attached to cuff 406, or multiple sealing members may first be connected to one another in a series for convenience. For example, in one embodiment, sealing members 420a, 420b may be attached to cuff 406 at each cell 412 in the first and second rows of cells 412a, 412b, respectively. Also as described with respect to sealing members 320, sealing members 420a, 420b may be placed strategically on valve 400 to maximize sealing against PV leak while minimizing the number of the sealing members, and therefore minimizing the bulk of the valve. One embodiment that may be particularly effective, illustrated in FIG. 4B, includes only a single sealing member 420b on the cells 412 in the second row of cells 412b that are directly proximal to each CAF 416. For each sealing member 420b on the second row of cells 412b, two sealing members 420a are positioned on the first row of cells 412a below the sealing member 420b, such that the center portion of the open side 421b of the sealing member 420b generally aligns longitudinally with the point at which the open sides 421a of the adjacent sealing members 420a meet.


A number of alternate configurations of sealing members may be utilized. As described above, sealing members, such as sealing members 420a and 420b, may be positioned on the inner diameter of stent body 402, that is, between the stent body and cuff 406. However, they may alternately be placed on the outer diameter of stent body 402. If positioned on the outer diameter, more shapes and configurations may be used since the sealing members no longer need to be capable of billowing open through the open cells of stent body 402. Rather, if on the outer diameter of stent body 402, the positions of open cells of stent body 402 do not limit the shape or configuration of the sealing members at all. For example, FIG. 4C illustrates a schematic view of sealing members 420a, 420b arranged in a staggered pattern, with the remainder of prosthetic valve 400 not illustrated. In this configuration, a first row of sealing members 420a is positioned in a staggered relationship with a second row of sealing members 420b. Open sides 421a of sealing members 420a are positioned proximally relative to open sides 421b of sealing members 420b. However, there is some overlap between sealing members 420a, 420b. In particular, open sides 421a of sealing members 420a are positioned approximately at a midline of sealing members 420b. In other words, the proximal-to-distal distance between open sides 421b and 421a is approximately equal to the proximal-to-distal distance between open sides 421a of sealing members 420a and the proximalmost points of sealing members 420b. These distances may be varied, however, to increase or decrease the level of staggering and overlap between sealing members 420a and 420b. It should further be noted that, in this particular embodiment, it may be preferable for sealing members 420a, 420b to be attached to the outer diameter of stent body 402, rather than between the stent body 402 and cuff 406. This may be preferable if the shape and position of sealing members 420a, 420b does not match with the shape and position of the open cells of stent body 402 such that the sealing members may easily billow open through the open cells. By staggering sealing members 420a, 420b, the profile of valve 400 may be reduced in comparison to a configuration in which sealing members 420a, 420b are aligned in a single non-staggered row. Still further, it should be noted that in the embodiments described herein, one row, two rows, or more rows of sealing members may be suitable for use with a prosthetic heart valve.



FIG. 5 illustrates a portion of prosthetic heart valve 500 according to a further embodiment of the disclosure. Prosthetic heart valve 500 may be similar or identical to prosthetic heart valves 300 and 400 in all respects other than the active sealing mechanism. For example, prosthetic heart valve 500 includes an expandable stent 502 with a plurality of CAFs 516 (only one illustrated in FIG. 5). Stent 502 extends from proximal or annulus end 530 to a distal or aortic end (not shown), and includes annulus section 540 adjacent the proximal end and an aortic section (not shown) adjacent the distal end. Each of the sections of stent 502 includes a plurality of cells 512 connected to one another in one or more annular rows around the stent. For example, as shown in FIG. 5, annulus section 540 may have two annular rows of cells 512, including a first proximalmost row of cells 512a and a second row of cells 512b distal to the first row. Valve 500 may also include a cuff 506, which may be substantially similar to cuffs 306 and 406 of FIGS. 3A and 4A, respectively. In the illustrated embodiment, cuff 506 is positioned on the luminal side of stent 502 and attached to the stent, for example, by sutures (not illustrated).


Prosthetic heart valve 500 includes a sealing member 520 that provides an active sealing mechanism for sealing against PV leak. Sealing member 520 may take the form a rectangular patch that functions as a parachute-like member that billows open when blood flows into it. In the illustrated embodiment, sealing member 520 includes an open distal side 521 and a closed proximal side 522. The proximal side 522 of sealing member 520 may be attached, for example by sewing, to cuff 506. The attachment is preferably such that blood entering sealing member 520 cannot exit through the closed proximal side 522 of the sealing member. In this configuration, sealing member 520 defines a pocket. The pocket may include regions defined by the points at which sealing member 520 near the open side 521 is attached to cuff 506, as described below. Each region of the pocket may be in fluid communication with adjacent regions. The rectangular patch may be wrapped around the entire circumference of stent 502 with ends of the patch attached to one another to secure the patch in a desired position. In this embodiment, sealing member 520 is a separate entity from cuff 506. Further, in this embodiment, sealing member 520 is preferably attached over the outside of both cuff 506 and stent 502 to allow the sealing member to billow open. This is in contrast to other embodiments, such as generally triangular sealing members 320, which preferably are attached between cuff 306 and stent 302 and which are capable of billowing open through cells 312 of the stent.


One or more individual rectangular patches may be individually attached to stent 502 such that the collective patches are wrapped partially, or entirely, around the circumference of the stent. Portions of sealing member 520 near the open side 521 are also preferably attached to cuff 506, for example using sutures S. As illustrated, a small number of stitches, such as two or three, connect distal portions of sealing member 520 to cuff 506 at spaced locations around the circumference of the sealing member. While the sutures S are shown as attaching sealing member 520 to cuff 506 along portions of the struts where adjacent cells 512a meet, the connections may be made at any point on the cuff. The distal attachments preferably are few enough to leave a substantial portion of open side 521 free such that retrograde blood flow may freely flow into sealing member 520, while still providing enough support to maintain the position of the distal end of the sealing member relative to cuff 506. Similar to embodiments described above, if blood flows in the retrograde direction, represented by arrows DR, on the abluminal side of the valve 500, the blood may flow into sealing member 520 between the points at which the sealing member is attached to cuff 506. The blood may enter and fill sealing member 520, causing it to expand similar to an inner tube, facilitating the creation of a seal against PV leak between valve 500 and the native tissue in which the valve is positioned.


Sealing member 520 may alternately be formed as an extension of cuff 506, rather than one or more separate rectangular patches. For example, cuff 506, which is positioned on the luminal side of valve 500, may include a portion which extends beyond the proximal end of stent 502. This extending portion may be folded or wrapped around the proximal end of stent 502 such that the extending portion is on the abluminal side of valve 500. The extending portion would form sealing member 520 and would otherwise act similarly to separate rectangular patches attached to cuff 506. In this embodiment, in which sealing member 520 is an extension of cuff 506, it may not be necessary to suture or otherwise attach the proximal end of the sealing member to the cuff, since the sealing member is an extension of the cuff. However, it still may be preferable to form a seam, for example with a suture, between sealing member 520 and cuff 506 adjacent the proximal ends thereof. This may, for example, provide structural support to sealing member 520.



FIG. 6A illustrates a sealing member 620 according to another embodiment of the disclosure. FIG. 6A is a highly schematic sectional view of a proximal portion of a stent body 602 for use in a prosthetic heart valve. As illustrated, a strut of stent body 602 extends proximally from CAF 616 to a proximal end of the stent, at which point the strut transitions into a finger 650 that curves radially outwardly and distally in a general “J” shape. In other words, the strut forms finger 650 at a proximal end of the strut. Cuff 606 may be attached on the luminal side of stent 602 and extend toward the proximal end of the stent, and then curve back up radially outwardly and distally, following the contour of finger 650. In this embodiment, cuff 606 may extend partially or completely around the circumference of stent 602, attached to a discrete number of fingers 650. This embodiment functions similarly to the embodiment described above in which sealing member 520 forms an extension of cuff 506 that is folded or wrapped over the proximal end of stent 502. However, the use of fingers 650 may be beneficial, as the arms may be set to curve outwardly only after stent 602 is deployed and transitions from a collapsed condition to an expanded condition. For example, FIG. 6B illustrates stent 602 and finger 650, along with cuff 606 and sealing member 620, prior to deployment when it is in a collapsed condition, for example within a delivery device. In this configuration, finger 650 lies substantially flat with respect to stent body 602. This configuration allows for the collapsed profile to remain relatively small, since finger 650 and sealing member 620 do not curve outwardly until stent 602 is released from a delivery device and transitions into the expanded condition illustrated in FIG. 6A. Once in the expanded condition, retrograde blood flowing into the sealing member 620 may cause the sealing member to expand further or fill up like an inner tube, helping to create a seal between the valve and the native tissue in which the valve is implanted.



FIG. 7 illustrates a portion of prosthetic heart valve 700 according to a further embodiment of the disclosure. Prosthetic heart valve 700 may be similar or identical to prosthetic heart valve 500 in most respects. For example, prosthetic heart valve 700 includes an expandable stent 702 with a plurality of CAFs 716 (only one illustrated in FIG. 7). Stent 702 extends from a proximal or annulus end 730 to a distal or aortic end (not shown), and includes annulus section 740 adjacent the proximal end and an aortic section (not shown) adjacent the distal end. It should be understood that, when implanted in a native aortic or pulmonary valve, the proximal end may be referred to as the inflow or inlet end, and the distal end may be referred to as the outflow or outlet end. It should further be understood that, if placed in a native atrioventricular valve such as the mitral valve, a proximal end of the stent may be referred to as an outflow end.


Each of the sections of stent 702 includes a plurality of cells 712 connected to one another in one or more annular rows around the stent. For example, as shown in FIG. 7, annulus section 740 may have two annular rows of cells 712, including a first proximalmost row of cells 712a and a second row of cells 712b distal to the first row. Valve 700 may also include a cuff 706, which may be substantially similar to cuff 506 of FIG. 5. In the illustrated embodiment, cuff 706 is positioned on the luminal side of stent 702 and attached to the stent, for example, by sutures (not illustrated).


Prosthetic heart valve 700 includes sealing members 720a, 720b that provide an active sealing mechanism for sealing against PV leak. Sealing members 720a and 720b may each take a similar or identical form as sealing member 520 of prosthetic heart valve 500. For example, sealing member 720a may be a rectangular patch that functions as a parachute-like member that billows open when blood flows into it. In the illustrated embodiment, sealing member 720a includes an open distal side 721a and a closed proximal side 722a. The proximal side 722a of sealing member 720a may be attached, for example by sewing, to cuff 706. The attachment is preferably such that blood entering sealing member 720a cannot exit through the closed proximal side 722a of the sealing member. In this configuration, sealing member 720a defines a pocket. The pocket may include regions defined by the points at which sealing member 720a near the open side 721a is attached to cuff 706, as described below. Each region of the pocket may be in fluid communication with adjacent regions. The rectangular patch may be wrapped around the entire circumference of stent 702 with ends of the patch attached to one another to secure the patch in a desired position. In this embodiment, sealing member 720a is a separate entity from cuff 706. Further, in this embodiment, sealing member 720a is preferably attached over the outside of both cuff 706 and stent 702 to allow the sealing member to billow open.


Sealing member 720a may take the form of a single rectangular patch, or multiple patches connected to one another to form a rectangular patch that is long enough to extend around the entire circumference of annulus portion 740. Portions of sealing member 720a near the open side 721a are also preferably attached to cuff 706, for example using sutures 51. As illustrated, a small number of stitches, such as two or three, connect distal portions of sealing member 720a to cuff 706 at spaced locations around the circumference of the sealing member. In particular, the sutures 51 may be placed near where one cell 712a meets a circumferentially adjacent cell 712a, so that the pocket formed in sealing member 720a has a plurality of openings, each of which having a width substantially equal to a maximum circumferential width of a cell 712a when stent 702 is in the expanded condition. While the sutures 51 are shown as attaching sealing member 720a to cuff 706 along portions of the struts where adjacent cells 712a meet, the connections may alternatively be made at any point on the cuff. The distal attachments preferably are few enough to leave a substantial portion of open side 721a free such that retrograde blood flow may freely flow into sealing member 720a, while still providing enough support to maintain the position of the distal end of the sealing member relative to cuff 706.


Valve 700 may include a second sealing member 720b, which may take the form of a rectangular patch similar or identical to sealing member 720a (or similar to any described alternative way to form sealing member 720a). Sealing member 720b may be positioned mostly or entirely distal to sealing member 720a, so that a closed proximal side 722b of sealing member 720b is positioned adjacent to or spaced apart from the open distal side 721a of sealing member 720a. Closed proximal side 722b may be attached to cuff 706 with sutures or any other suitable fastening mechanism so that blood entering sealing member 720b from the open side 721b is unable to exit sealing member 720b through the closed side 722b. Similar to sealing member 720a, the open side 721b of sealing member 720b may be coupled to cuff 706 and/or struts of stent 702 at circumferentially spaced apart locations to form a plurality of openings leading into the pocket of sealing member 720b. In the illustrated embodiment, sutures S2 attach portions of the distal side of sealing member 720b at locations of cuff 706 and/or stent 702 at which a cell 712b in the second circumferential row meets a circumferentially adjacent cell 712b in that same row. With this configuration, the openings in open side 721b of sealing member 720b generally correspond to the maximum width of a cell 712b in the expanded condition of stent 702. This allows for circumferential positional staggering of the openings in the open side 721b of sealing member 720b compared to the openings in the open side 721a of sealing member 720a.


Similar to embodiments described above, if blood flows in the retrograde direction, represented by arrows DR, on the abluminal side of valve 700, the blood may flow into sealing member 720a between the points at which the sealing member is attached to cuff 706. The blood may enter and fill sealing member 720, causing it to expand similar to an inner tube, facilitating the creation of a seal against PV leak between valve 700 and the native tissue in which the valve is positioned. To the extent that retrograde blood flow is less likely to enter sealing member 720a at the positions at which open side 721a is sutured to the cuff 706 and/or stent 702, such retrograde blood flow may be likely to enter sealing member 720b since the corresponding locations of open side 721b of sealing member 720b will be free to open and receive retrograde blood flow. In other words, the use of two sealing members 720a-b with the attachment locations described above may provide for similar additional capability of mitigating PV leak as described in connection with the circumferentially staggered patches 421a-b of FIG. 4A.


Similar to sealing member 520, first sealing member 720a may alternately be formed as an extension of cuff 706, with cuff 706 including a portion which extends beyond the inflow edge of stent 702. This extending portion may be folded or wrapped around the inflow edge of stent 702 such that the extending portion is on the abluminal side of valve 700. The extending portion would form first sealing member 720 and would otherwise act similarly to a rectangular patch attached to cuff 706. In this embodiment, in which first sealing member 720a is an extension of cuff 706, it may not be necessary to suture or otherwise attach the proximal end of the first sealing member 720a to the cuff 706, since the sealing member is an extension of the cuff. However, it still may be preferable to form a seam, for example with a suture, between first sealing member 720a and cuff 706 adjacent the proximal ends thereof. This may, for example, provide structural support to first sealing member 720a.


Still further, first sealing member 720a and/or second sealing member 720b may be configured to wrap around only a part of the circumference of stent 702. This may allow, for example, strategic placement of sealing members 720a and/or 720b to maximize the likelihood of the sealing members 720a and/or 720b receiving retrograde blood flow while minimizing the amount of material and bulk added to valve 700. In one example of this, similar to the embodiment described in connection with FIG. 4B, second sealing member 720b may extend partially around the circumference of stent 702 proximal to the CAFs 716, with first sealing member 720a extending partially around the circumference of stent 702 proximal to CAFs 716 and proximal to second sealing member 720b. In this embodiment, first sealing member 720a and second sealing member 720b may each comprise a plurality of individual patches, such as rectangular patches, positioned to catch retrograde blood flow on the abluminal side of stent 702 near the CAFs, which area may be particularly susceptible to PV leak, as described above in connection with FIG. 4B. It should be understood if some other portion of valve 700 is determined to be particularly susceptible to PV leak, the sealing members 720a and/or 720b may be positioned at those locations to increase the likelihood of mitigating such PV leak.


According to one aspect of the disclosure, a prosthetic heart valve comprises:

    • a collapsible and expandable stent body including a generally tubular annulus section;
    • one or more prosthetic valve elements mounted to the stent body and operative to allow flow in an antegrade direction but to substantially block flow in a retrograde direction through the annulus section;
    • a cuff attached to the stent body;
    • a first sealing member attached to the cuff, the first sealing member extending circumferentially around an abluminal surface of the stent body and having an open side facing in a first axial direction and a closed side facing in a second axial direction opposite to the first axial direction so that a flow of blood in the second axial direction will tend to force blood into the first sealing member and cause the first sealing member to billow outwardly relative to the stent body; and
    • a second sealing member attached to the cuff, the second sealing member extending circumferentially around the abluminal surface of the stent body and having an open side facing in the first axial direction and a closed side facing in the second axial direction so that the flow of blood in the second axial direction will tend to force blood into the second sealing member and cause the second sealing member to billow outwardly relative to the stent body; and/or
    • the first sealing member defines a first pocket having a plurality of first regions, each of the first regions being in fluid communication with adjacent ones of the first regions; and/or
    • the second sealing member defines a second pocket having a plurality of second regions, each of the second regions being in fluid communication with adjacent ones of the second regions; and/or
    • the first sealing member is wrapped around an entire circumference of the stent body; and/or
    • the second sealing member is wrapped around the entire circumference of the stent body; and/or
    • the open side of the first sealing member is attached to the cuff at spaced locations around a circumference of the stent body; and/or
    • the open side of the second sealing member is attached to the cuff at spaced locations around the circumference of the stent body; and/or
    • the open side of the first sealing member includes a first plurality of openings and the open side of the second sealing members includes a second plurality of openings, the first plurality of openings being offset in a circumferential direction from the second plurality of openings; and/or
    • the first sealing member is positioned nearer an inflow end of the stent body than the second sealing member; and/or
    • the open side of the first sealing member is axially spaced apart from the closed side of the second sealing member; and/or
    • the first sealing member comprises an extension of the cuff, the extension being wrapped around an inflow end of the stent body such that the extension is positioned on an abluminal surface of the stent body; and/or
    • a proximal portion of the extension on the abluminal surface of the stent body is connected to a proximal portion of the cuff on the luminal surface of the stent body with a seam; and/or
    • the second sealing member is formed from a separate piece of material from the cuff; and/or
    • the first sealing member is formed from a separate piece of material from the cuff; and/or
    • the first sealing member is formed of a single piece of material; and/or
    • the second sealing member is formed of a single piece of material; and/or
    • the first sealing member is formed from a plurality of pieces of material; and/or
    • the second sealing member is formed from a plurality of pieces of material; and/or
    • the first sealing member is substantially rectangular; and/or
    • the second sealing member is substantially rectangular.


Although the prosthetic valves herein have been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.


It will be appreciated that the various dependent claims and the features set forth therein can be combined in different ways than presented in the initial claims. It will also be appreciated that the features described in connection with individual embodiments may be shared with others of the described embodiments.

Claims
  • 1. A prosthetic heart valve, comprising: a stent including a generally tubular annulus section defining a first circumferential row of cells and a plurality of commissure attachment features, the stent extending in a longitudinal direction from an inflow end to an outflow end;one or more prosthetic valve elements mounted to commissure attachment features of the stent and operative to allow flow in an antegrade direction but to substantially block flow in a retrograde direction through the annulus section;a cuff attached to the stent and positioned on a luminal surface of the stent; anda plurality of sealing members individually attached to the cuff, the sealing members having an open side facing in a first axial direction and a closed side facing in a second axial direction opposite to the first axial direction so that a flow of blood in the second axial direction around an ablumenal surface of the stent will tend to force blood into the sealing members and cause the sealing members to billow outwardly relative to the stent,wherein selected cells in the first circumferential row of cells include cell portions that are aligned with corresponding commissure attachment features in the longitudinal direction of the stent, the sealing members being positioned substantially within the selected cells in the first circumferential row, all non-selected cells in the first circumferential row do not include sealing members.
  • 2. The prosthetic heart valve of claim 1, wherein each of the sealing members has a shape chosen from the group consisting of generally triangular, generally trapezoidal, and generally semicircular.
  • 3. The prosthetic heart valve of claim 1, wherein at least one of the sealing members is not directly attached to the stent.
  • 4. The prosthetic heart valve of claim 1, wherein at least one of the sealing members is attached to both the cuff and the stent.
  • 5. The prosthetic heart valve of claim 1, wherein the first circumferential row of cells is positioned at the inflow end of the stent.
  • 6. The prosthetic heart valve of claim 5, wherein the stent includes a second circumferential row of cells positioned between the inflow end of the stent and the commissure attachment features.
  • 7. The prosthetic heart valve of claim 6, wherein selected cells in the second circumferential row of cells include cell portions that are directly attached to corresponding commissure attachment features, a plurality of the sealing members being positioned substantially within the selected cells in the second circumferential row, all non-selected cells in the second circumferential row do not include sealing members.
  • 8. The prosthetic heart valve of claim 1, wherein the sealing members are formed of tissue.
  • 9. The prosthetic heart valve of claim 8, wherein the tissue includes fibers having a predominant fiber orientation extending in the longitudinal direction of the stent.
  • 10. The prosthetic heart valve of claim 8, wherein the tissue includes fibers having a predominant fiber orientation extending in a circumferential direction of the stent.
  • 11. The prosthetic heart valve of claim 8, wherein the tissue includes fibers having a predominant fiber orientation extending in a direction between the longitudinal direction of the stent and a circumferential direction of the stent.
  • 12. The prosthetic heart valve of claim 1, wherein the open sides of the sealing members are punctuated by closed portions to create a plurality of reduced-size openings.
  • 13. The prosthetic heart valve of claim 12, wherein the closed portions of the open sides of the sealing members are formed by stitches.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a divisional of U.S. patent application Ser. No. 15/882,269, filed Jan. 29, 2018, and issued as U.S. Pat. No. 10,849,740 on Dec. 1, 2020, which is a continuation of U.S. patent application Ser. No. 15/148,322, filed May 6, 2016 and issued as U.S. Pat. No. 9,913,715 on Mar. 13, 2018, which is a continuation-in-part of U.S. patent application Ser. No. 14/501,200 filed Sep. 30, 2014 and issued as U.S. Pat. No. 9,668,857 on Jun. 6, 2017, which claims the benefit of the filing date of U.S. Provisional Patent Application No. 61/900,475 filed Nov. 6, 2013, the disclosures of which are all hereby incorporated by reference herein.

US Referenced Citations (492)
Number Name Date Kind
3409013 Berry Nov 1968 A
3467102 Fogarty et al. Sep 1969 A
3548417 Kischer Dec 1970 A
3587115 Shiley Jun 1971 A
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3714671 Edwards et al. Feb 1973 A
3755823 Hancock Sep 1973 A
3983581 Angell et al. Oct 1976 A
4035849 Angell et al. Jul 1977 A
4056854 Boretos et al. Nov 1977 A
4106129 Carpentier et al. Aug 1978 A
4222126 Boretos et al. Sep 1980 A
4265694 Boretos et al. May 1981 A
4275469 Gabbay Jun 1981 A
4297749 Davis et al. Nov 1981 A
4339831 Johnson Jul 1982 A
4343048 Ross et al. Aug 1982 A
4345340 Rosen Aug 1982 A
4373216 Klawitter Feb 1983 A
4406022 Roy Sep 1983 A
4470157 Love Sep 1984 A
4491986 Gabbay Jan 1985 A
4535483 Klawitter et al. Aug 1985 A
4574803 Storz Mar 1986 A
4592340 Boyles Jun 1986 A
4605407 Black et al. Aug 1986 A
4612011 Kautzky Sep 1986 A
4643732 Pietsch et al. Feb 1987 A
4655771 Wallsten Apr 1987 A
4692164 Dzemeshkevich et al. Sep 1987 A
4733665 Palmaz Mar 1988 A
4759758 Gabbay Jul 1988 A
4762128 Rosenbluth Aug 1988 A
4777951 Cribier et al. Oct 1988 A
4787899 Lazarus Nov 1988 A
4796629 Grayzel Jan 1989 A
4797901 Goerne et al. Jan 1989 A
4829990 Thuroff et al. May 1989 A
4851001 Taheri Jul 1989 A
4856516 Hillstead Aug 1989 A
4878495 Grayzel Nov 1989 A
4878906 Lindemann et al. Nov 1989 A
4883458 Shiber Nov 1989 A
4922905 Strecker May 1990 A
4966604 Reiss Oct 1990 A
4979939 Shiber Dec 1990 A
4986830 Owens et al. Jan 1991 A
4994077 Dobben Feb 1991 A
5007896 Shiber Apr 1991 A
5026366 Leckrone Jun 1991 A
5032128 Alonso Jul 1991 A
5037434 Lane Aug 1991 A
5047041 Samuels Sep 1991 A
5059177 Towne et al. Oct 1991 A
5080668 Bolz et al. Jan 1992 A
5085635 Cragg Feb 1992 A
5089015 Ross Feb 1992 A
5152771 Sabbaghian et al. Oct 1992 A
5163953 Vince Nov 1992 A
5167628 Boyles Dec 1992 A
5192297 Hull Mar 1993 A
5258023 Reger Nov 1993 A
5266073 Wall Nov 1993 A
5282847 Trescony et al. Feb 1994 A
5295958 Shturman Mar 1994 A
5332402 Teitelbaum Jul 1994 A
5360444 Kusuhara Nov 1994 A
5370685 Stevens Dec 1994 A
5397351 Pavcnik et al. Mar 1995 A
5411055 Kane May 1995 A
5411552 Andersen et al. May 1995 A
5415664 Pinchuk May 1995 A
5443446 Shturman Aug 1995 A
5480423 Ravenscroft et al. Jan 1996 A
5480424 Cox Jan 1996 A
5500014 Quijano et al. Mar 1996 A
5545209 Roberts et al. Aug 1996 A
5545214 Stevens Aug 1996 A
5549665 Vesely et al. Aug 1996 A
5554185 Block et al. Sep 1996 A
5571175 Vanney et al. Nov 1996 A
5591185 Kilmer et al. Jan 1997 A
5607464 Trescony et al. Mar 1997 A
5609626 Quijano et al. Mar 1997 A
5628786 Banas et al. May 1997 A
5639274 Fischell et al. Jun 1997 A
5665115 Cragg Sep 1997 A
5693088 Lazarus Dec 1997 A
5716417 Girard et al. Feb 1998 A
5728068 Leone et al. Mar 1998 A
5749890 Shaknovich May 1998 A
5756476 Epstein et al. May 1998 A
5769812 Stevens et al. Jun 1998 A
5769882 Fogarty et al. Jun 1998 A
5776188 Shepherd et al. Jul 1998 A
5800508 Goicoechea et al. Sep 1998 A
5840081 Andersen et al. Nov 1998 A
5843161 Solovay Dec 1998 A
5843167 Dwyer et al. Dec 1998 A
5855597 Jayaraman Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5855602 Angell Jan 1999 A
5925063 Khosravi Jul 1999 A
5928281 Huynh et al. Jul 1999 A
5935163 Gabbay Aug 1999 A
5957949 Leonhardt et al. Sep 1999 A
5961549 Nguyen et al. Oct 1999 A
6015431 Thornton et al. Jan 2000 A
6027525 Suh et al. Feb 2000 A
6045576 Starr et al. Apr 2000 A
6077297 Robinson et al. Jun 2000 A
6083257 Taylor et al. Jul 2000 A
6090140 Gabbay Jul 2000 A
6110198 Fogarty et al. Aug 2000 A
6132473 Williams et al. Oct 2000 A
6168614 Andersen et al. Jan 2001 B1
6171335 Wheatley et al. Jan 2001 B1
6174327 Mertens et al. Jan 2001 B1
6210408 Chandrasekaran et al. Apr 2001 B1
6214036 Letendre et al. Apr 2001 B1
6217585 Houser et al. Apr 2001 B1
6221091 Khosravi Apr 2001 B1
6231602 Carpentier et al. May 2001 B1
6245102 Jayaraman Jun 2001 B1
6264691 Gabbay Jul 2001 B1
6267783 Letendre et al. Jul 2001 B1
6299637 Shaolian et al. Oct 2001 B1
6302906 Goicoechea et al. Oct 2001 B1
6306164 Kujawski Oct 2001 B1
6312465 Griffin et al. Nov 2001 B1
6350277 Kocur Feb 2002 B1
6352554 De Paulis Mar 2002 B2
6368348 Gabbay Apr 2002 B1
6419695 Gabbay Jul 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6461382 Cao Oct 2002 B1
6468660 Ogle et al. Oct 2002 B2
6482228 Norred Nov 2002 B1
6488702 Besselink Dec 2002 B1
6488704 Connelly et al. Dec 2002 B1
6517576 Gabbay Feb 2003 B2
6533810 Hankh et al. Mar 2003 B2
6569196 Vesely May 2003 B1
6582464 Gabbay Jun 2003 B2
6605112 Moll et al. Aug 2003 B1
6610088 Gabbay Aug 2003 B1
6623518 Thompson et al. Sep 2003 B2
6652578 Bailey et al. Nov 2003 B2
6685625 Gabbay Feb 2004 B2
6716244 Klaco Apr 2004 B2
6719789 Cox Apr 2004 B2
6729356 Baker et al. May 2004 B1
6730118 Spenser et al. May 2004 B2
6733525 Yang et al. May 2004 B2
6767362 Schreck Jul 2004 B2
6780510 Ogle et al. Aug 2004 B2
6783556 Gabbay Aug 2004 B1
6790230 Beyersdorf et al. Sep 2004 B2
6814746 Thompson et al. Nov 2004 B2
6814754 Greenhalgh Nov 2004 B2
6830584 Seguin Dec 2004 B1
6837902 Nguyen et al. Jan 2005 B2
6860901 Baker et al. Mar 2005 B1
6869444 Gabbay Mar 2005 B2
6893460 Spenser et al. May 2005 B2
6908481 Cribier Jun 2005 B2
6911040 Johnson et al. Jun 2005 B2
6951573 Dilling Oct 2005 B1
7018406 Seguin et al. Mar 2006 B2
7025780 Gabbay Apr 2006 B2
7101396 Artof et al. Sep 2006 B2
7137184 Schreck Nov 2006 B2
7147663 Berg et al. Dec 2006 B1
7160322 Gabbay Jan 2007 B2
7195641 Palmaz et al. Mar 2007 B2
7247167 Gabbay Jul 2007 B2
7261732 Justino Aug 2007 B2
7264632 Wright et al. Sep 2007 B2
7267686 DiMatteo et al. Sep 2007 B2
7276078 Spenser et al. Oct 2007 B2
7276084 Yang et al. Oct 2007 B2
7311730 Gabbay Dec 2007 B2
7320704 Lashinski et al. Jan 2008 B2
7329278 Seguin et al. Feb 2008 B2
7374571 Pease et al. May 2008 B2
7374573 Gabbay May 2008 B2
7381218 Schreck Jun 2008 B2
7381219 Salahieh et al. Jun 2008 B2
7393360 Spenser et al. Jul 2008 B2
7399315 Iobbi Jul 2008 B2
7452371 Pavcnik Nov 2008 B2
7462191 Spenser et al. Dec 2008 B2
7481838 Carpentier et al. Jan 2009 B2
7510572 Gabbay Mar 2009 B2
7510575 Spenser et al. Mar 2009 B2
7524331 Birdsall Apr 2009 B2
7534261 Friedman May 2009 B2
RE40816 Taylor et al. Jun 2009 E
7585321 Cribier Sep 2009 B2
7597711 Drews et al. Oct 2009 B2
7628805 Spenser et al. Dec 2009 B2
7682390 Seguin Mar 2010 B2
7708775 Rowe et al. May 2010 B2
7731742 Schlick et al. Jun 2010 B2
7748389 Salahieh et al. Jul 2010 B2
7780725 Haug et al. Aug 2010 B2
7799069 Bailey et al. Sep 2010 B2
7803185 Gabbay Sep 2010 B2
7824442 Salahieh et al. Nov 2010 B2
7837727 Goetz et al. Nov 2010 B2
7846203 Cribier Dec 2010 B2
7846204 Letac et al. Dec 2010 B2
7871435 Carpentier et al. Jan 2011 B2
7892281 Seguin et al. Feb 2011 B2
7914569 Nguyen et al. Mar 2011 B2
7951197 Lane et al. May 2011 B2
7959666 Salahieh et al. Jun 2011 B2
7959672 Salahieh et al. Jun 2011 B2
7959674 Shu et al. Jun 2011 B2
7967857 Lane Jun 2011 B2
7972378 Tabor et al. Jul 2011 B2
7988724 Salahieh et al. Aug 2011 B2
7993394 Hariton et al. Aug 2011 B2
8016877 Seguin et al. Sep 2011 B2
D648854 Braido Nov 2011 S
8048153 Salahieh et al. Nov 2011 B2
8052741 Bruszewski et al. Nov 2011 B2
8052749 Salahieh et al. Nov 2011 B2
8052750 Tuval et al. Nov 2011 B2
8062355 Figulla et al. Nov 2011 B2
8075611 Millwee et al. Dec 2011 B2
8083793 Lane et al. Dec 2011 B2
D652926 Braido Jan 2012 S
D652927 Braido et al. Jan 2012 S
D653341 Braido et al. Jan 2012 S
D653342 Braido et al. Jan 2012 S
D653343 Ness et al. Jan 2012 S
D654169 Braido Feb 2012 S
D654170 Braido et al. Feb 2012 S
8137398 Tuval et al. Mar 2012 B2
8142497 Friedman Mar 2012 B2
D660432 Braido May 2012 S
D660433 Braido et al. May 2012 S
D660967 Braido et al. May 2012 S
8182528 Salahieh et al. May 2012 B2
8221493 Boyle et al. Jul 2012 B2
8226710 Nguyen et al. Jul 2012 B2
8230717 Matonick Jul 2012 B2
8231670 Salahieh Jul 2012 B2
8252051 Chau et al. Aug 2012 B2
8308798 Pintor et al. Nov 2012 B2
8313525 Tuval et al. Nov 2012 B2
8323335 Rowe et al. Dec 2012 B2
8323336 Hill et al. Dec 2012 B2
8343213 Salahieh et al. Jan 2013 B2
8348995 Tuval et al. Jan 2013 B2
8348996 Tuval et al. Jan 2013 B2
8348998 Pintor et al. Jan 2013 B2
8349000 Schreck Jan 2013 B2
8366769 Huynh et al. Feb 2013 B2
8403983 Quadri et al. Mar 2013 B2
8408214 Spenser Apr 2013 B2
8414643 Tuval et al. Apr 2013 B2
8425593 Braido et al. Apr 2013 B2
8449599 Chau et al. May 2013 B2
8449604 Moaddeb et al. May 2013 B2
D684692 Braido Jun 2013 S
8454685 Hariton et al. Jun 2013 B2
8454686 Alkhatib Jun 2013 B2
8500798 Rowe et al. Aug 2013 B2
8512396 Styrc Aug 2013 B2
8568474 Yeung et al. Oct 2013 B2
8579962 Salahieh et al. Nov 2013 B2
8579966 Seguin et al. Nov 2013 B2
8585755 Chau et al. Nov 2013 B2
8591575 Cribier Nov 2013 B2
8597349 Alkhatib Dec 2013 B2
8603159 Seguin et al. Dec 2013 B2
8603160 Salahieh et al. Dec 2013 B2
8613765 Bonhoeffer et al. Dec 2013 B2
8623074 Ryan Jan 2014 B2
8652204 Quill et al. Feb 2014 B2
8663322 Keranen Mar 2014 B2
8668733 Haug et al. Mar 2014 B2
8673000 Tabor et al. Mar 2014 B2
8685080 White Apr 2014 B2
8728154 Alkhatib May 2014 B2
8747459 Nguyen et al. Jun 2014 B2
8747460 Tuval et al. Jun 2014 B2
8764820 Dehdashtian et al. Jul 2014 B2
8771345 Tuval et al. Jul 2014 B2
8795357 Yohanan Aug 2014 B2
8801776 House et al. Aug 2014 B2
8808356 Braido et al. Aug 2014 B2
8828078 Salahieh et al. Sep 2014 B2
8834563 Righini Sep 2014 B2
8840663 Salahieh et al. Sep 2014 B2
8845721 Braido et al. Sep 2014 B2
8876894 Tuval et al. Nov 2014 B2
8876895 Tuval et al. Nov 2014 B2
8940040 Shahriari Jan 2015 B2
8945209 Bonyuet et al. Feb 2015 B2
8961595 Alkhatib Feb 2015 B2
8974523 Thill et al. Mar 2015 B2
8974524 Yeung et al. Mar 2015 B2
8992608 Haug et al. Mar 2015 B2
9393110 Levi et al. Jul 2016 B2
20010021872 Bailey et al. Sep 2001 A1
20010027338 Greenberg Oct 2001 A1
20010041928 Pavcnik et al. Nov 2001 A1
20020032481 Gabbay Mar 2002 A1
20020036220 Gabbay Mar 2002 A1
20020173842 Buchanan Nov 2002 A1
20030023303 Palmaz et al. Jan 2003 A1
20030040792 Gabbay Feb 2003 A1
20030050694 Yang et al. Mar 2003 A1
20030100939 Yodfat et al. May 2003 A1
20030114913 Spenser et al. Jun 2003 A1
20030130726 Thorpe et al. Jul 2003 A1
20030212454 Scott et al. Nov 2003 A1
20030236567 Elliot Dec 2003 A1
20030236568 Hojeibane et al. Dec 2003 A1
20040033364 Spiridigliozzi et al. Feb 2004 A1
20040039436 Spenser et al. Feb 2004 A1
20040049262 Obermiller et al. Mar 2004 A1
20040082989 Cook et al. Apr 2004 A1
20040093075 Kuehne May 2004 A1
20040111111 Lin Jun 2004 A1
20040186565 Schreck Sep 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040260389 Case et al. Dec 2004 A1
20050043790 Seguin Feb 2005 A1
20050075718 Nguyen et al. Apr 2005 A1
20050075725 Rowe Apr 2005 A1
20050096726 Sequin et al. May 2005 A1
20050137682 Justino Jun 2005 A1
20050137695 Salahieh Jun 2005 A1
20050137697 Salahieh et al. Jun 2005 A1
20050203605 Dolan Sep 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20050240200 Bergheim Oct 2005 A1
20050256566 Gabbay Nov 2005 A1
20050283231 Haug et al. Dec 2005 A1
20060004442 Spenser et al. Jan 2006 A1
20060008497 Gabbay Jan 2006 A1
20060025855 Lashinski et al. Feb 2006 A1
20060025857 Bergheim et al. Feb 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060074484 Huber Apr 2006 A1
20060122692 Gilad et al. Jun 2006 A1
20060149350 Patel et al. Jul 2006 A1
20060149360 Schwammenthal et al. Jul 2006 A1
20060161249 Realyvasquez et al. Jul 2006 A1
20060173532 Flagle et al. Aug 2006 A1
20060178740 Stacchino et al. Aug 2006 A1
20060195180 Kheradvar et al. Aug 2006 A1
20060195186 Drews et al. Aug 2006 A1
20060206202 Bonhoeffer et al. Sep 2006 A1
20060229719 Marquez et al. Oct 2006 A1
20060241744 Beith Oct 2006 A1
20060241745 Solem Oct 2006 A1
20060259120 Vongphakdy et al. Nov 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060259137 Artof et al. Nov 2006 A1
20060265056 Nguyen et al. Nov 2006 A1
20060276813 Greenberg Dec 2006 A1
20060276874 Wilson et al. Dec 2006 A1
20070010876 Salahieh et al. Jan 2007 A1
20070016285 Lane et al. Jan 2007 A1
20070027534 Bergheim et al. Feb 2007 A1
20070043435 Seguin et al. Feb 2007 A1
20070055358 Krolik et al. Mar 2007 A1
20070067029 Gabbay Mar 2007 A1
20070073387 Forster et al. Mar 2007 A1
20070093890 Eliasen et al. Apr 2007 A1
20070100435 Case et al. May 2007 A1
20070118210 Pinchuk May 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070233228 Eberhardt et al. Oct 2007 A1
20070239265 Birdsall Oct 2007 A1
20070244545 Birdsall et al. Oct 2007 A1
20070244552 Salahieh et al. Oct 2007 A1
20070270944 Bergheim et al. Nov 2007 A1
20070288087 Fearnot et al. Dec 2007 A1
20080021546 Patz et al. Jan 2008 A1
20080021552 Gabbay Jan 2008 A1
20080039934 Styrc Feb 2008 A1
20080071361 Tuval et al. Mar 2008 A1
20080071369 Tuval et al. Mar 2008 A1
20080077236 Letac et al. Mar 2008 A1
20080082164 Friedman Apr 2008 A1
20080097595 Gabbay Apr 2008 A1
20080114452 Gabbay May 2008 A1
20080125853 Bailey et al. May 2008 A1
20080140189 Nguyen et al. Jun 2008 A1
20080147183 Styrc Jun 2008 A1
20080154355 Benichou et al. Jun 2008 A1
20080154356 Obermiller et al. Jun 2008 A1
20080208327 Rowe Aug 2008 A1
20080243245 Thambar et al. Oct 2008 A1
20080243246 Ryan et al. Oct 2008 A1
20080255662 Stacchino et al. Oct 2008 A1
20080262602 Wilk et al. Oct 2008 A1
20080269879 Sathe et al. Oct 2008 A1
20090099653 Suri et al. Apr 2009 A1
20090112309 Jaramillo et al. Apr 2009 A1
20090138079 Tuval et al. May 2009 A1
20090192599 Lane et al. Jul 2009 A1
20090264997 Salahieh et al. Oct 2009 A1
20090276027 Glynn Nov 2009 A1
20090287296 Manasse Nov 2009 A1
20090287299 Tabor et al. Nov 2009 A1
20100004740 Seguin et al. Jan 2010 A1
20100036484 Hariton et al. Feb 2010 A1
20100049306 House et al. Feb 2010 A1
20100082094 Quadri et al. Apr 2010 A1
20100087907 Lattouf Apr 2010 A1
20100100176 Elizondo et al. Apr 2010 A1
20100131055 Case et al. May 2010 A1
20100168778 Braido Jul 2010 A1
20100168839 Braido et al. Jul 2010 A1
20100168844 Toomes et al. Jul 2010 A1
20100185277 Braido et al. Jul 2010 A1
20100191326 Alkhatib Jul 2010 A1
20100204781 Alkhatib Aug 2010 A1
20100204785 Alkhatib Aug 2010 A1
20100217382 Chau et al. Aug 2010 A1
20100234940 Dolan Sep 2010 A1
20100249911 Alkhatib Sep 2010 A1
20100249923 Alkhatib et al. Sep 2010 A1
20100262231 Tuval et al. Oct 2010 A1
20100286768 Alkhatib Nov 2010 A1
20100298931 Quadri et al. Nov 2010 A1
20110022157 Essinger et al. Jan 2011 A1
20110029072 Gabbay Feb 2011 A1
20110054466 Rothstein et al. Mar 2011 A1
20110098800 Braido et al. Apr 2011 A1
20110098802 Braido Apr 2011 A1
20110137397 Chau et al. Jun 2011 A1
20110172765 Nguyen et al. Jul 2011 A1
20110208283 Rust Aug 2011 A1
20110264206 Tabor Oct 2011 A1
20110282439 Thill et al. Nov 2011 A1
20110301692 Seguin Dec 2011 A1
20110319988 Schankereli et al. Dec 2011 A1
20120035719 Forster et al. Feb 2012 A1
20120035722 Tuval Feb 2012 A1
20120046742 Tuval et al. Feb 2012 A1
20120078347 Braido et al. Mar 2012 A1
20120078357 Conklin Mar 2012 A1
20120083878 Sequin et al. Apr 2012 A1
20120101572 Kovalsky et al. Apr 2012 A1
20120123529 Levi et al. May 2012 A1
20120179244 Schankereli et al. Jul 2012 A1
20120215303 Quadri et al. Aug 2012 A1
20120232646 Agathos Sep 2012 A1
20120277856 Spenser et al. Nov 2012 A1
20120296418 Bonyuet et al. Nov 2012 A1
20120303116 Gorman, III et al. Nov 2012 A1
20120316642 Yu et al. Dec 2012 A1
20130018458 Yohanan et al. Jan 2013 A1
20130023984 Conklin Jan 2013 A1
20130150956 Yohanan et al. Jun 2013 A1
20130190857 Mitra et al. Jul 2013 A1
20130204359 Thubrikar et al. Aug 2013 A1
20130211508 Lane et al. Aug 2013 A1
20130218267 Braido et al. Aug 2013 A1
20130274870 Lombardi et al. Oct 2013 A1
20130274873 Delaloye Oct 2013 A1
20130338765 Braido et al. Dec 2013 A1
20140046433 Kovalsky Feb 2014 A1
20140121763 Duffy et al. May 2014 A1
20140142694 Tabor et al. May 2014 A1
20140155997 Braido Jun 2014 A1
20140194981 Menk Jul 2014 A1
20140214159 Vidlund et al. Jul 2014 A1
20140222144 Eberhardt et al. Aug 2014 A1
20140228946 Chau et al. Aug 2014 A1
20140303719 Cox et al. Oct 2014 A1
20140324164 Gross et al. Oct 2014 A1
20140343671 Yohanan et al. Nov 2014 A1
20140350663 Braido et al. Nov 2014 A1
20140350665 Braido et al. Nov 2014 A1
20140350667 Braido et al. Nov 2014 A1
20140350668 Delaloye et al. Nov 2014 A1
20140350669 Gillespie et al. Nov 2014 A1
20160324633 Gross et al. Nov 2016 A1
20170020696 White Jan 2017 A1
Foreign Referenced Citations (118)
Number Date Country
2246526 Mar 1973 DE
19532846 Mar 1997 DE
19546692 Jun 1997 DE
19857887 Jul 2000 DE
19907646 Aug 2000 DE
10049812 Apr 2002 DE
10049813 Apr 2002 DE
10049814 Apr 2002 DE
10049815 Apr 2002 DE
10121210 Nov 2002 DE
102005003632 Aug 2006 DE
202008009610 Dec 2008 DE
0103546 Mar 1984 EP
0144167 Jun 1985 EP
0592410 Apr 1994 EP
0850607 Jul 1998 EP
0597967 Dec 1999 EP
1000590 May 2000 EP
1057460 Dec 2000 EP
1088529 Apr 2001 EP
1360942 Nov 2003 EP
1570809 Sep 2005 EP
1584306 Oct 2005 EP
1598031 Nov 2005 EP
1926455 Jun 2008 EP
2047824 Apr 2009 EP
2059192 May 2009 EP
2254513 Dec 2010 EP
2537487 Dec 2012 EP
2620125 Jul 2013 EP
2749254 Jul 2014 EP
2815725 Dec 2014 EP
2870946 May 2015 EP
2788217 Jul 2000 FR
2850008 Jul 2004 FR
2847800 Oct 2005 FR
2056023 Mar 1981 GB
2008541865 Nov 2008 JP
2011500241 Jan 2011 JP
2011522634 Aug 2011 JP
2011528256 Nov 2011 JP
2012504031 Feb 2012 JP
158988 Nov 1963 SU
1271508 Nov 1986 SU
1371700 Feb 1988 SU
1457921 Feb 1989 SU
9117720 Nov 1991 WO
9217118 Oct 1992 WO
9301768 Feb 1993 WO
9716133 May 1997 WO
9724080 Jul 1997 WO
9832412 Jul 1998 WO
199829057 Jul 1998 WO
9913801 Mar 1999 WO
9933414 Jul 1999 WO
9940964 Aug 1999 WO
9947075 Sep 1999 WO
2000018333 Apr 2000 WO
200041652 Jul 2000 WO
200047139 Aug 2000 WO
0128459 Apr 2001 WO
2001035878 May 2001 WO
200149213 Jul 2001 WO
0154625 Aug 2001 WO
0156500 Aug 2001 WO
200162189 Aug 2001 WO
2001054624 Aug 2001 WO
0164137 Sep 2001 WO
0166035 Sep 2001 WO
0166037 Sep 2001 WO
2001076510 Oct 2001 WO
2002022054 Mar 2002 WO
0236048 May 2002 WO
2002041789 May 2002 WO
0247575 Jun 2002 WO
2002043620 Jun 2002 WO
2002049540 Jun 2002 WO
02067782 Sep 2002 WO
03037222 May 2003 WO
03047468 Jun 2003 WO
2003075799 Sep 2003 WO
2004016200 Feb 2004 WO
2005062980 Jul 2005 WO
2005070343 Aug 2005 WO
2005087140 Sep 2005 WO
2006014233 Feb 2006 WO
2006034008 Mar 2006 WO
06073626 Jul 2006 WO
2006124649 Nov 2006 WO
2006127765 Nov 2006 WO
2006128193 Nov 2006 WO
2007053243 May 2007 WO
07071436 Jun 2007 WO
2008005405 Jan 2008 WO
2008035337 Mar 2008 WO
08070797 Jun 2008 WO
2008100600 Aug 2008 WO
2008147964 Dec 2008 WO
2008150529 Dec 2008 WO
2009024859 Feb 2009 WO
2009042196 Apr 2009 WO
2009045338 Apr 2009 WO
2009053497 Apr 2009 WO
2009061389 May 2009 WO
2009149462 Dec 2009 WO
2010008548 Jan 2010 WO
2010008549 Jan 2010 WO
2010037141 Apr 2010 WO
2010096176 Aug 2010 WO
2010098857 Sep 2010 WO
2010141847 Dec 2010 WO
2011057087 May 2011 WO
2011133787 Oct 2011 WO
2012032187 Mar 2012 WO
2012048035 Apr 2012 WO
2012161786 Nov 2012 WO
2012177942 Dec 2012 WO
2014110171 Jul 2014 WO
Non-Patent Literature Citations (64)
Entry
“Closed heart surgery: Back to the future”, Samuel V. Lichtenstein, The Journal of Thoracic and Cardiovascular Surgery, vol. 131, No. 5, pp. 941-943; May 2006.
“Direct-Access Valve Replacement”, Christoph H. Huber, et al., Journal of the American College of Cardiology, vol. 46, No. 2, (Jul. 19, 2005).
“Minimally invasive cardiac surgery”, M. J. Mack, Surgical Endoscopy, 2006, 20:S488-S492, DOI: 10.1007/s00464-006-0110-8 (presented Apr. 24, 2006).
“Percutaneous Aortic Valve Implantation Retrograde From the Femoral Artery”, John G. Webb et al., Circulation, 2006; 113:842-850 (Feb. 6, 2006).
“Transapical Aortic Valve Implantation: An Animal Feasibility Study”, Todd M. Dewey et al., The Annals of Thoracic Surgery, 2006, 82: 110-6 (Feb. 13, 2006).
“Transapical approach for sutureless stent-fixed aortic valve implantation: experimental results”; Th. Walther et al., European Journal of Cardio-thoracic Surgery 29 (2006) 703-708 (Jan. 30, 2006).
“Transapical Transcatheter Aortic Valve Implantation in Humans”, Samuel V. Lichtenstein et al., Circulation.2006; 114: 591-596 (Jul. 31, 2006).
Al Zaibag, Muayed, et al., “Percutaneous Balloon Valvotomy in Tricuspid Stenosis,” British Heart Journal, Jan. 1987, vol. 57. No. 1, pp. 51-53.
Al-Khaja, N., et al., “Eleven Years′ Experience with Carpentier-Edwards Biological Valves in Relation to Survival and Complications,” European Journal of Cardiothoracic Surgery 3:305-311, Jun. 30, 2009.
Almagor, Y. et al., “Balloon Expandable Stent Implantation in Stenotic Right Heart Valved Conduits,” Journal of the American College of Cardiology, Nov. 1, 1990, 16(6):1310-1314.
Andersen, H. R., “History of Percutaneous Aortic Valve Prosthesis,” Herz, Aug. 2009, 34(5):343-346.
Andersen, H.R. et al, “Transluminal implantation of artificial heart valves,” European Heart Journal, May 1992, pp. 704-708, vol. 13, No. 5.
Andersen, H.R., “Transluminal Catheter Implanted Prosthetic Heart Valves,” International Journal of Angiology, Mar. 1998, pp. 102-106, vol. 7, No. 2.
Benchimol, Alberto, et al., “Simultaneous Left Ventricular Echocardiography and Aortic Blood Velocity During Rapid Right Ventricular Pacing in Man,” The American Journal of the Medical Sciences, Jan.-Feb. 1977 vol. 273, No. 1, pp. 55-62.
Buellesfeld, et al., “Treatment of paravalvular leaks through inverventional techniques,” Multimed Man Cardiothorac Surg., Department of Cardiology, Ben University Hospital, pp. 1-8, Jan. 2011.
Bullesfeld et al., Percutaneous Implantation of The First Repositionable Aortic Valve Prosthesis in a Patient With Severe Aortic Stenosis, Catheterization & Cardiovascular Interventions 71:579-84 (2008).
Catheter-implanted prosthetic heart valves, Knudsen, L.L., et al., The International Journal of Artificial Organs, vol. 16, No. 5 1993, pp. 253-262.
Curriculum Vitae of Robert A. Ersek, M.D., FACS, Jul. 10, 2009, http://www.ersek.com/rae-cv.htm.
De Cicco, et al., “Aortic valve periprosthetic leakage: anatomic observations and surgical results,” The Annals of thoracic surgery, vol. 79, No. 5, pp. 1480-1485, May 2005.
Dotter, C. T. et al., “Transluminal Treatment of Arteriosclerotic Obstruction. Description of a New Technic and a Preliminary Report of its Application,” Circulation, Nov. 1964, 30:654-670.
European Communication for Application No. 09788918.2 dated Jun. 29, 2015.
European Search Report for Application No. 14186568.3 dated Mar. 6, 2015.
Extended European Search Report for Application No. 14180622.4 dated Nov. 21, 2014.
Extended European Search Report for Application No. 14180623.2 dated Nov. 24, 2014.
Extended European Search Report for Application No. 14180625.7 dated Nov. 24, 2014.
Gössl, Mario, and Charanjit S. Rihal. “Percutaneous treatment of aortic and mitral valve paravalvular regurgitation.” Current cardiology reports 15.8 (2013).
Gössl,et al., “Percutaneous treatment of aortic and mitral valve paravalvular regurgitation,” Current Cardiology Reports, vol. 15, No. 8., pp. 1-8, Aug. 2013.
Grube et al., “Percutaneous Implantation of the CoreValve Self-Expanding Valve Prosthesis in High-Risk Patients With Aortic Valve Disease” (2006).
Heart Advisor, “Heart repairs without surgery. Minimally invasive procedures aim to correct valve leakage,” Sep. 2004, pp. 4-5, PubMed ID 15586429.
Hourihan, et al., “Transcatheter Umbrella Closure of Valvular and Paravalvular Leaks,” Journal of the American College of Cardiology, vol. 20, No. 6, pp. 1371-1377, Nov. 1992.
Inoune, M.D., Kanji, et al., “Clinical Application of Transvenous Mitral Commissurotomy by a New Balloon Catheter,” The Journal of Thoracic and Cardiovascular Surgery 87:394-402, 1984.
International Search Report and Written Opinion PCT/US2014/020872 dated Mar. 19, 2014.
International Search Report from corresponding PCT application No. PCT/US2011/054973 dated Apr. 23, 2012.
International Search Report PCT/US2009/004094 dated Mar. 3, 2010.
Is It Reasonable to Treat All Calcified Stenotic Aortic Valves With a Valved Stent?, 579-584, Zegdi, Rachid, MD, PhD et al., J. of the American College of Cardiology, vol. 51, No. 5, Feb. 5, 2008.
Knudsen, L.L. et al., “Catheter-implanted prosthetic heart valves,” The International Journal of Artificial Organs, May 1993, pp. 253-262, vol. 16, No. 5.
Kolata, Gina, “Device That Opens Clogged Arteries Gets a Failing Grade in a New Study,” nytimes.com, http://www.nytimes.com/1991/01/03/health/device-that-opens-clogged-arteri- es-gets-a-faili . . . , Jul. 29, 2009, 2 pages.
Lawrence, Jr., M.D., David D., “Percutaneous Endovascular Graft: Experimental Evaluation,” Radiology 1897; 163: 357-360.
Moazami, N. et al., “Transluminal Aortic Valve Placement,” ASAIO Journal, Sep./Oct. 1996, pp. M381-M385, vol. 42.
Muñoz, et al., “Guidance of treatment of perivalvular prosthetic leaks.”, Current cardiology reports, 16.430, 6 pages, Jan. 2014.
Pavcnik, M.D., Ph.D., Dusan, et al. “Development and Initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement,” Cardiovascular Radiology 1992; 183:151-154.
Percutaneous aortic valve replacement: resection before implantation, 836-840, Quaden, Rene et al., European J. of Cardio-thoracic Surgery, 27 (2005).
Porstmann, W., et al., “Der Verschlu.beta. des Ductus Arteriosus Persistens ohne Thorakotomie,” Thoraxchirurgie Vaskulare Chirurgie, Band 15, Heft 2, Stuttgart, im Apr. 1967, pp. 199-203, English translation of Abstract only.
Quaden, R. et al., “Percutaneous aortic valve replacement: resection before implantation,” European J. of Cardio-thoracic Surgery, May 2005, pp. 836-840, vol. 27, No. 5.
Rashkind, M.D., William J., “Creationof an Atrial Septal Defect Withoput Thoracotomy,” the Journal of the American Medical Association, vol. 196, No. 11, Jun. 13, 1966, pp. 173-174.
Rashkind, W. J., “Historical Aspects of Interventional Cardiology: Past, Present, Future,” Texas Heart Institute Journal, Dec. 1986, 13(4):363-367.
Rohde,et al., “Resection of Calcified Aortic Heart Leaflets In Vitro by Q-Switched 2 μm Microsecond Laser Radiation”, Journal of Cardiac Surgery, 30(2):157-62. Feb. 2015.
Rosch, M.D., Josef, “The Birth, Early Years and Future of Interventional Radiology,” J Vasc Interv Radiol 2003; 14:841-853.
Ross, F.R.C.S., D.N., “Aortic Valve Surgery,” Guy's Hospital, London, pp. 192-197, Jan. 1968.
Ruiz, C., “Overview of PRE-CE Mark Transcatheter Aortic Valve Technologies,” Euro PCR, May 2010 (Powerpoint dated May 25, 2010).
Sabbah, A. N. et al., “Mechanical Factors in the Degeneration of Porcine Bioprosthetic Valves: An Overview,” Dec. 1989, Journal of Cardiac Surgery, 4(4):302-309.
Selby, M.D., J. Bayne, “Experience with New Retrieval Forceps for Foreign Body Removal in the Vascular, Urinary, and Biliary Systems,” Radiology 1990; 176:535-538.
Serruys, P.W., et al., “Stenting of Coronary Arteries. Are we the Sorcerer's Apprentice?,” European Heart Journal (1989) 10, 774-782, pp. 37-45, Jun. 13, 1989.
Sigwart, U., “An Overview of Intravascular Stents: Old and New,” Chapter 48, Interventional Cardiology, 2nd Edition, W.B. Saunders Company, Philadelphia, PA, © 1994, 1990, pp. 803-815.
Swiatkiewicz, et al., “Percutaneous closure of mitral perivalvular leak,” Kardiologia Polska, vol. 67, No. 7, pp. 762-764, Jul. 2009.
Textbook “Transcatheter Valve Repair”, 2006, pp. 165-186.
Transcatheter Umbrella Closure of Valvular and Paravalvular Leaks, Hourihan et al., Journal of the American College of Cardiology, vol. 20, No. 6, pp. 1371-1377, (1992).
Transluminal Catheter Implanted Prosthetic Heart Valves, Andersen, Henning Rud, International Journal of Angiology 7:102-106 (1998).
Transluminal implantation of artificial heart valves, Andersen, H. R., et al., European Heart Journal (1992) 13, 704-708.
Uchida, Barry T., et al., “Modifications of Gianturco Expandable Wire Stents,” AJR:150, May 1988, Dec. 3, 1987, pp. 1185-1187.
Urban, M.D., Philip, “Coronary Artery Stenting,” Editions Medecine et Hygiene, Geneve, 1991, pp. 5-47.
Watt, A.H., et al. “Intravenous Adenosine in the Treatment of Supraventricular Tachycardia; a Dose-Ranging Study and Interaction with Dipyridamole,” British Journal of Clinical Pharmacology (1986), 21, 227-230.
Wheatley, M.D., David J., “Valve Prostheses,” Rob & Smith's Operative Surgery, Fourth Edition, pp. 415-424, Butterworths 1986.
Zegdi, R., MD, PhD et al., “Is It Reasonable to Treat All Calcified Stenotic Aortic Valves With a Valved Stent?” J. of the American College of Cardiology, Feb. 5, 2008, pp. 579-584, vol. 51, No. 5.
Related Publications (1)
Number Date Country
20210007843 A1 Jan 2021 US
Provisional Applications (1)
Number Date Country
61900475 Nov 2013 US
Divisions (1)
Number Date Country
Parent 15882269 Jan 2018 US
Child 17030464 US
Continuations (1)
Number Date Country
Parent 15148322 May 2016 US
Child 15882269 US
Continuation in Parts (1)
Number Date Country
Parent 14501200 Sep 2014 US
Child 15148322 US