Parenteral nutrition (“PN”) provides nutrients and fluids to a patient and is typically administered intravenously. It differs from normal oral food ingestion in that the nutrients and fluids are administered by an intravenous infusion. In this way, the entire digestive tract is bypassed. Parenteral nutrition is indicated when ingestion of nourishment administered orally via the digestive tract is not possible, not desired, or too dangerous. Thus, parenteral nutrition is used when there are considerable impediments in digestion and resorption, as well as in the framework of intensive care medicine. Complete parenteral nutrition can supply the same nutrients as normal enteral nourishment which includes carbohydrates, fats, proteins, vitamins, electrolytes, water and also trace elements (e.g., trace metals).
Trace elements together with vitamins can be required for specific metabolic functions. Trace elements are present at very low concentrations in the human body and help maintain physical and mental health. As structural and/or functional constituents of numerous metalloproteinases (e.g., copper, zinc), enzymes (e.g., selenium), hormones (e.g., iodine) or vitamins (e.g., cobalt), trace elements are involved in many metabolic processes. A deficiency of trace elements impairs the optimal development of important physiological processes in the body.
Trace elements addition consequently is an important component in the framework of parenteral nutrition therapy to help prevent or reduce metabolic disorders. Trace elements addition also can remedy an already existing trace metal deficiency to help the patient have an enhanced quality of life.
The use of standardized parenteral nutrition admixtures simplifies prescription admixing and reduces complications. In addition, it improves patient safety and efficiency of treatment. Parenteral nutrition is prepared in accordance with specific pharmaceutical manufacturing regulations and strict aseptic conditions at every step.
Typically, parenteral nutrition, once admixed remains stable for a relatively short period of time without the addition of trace elements to the parenteral nutrition. For example, once activated, KABIVEN® parenteral nutrition remains stable for 48 hours at room temperature or 25° C. This stability is without the addition of trace elements to the parenteral nutrition. If not used immediately, the activated KABIVEN® parenteral nutrition can be stored for up to 7 days under refrigeration at 2° to SoC without the addition of trace elements to the parenteral nutrition. After removal from refrigeration, the activated KABIVEN® parenteral nutrition should be used within 48 hours. If not, it should be discarded. This type of stability also applies to other parenteral nutrition products.
Parenteral nutrition is admixed based on the specific metabolic needs of the patient. The admixing of parenteral nutrition can be time consuming, expensive, and tedious to prepare under aseptic conditions. Often times when trace elements are added to parenteral nutrition and the parenteral nutrition is stored for more than 24 to 48 hours at room temperature, stability problems such as, for example, particulate formation and precipitation may occur. This requires the healthcare provider (e.g., pharmacist, nurse, healthcare facility, caregiver, etc.) to dispose of any unused parenteral nutrition after the 24 to 48 hour time period, which increases cost to the patient and the healthcare provider.
Further, if the patient's parenteral nutrition is put on hold for a short period of time (e.g., 48 hours); the admixed parenteral nutrition containing the added trace elements will also need to be discarded. This can lead to drug supply shortages as now the parenteral nutrition and trace elements have to be discarded and a new prescription of parenteral nutrition containing the trace elements has to be admixed again. Because of the short stability period, parenteral nutrition with added trace elements is prepared close to the time period that it will be administered to the patient on a daily basis, which may require frequent trips to the healthcare facility. This also prevents the parenteral nutrition with added trace elements to be made in many daily doses or in batches.
Thus, there is a need for injectable parenteral nutrition containing a trace element or elements that is stable for a longer period of time, thereby reducing the time and costs associated with frequent admixing. The quality of life of the patient and the caregiver is also improved by avoiding frequent trips to healthcare facilities for the admixing of injectable parenteral nutrition. Further, there is also a need for parenteral nutrition with added trace elements that can be made in many daily doses or in batches because it is stable for a longer period of time.
An injectable parenteral nutrition containing trace elements is provided that is stable for a longer period of time compared to commercially available products having trace element addition thereto, which are stable for 48 hours, thereby reducing the time and costs associated with frequent admixing that may be required of currently available products. The quality of life of the patient and the caregiver is also improved by avoiding frequent trips to healthcare facilities for the admixing of injectable parenteral nutrition. An injectable parenteral nutrition containing trace elements is also provided that can be made in daily doses or in batches because it is stable for a longer period of time.
Stable parenteral nutrition is provided comprising at least one of an amino acid, a dextrose, a lipid, an electrolyte or a mixture thereof and at least one trace element which is stable for about at least 3 days to about 14 days. In various embodiments, the at least one trace element of the stable parenteral nutrition includes zinc, copper, selenium, and manganese or a mixture thereof.
In many embodiments, parenteral nutrition comprises, consists essentially of, or consists of an amino acid, a dextrose, a lipid, an electrolyte, or a mixture thereof and at least one trace element composition per from about 250 mL to about 4000 mL of parenteral nutrition. The stable trace element injectable composition that can be added to a parenteral nutrition comprises, consists essentially of or consists of water, from about 800 μg to about 4,000 μg of zinc, from about 40 μg to about 400 μg of copper, from about 4 μg to about 90 μg of selenium, and from about 1 μg to about 80 μg of manganese per 1 mL of the injectable. In some embodiments, the trace element injectable composition that can be added to parenteral nutrition contains water for injection and trace elements comprising, consisting essentially of or consisting of from about 2000 μg to about 4,000 μg of zinc, from about 200 μg to about 400 μg of copper, from about 30 μg to about 90 μg of selenium and from about 20 μg to about 80 μg of manganese per 1 mL of the injectable composition.
In some embodiments, the trace element injectable composition comprises, consists essentially of, or consists of 3,000 μg of zinc, 300 μg of copper, 60 μg of selenium, and 55 μg of manganese per 1 mL of the injectable composition. These trace element compositions are useful additives to parenteral nutrition for adult or pediatric patients.
In yet other embodiments, the stable trace element composition that can be added to parenteral nutrition comprises, consists essentially of or consists of 1000 μg of zinc, 60 μg of copper, 6 μg of selenium and 3 μg of manganese per 1 mL of the injectable composition. These trace element compositions are useful additives to parenteral nutrition for neonate patients.
In various embodiments, the injectable compositions including trace elements can be added to parenteral nutrition available in the marketplace, for example KABIVEN® and CLINIMIX®. As a result, this application provides parenteral nutrition comprising at least one of an amino acid, a dextrose, a lipid, an electrolyte or a mixture thereof and at least one of zinc, copper, selenium, and manganese, which is stable for about at least 3 days to about 14 days.
In various embodiments, the injectable compositions described in this application comprise, consist essentially of or consist of water, at least one of zinc in an amount from about 600 μg, 700 μg, or 800 μg to about 4,000 μg, copper in an amount from about 40 μg to about 400 μg, from about 4 μg to about 90 μg of selenium, and from about 1 μg to about 80 μg of manganese per 1 mL of the injectable composition.
In some embodiments, there is a method of making a parenteral nutrition containing trace elements, the method comprising adding trace elements to the parenteral nutrition, the trace elements comprising about 800 μg to about 4,000 μg of zinc, about 40 μg to about 400 μg of copper, about 4 μg to about 90 μg of selenium, and about 1 μg to about 80 μg of manganese per 250 mL to about 4000 mL of the parenteral nutrition, the parenteral nutrition comprising at least one of amino acid, a dextrose, a lipid, an electrolyte, or a mixture thereof.
In some aspects, there is a method of providing a source of calories, proteins, electrolytes or essential fatty acids for adult, pediatric or neonate patients requiring parenteral nutrition, the method comprising administering to a patient in need thereof an injectable parenteral nutrition formulation comprising at least one of amino acid, a dextrose, a lipid, an electrolyte, or a mixture thereof, the parenteral nutrition comprising about 800 μg to about 4,000 μg of zinc, about 40 μg to about 400 μg of copper, about 4 μg to about 90 μg of selenium, and about 1 μg to about 80 μg of manganese per 250 mL to 4000 mL of the parenteral nutrition.
In some embodiments, there is a method of maintaining plasma trace elements in a patient in need thereof, the method comprising administering a parenteral nutrition to the patient, the parenteral nutrition comprising at least one of an amino acid, a dextrose, a lipid, an electrolyte or a mixture thereof and at least one of zinc, copper, selenium, and manganese, which is stable for about at least 3 days to about 14 days to prevent depletion of endogenous stores of the at least one of zinc, copper, selenium, and manganese and subsequent depletion symptoms.
In some embodiments, there is a method of maintaining, supplementing or increasing one or more trace elements to a patient in need thereof, the method comprising administering to the patient about 800 μg to about 4,000 μg of zinc, about 40 μg to about 400 μg of copper, about 4 μg to about 90 μg of selenium, or about 1 μg to about 80 μg of manganese per about 250 mL to 4000 mL of fluid, the fluid comprising an amino acid, a dextrose, a lipid, an electrolyte or a mixture thereof.
Additional features and advantages of various embodiments will be set forth in part in the description that follows, and in part will be apparent from the description, or may be learned by practice of various embodiments. The objectives and other advantages of various embodiments will be realized and attained by means of the elements and combinations particularly pointed out in the description and appended claims.
For the purposes of this specification and appended claims, unless otherwise indicated, all numbers expressing quantities of ingredients, percentages or proportions of materials, reaction conditions, and other numerical values used in the specification and claims, are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present disclosure. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the disclosure are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Moreover, all ranges disclosed herein are to be understood to encompass any and all subranges subsumed therein. For example, a range of “1 to 10” includes any and all subranges between (and including) the minimum value of 1 and the maximum value of 10, that is, any and all subranges having a minimum value of equal to or greater than 1 and a maximum value of equal to or less than 10, e.g., 5.5 to 10.
All scientific and technical terms used herein have meanings commonly used in the art unless otherwise specified. The definitions provided herein are to facilitate understanding of certain terms used frequently herein and are not meant to limit the scope of the present disclosure.
It is noted that, as used in this specification and the appended claims, the singular forms “a,” “an,” and “the,” include plural referents unless expressly and unequivocally limited to one referent. Thus, for example, reference to “a trace element” includes one, two, three or more trace elements.
As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
All patents, patent applications, published applications and publications, websites and other published materials referred to throughout the entire disclosure herein, unless noted otherwise, are incorporated by reference in their entirety. In the event that there are a plurality of definitions for terms herein, those in this section prevail. Where reference is made to a URL or other such identifier or address, it is understood that such identifiers can change and particular information on the internet can come and go, but equivalent information can be found by searching the internet. Reference thereto evidences the availability and public dissemination of such information.
The term “composition(s)” refers to an aggregate material formed from two or more substances, ingredients, or constituents; the way in which a whole or mixture is made up. When referring to pharmaceutical drug products, a composition is often called “formulation(s)”.
The term “impurity” refers to a constituent, component or ingredient which impairs the purity of pharmaceutical active ingredient or pharmaceutical composition.
The term “injectable” or “injectable composition,” as used herein, means a composition that can be injected into a larger volume container and infused intravenously via peripheral veins found in upper extremities (hands and arms) or central veins, which is a large vein in the central circulation system. Catheters are used to reach either a peripheral or central vein. For example, central venous catheters can be inserted percutaneously or surgically through the jugular, subclavian, or femoral veins, or via the chest or upper arm peripheral veins.
The trace elements composition can be administered parenterally including intravenously or the like into the patient (e.g., mammal). The term “mammal” refers to organisms from the taxonomy class “mammalian,” including but not limited to humans, other primates such as monkeys, chimpanzees, apes, orangutans and monkeys, rats, mice, rabbits, cats, dogs, pigs, cows, horses, etc.
The term “reference listed drug” refers to an approved drug product to which generic versions are compared to show that they are bioequivalent.
The term “stability” refers to capability of a pharmaceutical active ingredient or pharmaceutical composition to remain within a specific criteria or specification(s).
The term “stable”, as used herein, means remaining in a state or condition that is suitable for administration to a patient and without undergoing a substantial change in the potency of the active agent in the formulation over the specified time period. In some embodiments, the injectable parenteral nutrition composition containing trace elements of the current application is considered stable if the parenteral nutrition composition containing trace elements can maintain its strength at the level specified on the label for the maximum anticipated shelf-life (e.g., the time period from the date of manufacture until administration to the animal, for example, a human patient) under environmental conditions likely to be encountered in actual use. Typically, stability can be determined following the FDA guidelines, for example, Guidance for Industry: Drug Stability Guidelines (p. 1-48), Dec. 9, 2008.
A substantial change in potency is one which decreases the drug concentration by more than 15%, from the target concentration for the specified period of time. Unless indicated otherwise, a stable composition is one which retains at least 85% of the original amount of the injectable composition in that state (e.g., not precipitated, degraded or adsorbed to the container) for a period of at least 72 hours.
The carriers and excipients and other components of the pharmaceutical compositions can be “pharmaceutically acceptable” in the sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient thereof. Thus, the term “pharmaceutically acceptable salt” references salt forms of the active compounds which are prepared with counter ions which are non-toxic under the conditions of use and are compatible with a stable formulation. For compounds which contain relatively acidic functionalities, base addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of the desired base, either neat or in a suitable inert solvent.
The term “pharmaceutically acceptable carrier or excipient” means a carrier or excipient that is useful in preparing a pharmaceutical composition that has an acceptable side-effect profile and serves to provide a medium for the storage or administration of the active component(s) under the conditions of administration for which the composition is formulated or used. The carrier or excipient is compatible with the other ingredients of the formulation and not deleterious to the recipient thereof. A “pharmaceutically acceptable carrier or excipient” as used in the specification and claims includes both one and more than one such carrier or excipient. Pharmaceutically acceptable carriers are determined in part by the particular composition being administered, as well as by the particular method used to administer the composition. For the injectable compositions of this disclosure, water is a pharmaceutically acceptable carrier. There are a wide variety of suitable formulations of pharmaceutical compositions of the present disclosure (see, e.g., Remington's Pharmaceutical Sciences, 20th ed., 2018, supra).
The term “tonicity adjusting agents” refers to agents used to modify the osmolality of a formulation to bring it closer to the osmotic pressure of body fluids such as blood or plasma. Provided that the compositions are physiologically compatible, the compositions do not require any particular osmolality. Thus, the compositions can be hypotonic, isotonic, or hypertonic. Typically, the pharmaceutical compositions have an osmolality between about 250 to 350 mOsm/kg. The tonicity of the pharmaceutical compositions can be adjusted by adjusting the concentration of any one or more of a tonicity agent, a co-solvent, complexing agent, buffering agent, or excipient. Suitable tonicity adjusting agents include, but are not limited to, anhydrous and hydrous forms of dextrose, for example, dextrose 5%, dextrose 10%, dextrose 20%, dextrose 25%, or dextrose 50% in water or a combination thereof.
The pH of the injectable composition can be adjusted to the recited pH range or target pH by the addition of an acid or acidic salt or base or basic salt, as appropriate. For instance, the pH may be adjusted with a base such as an alkali metal hydroxide such as NaOH, KOH, or LiOH, or an alkaline earth metal hydroxide, such as Mg(OH)2 or Ca(OH)2, or a carbonate. Acids useful for adjusting the pH include, without limitation, hydrochloric acid or sulfuric acid, for example.
The term “pharmaceutical composition” is intended to encompass a product comprising the active ingredient(s), and the inert ingredient(s) that make up the carrier, as well as any product which results, directly or indirectly, from combination, complexation or aggregation of any two or more of the ingredients, or from dissociation of one or more of the ingredients, or from other types of reactions or interactions of one or more of the ingredients described herein.
The term “single-use container” refers to a sealed pharmaceutically prepared container holding a drug product in a sterile environment that is intended to be used in a single operation of transferring the entire contents or substantially entire contents. It should be recognized that the single-use container is generally preservative-free and that if multiple transfers are attempted, they should be completed in a short duration, i.e., less than about 8-10 hours from the first breach of the sterile environment. In some aspects the single-use container may be used to administer all of its contents to one subject in need thereof. In some aspects the single-use container may be used to administer its contents to more than one subject in need thereof.
As used herein, the term “mixing” refers to admixing, contacting, blending, stirring or allowing to admix, mix, blend, stir and the like.
The term “dissolved oxygen” refers to oxygen that is found in the aqueous carrier of the compositions. Distinguished from dissolved oxygen is the headspace oxygen. As used herein, the term “headspace oxygen” refers to the oxygen that is found in the headspace volume of the sealed container comprising the composition.
It will be apparent to those skilled in the art that various modifications and variations can be made to various embodiments described herein without departing from the spirit or scope of the teachings herein. Thus, it is intended that various embodiments cover other modifications and variations of various embodiments within the scope of the present teachings.
The headings below are not meant to limit the disclosure in any way; embodiments under anyone heading may be used in conjunction with embodiments under any other heading.
An injectable parenteral nutrition containing trace elements is provided that is stable for a longer period of time, thereby reducing the time and costs associated with frequent admixing. The quality of life of the patient and the caregiver is also improved by avoiding frequent trips to healthcare facilities for the admixing of injectable parenteral nutrition. An injectable parenteral nutrition containing trace elements is also provided that can be made in daily doses or in batches because it is stable for a longer period of time.
For example, because the PN containing one or more trace elements of the current application has been found to be stable under refrigeration for up to 14 days, now the healthcare provider (e.g., pharmacist) can make the daily dose of parenteral nutrition in batches for one or more patients and, for example, a week supply or more can be admixed and dispensed for that particular patient, which eliminates the need and reduces costs as now that pharmacist will not need to be available on a daily basis to admix the parenteral nutrition close in time to when it is administered to the patient. Further, less frequent trips back and forth to the healthcare facility are required.
This application relates to the development of stable injectable compositions comprising at least one of zinc, copper, manganese and selenium, which are trace elements. The trace elements of the current application include lower daily amounts of at least one of zinc, copper, manganese, and chromium per 1 mL of the composition than currently available products.
Trace elements, such as zinc, copper, manganese and/or selenium are important to metabolic functions and for restoring and maintaining normal growth and development in mammals. Zinc is a trace element. Zinc is a constituent of numerous enzymes including carbonic anhydrase, alcohol and lactate dehydrogenases and various peptidases. Zinc has been identified as a cofactor for over 70 different enzymes, including alkaline phosphatase, lactic dehydrogenase and both RNA and DNA polymerase. Zinc facilitates wound healing, helps maintain normal growth rates, normal skin hydration and the senses of taste and smell. Zinc is considered an essential nutrient participating in multiple metalloenzymes involved in most central metabolic pathways, including metabolism of protein, fat, and carbohydrates; DNA binding; gene regulation; transcription of DNA to RNA; synthesis of heme, long-chain fatty acids, and prostaglandins; cholesterol transport; stabilization of cell membrane lipids; sexual maturation and reproduction; and immune function.
Copper is a trace element. Copper is essential as a cofactor for serum ceruloplasmin, an oxidase necessary for proper formation of the iron carrier protein, transferrin. Copper also helps maintain normal rates of red and white blood cell formation. The metabolic functions of copper relate to its presence in tyrosinase, urate oxidase, dopamine-p-hydroxylase, amine oxidases, cytochrome oxidase and cytoplasmic superoxide dismutase, in the latter, in combination with zinc. Copper is incorporated into metalloenzymes that are involved with connective tissue formation; metabolism of iron (e.g., ceruloplasmin), cholesterol, and glucose; myelin synthesis; conversion of dopamine to norepinephrine in the brain, serotonin synthesis, melanin pigment formation; and antioxidant participating in the immune system.
Manganese is a trace element. Manganese is believed to have an activating function for many enzymes such as phosphoglucomutase, choline esterase, the oxidative 0-keto-decarboxylases, certain peptidases and muscle ATPase. Manganese is an activator for enzymes such as polysaccharide polymerase, liver arginase, cholinesterase and pyruvate carboxylase. Manganese is incorporated into metalloenzymes involved with energy release, fatty acid and cholesterol synthesis, and release of lipids from the liver.
Selenium is a trace element. Selenium is part of glutathione peroxidase pathway, which protects cell components from oxidative damage due to peroxides produced in cellular metabolism. Selenium is incorporated at the active site of glutathione peroxidase, an enzyme that catalyzes the breakdown of hydroperoxides and has metabolic interrelationships with vitamin E, an antioxidant (Vanek et al., A.S.P.E.N Position Paper, Nutrition in Clinical Practice, Vol. 27, No. 4, pp. 440-491, August 2012).
In various embodiments, the injectable compositions described in this application comprise, consist essentially of or consist of water, zinc in an amount from about 800 μg to about 4,000 μg, copper in an amount from about 40 μg to about 400 μg, from about 4 μg to about 90 μg of selenium, and from about 1 μg to about 80 μg of manganese per 1 mL of the injectable composition. In many embodiments, the injectable compositions described in this application comprise water, zinc in an amount from about 2000 μg to about 4,000 μg, copper in an amount from about 200 μg to about 400 μg, about 30 μg to about 90 μg of selenium, and from about 20 μg to about 80 μg of manganese per 1 mL of the injectable composition. In some embodiments, zinc is in an amount from about 800 μg, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000, 3100, 3200, 3300, 3400, 3500, 3600, 3700, 3800, 3900 to about 4000 μg. In some embodiments, copper is in an amount from about 40 μg, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390 to about 400 μg. In other embodiments, selenium is in an amount from about 4 μg, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80 to about 90 μg. In yet other embodiments, manganese is in an amount from about 1 μg, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20 μg, 30, 40, 50, 60, 70 to about 80 μg. In various embodiments, the injectable compositions described in this application comprise, consist essentially of or consist of water, zinc in an amount from about 2000 μg to about 4,000 μg, copper in an amount from about 200 μg to about 400 μg, about 30 μg to about 90 μg of selenium, and about 20 μg to about 80 μg of manganese per 1 mL of the injectable composition.
In some embodiments, the injectable composition comprises 3,000 μg of zinc, 300 μg of copper, 60 μg of selenium, and 55 μg of manganese per 1 mL of the injectable composition. In other embodiments, the injectable composition consists essentially of, or consists of 3,000 μg of zinc, 300 μg of copper, 60 μg of selenium, and 55 μg of manganese per 1 mL of the injectable composition. These embodiments are useful as additives to parenteral nutrition applicable for adults or pediatric patients. In other embodiments, the injectable composition comprises 1000 μg of zinc, 60 μg of copper, 6 μg of selenium and 3 μg of manganese per about 250 mL to 4000 mL of parenteral nutrition. In yet other embodiments, the trace element injectable composition consist essentially of or consists of 1000 μg of zinc, 60 μg of copper, 6 μg of selenium and 3 μg of manganese per about 250 mL to 4000 mL of parenteral nutrition. These embodiments are useful as additives to parenteral nutrition applicable for neonate patients.
In various aspects the injectable composition includes only one of the trace elements, for example only zinc or copper, or manganese or selenium. The at least one of the zinc can include from about 0.23 wt. percent to about 1.33 wt. percent. The at least one of copper can be in an amount from about 0.03 wt. percent to about 0.13 wt. percent. The at least one of manganese comprises from about 0.0055 wt. percent to about 0.013 wt. percent. The at least one of selenium comprises about 0.002 wt. percent to about 0.02 wt. percent and the water comprises from about 96 wt. percent to about 99.66 wt. percent of the injectable composition based on a total weight of the injectable composition. In yet other embodiments, at least one of the zinc comprises about 0.3 wt. percent, the copper comprises about 0.03 wt. percent, the manganese comprises about 0.0055 wt. percent, the selenium comprises about 0.006 wt. percent, or the water comprises from about 99.66 wt. percent of the injectable composition based on a total weight of the injectable composition.
While these injectable compositions contain little or no impurities, in some aspects, these compositions can include a chromium impurity in an amount not to exceed about 1 μg/mL and, in other aspects, not to exceed 0.5 μg/mL. In some embodiments, the trace elements composition contains little or no chromium. The chromium that is present can be present as an impurity and not to exceed about 1 μg/mL and, in other aspects, not to exceed 0.5 μg/mL, in other embodiments, not to exceed about 0.25 μg/mL, and in other embodiments, not to exceed 0.1 μg/mL. In other instances, the injectable composition contains from about 0.0001 μg/mL to about 0.25 μg/mL of chromium. In many cases, the injectable composition of this disclosure does not contain any detectable chromium or no chromium at all. Therefore, when the trace element is added to the PN (e.g., PN of one liter or more), the PN will have no added chromium but may, in some embodiments, contain a chromium impurity from about 0.0001 μg/mL to about 0.25 μg/mL, or in some embodiments, no chromium.
In some embodiments, the chromium can be in the PN containing the trace elements composition or the trace elements composition itself in an amount of not more than about 0.15 μg/mL, 0.14 μg/mL, 0.13 μg/mL, 0.12 μg/mL, 0.11 μg/mL, 0.10 μg/mL, 0.09 μg/mL, 0.08 μg/mL, 0.07 μg/mL, 0.06 g/mL, 0.05 μg/mL, 0.04 μg/mL, 0.03 μg/mL, 0.02 μg/mL to not more than about 0.01 μg/mL or lower. Therefore, in this embodiment, it is desirable to have no or little chromium.
In some embodiments, the trace element composition of the current application has no added chromium, has no detectable chromium, or has no chromium.
In many aspects the zinc in the composition is elemental zinc, the copper is elemental copper, the selenium is elemental selenium, the manganese is elemental manganese and the water is sterile water for injection. In other instances, the elemental zinc is obtained from zinc sulfate or zinc sulfate heptahydrate, the elemental copper is generated from cupric sulfate or cupric sulfate pentahydrate, the elemental manganese is from manganese sulfate or manganese sulfate monohydrate and the elemental selenium is obtained from selenious acid. The injectable composition described in this application contains, in some aspects, zinc obtained from zinc sulfate heptahydrate, wherein the zinc is at a dose of from about 2.5 to about 7 mg/day. The copper can be obtained from cupric sulfate pentahydrate and is at a dose of from about 0.3 to about 1.5 mg/day, the manganese is manganese sulfate monohydrate and is at a dose of about 0.015 to about 0.08 mg/day, and the selenium is selenious acid and is at a dose of from about 20 to about 60 μg/day. In other aspects, the injectable composition contains zinc from zinc sulfate heptahydrate, wherein the zinc is at a dose of from about 2.5 to about 7 mg/day, the copper is obtained from cupric sulfate pentahydrate and is at a dose of from about 0.5 to about 1.5 mg/day, the manganese is obtained from manganese sulfate monohydrate and is at a dose of from about 0.15 to about 0.8 mg/day, and the selenium is obtained from selenious acid and is at a dose of about 20 to about 40 μg/day.
In various aspects, the trace elements of the compositions of this application comprise, consist essentially of or consist of zinc sulfate or zinc sulfate heptahydrate in an amount of from about 13.1 mg (13000 μg) to about 13.3 mg, cupric sulfate or cupric sulfate pentahydrate in an amount of about 1.1 mg to about 1.2 mg, manganese sulfate or manganese sulfate monohydrate in an amount of about 0.16 mg to about 0.18 mg and selenious acid in an amount of about 95 μg to about 99 μg per 1 mL of the injectable composition. In other aspects, in the injectable compositions, the trace elements comprise, consist essentially of or consist of zinc sulfate or zinc sulfate heptahydrate in an amount of from about 13.1 mg (13000 μg) to about 13.3 mg, cupric sulfate or cupric sulfate pentahydrate in an amount of from about 1.1 mg to about 1.2 mg, manganese sulfate or manganese sulfate monohydrate in an amount of from about 0.016 mg to about 0.018 mg and selenious acid in an amount of from about 95 μg to about 99 μg per 1 mL of the injectable composition. In yet other aspects, the zinc sulfate or zinc sulfate heptahydrate is in an amount of about 13.2 mg, the cupric sulfate or the cupric sulfate pentahydrate is in an amount of about 1.179 mg, the manganese sulfate or manganese sulfate monohydrate is in an amount of about 0.169 mg and the selenious acid is in an amount of about 98 μg per 1 mL of the injectable composition.
Zinc sulfate heptahydrate for use in the trace elements is available from Avantor Performance Materials, LLC in Phillipsburg, NJ. Cupric sulfate pentahydrate USP for use in the trace elements can be obtained from Merck KGa in Germany. Manganese sulfate monohydrate for use in the trace elements is available from Merck KGa in Germany. Selenious acid for use in the trace elements is available from Sigma Aldrich.
In various aspects, the injectable composition described in this application has a pH of from about 1.0 to about 5. In other aspects, the injectable composition has a pH from about 1.5 to about 3.5 or from about 1.5 to about 4.0. In many aspects, the pH of the trace elements composition described in this application can vary from about 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9. 5.0. In some instances, sodium hydroxide or sulfuric acid can be added to adjust the pH.
In some embodiments, pH limits for multi-element and/or single entity trace elements injections are listed in Table 1 below.
The compositions of this application can be at least one of a preservative-free composition, a sterile composition, or a ready-to-use injectable aqueous composition designed to be injected or added to the parenteral nutrition. However, in some embodiments, the compositions can comprise a preservative. The preservative can be, in some cases, benzyl alcohol in an amount of 0.9% by weight based on a total weight of the injectable composition.
The injectable composition of trace elements can be dispensed in single dose vial or can be dispensed in multi-dose vials. The trace elements composition of this application is often presented as a 1-mL fill in a 2-mL single dose preservative free vial. In many instances the vial can accommodate from about 1 mL, 2, 3, 4, 5, 6, 7, 8, 9 to about 10 mL of fluid. In some cases, the vials can be prepared of Pyrex glass or have the inside surface sprayed or coated with silica or can be made of plastic material. This is to minimize the amount of aluminum that may potentially be leaching from a glass vial to an amount not to exceed 0.6 μg/kg of body weight of a patient in need of trace elements treatment or no more than 25 μg/L of intravenous (IV) infusion. In some cases, the amount of aluminum can vary from about 0.1 μg/mL to about 0.6 μg/mL of aluminum. In other cases, there is no aluminum present, which is therefore absent.
In various embodiments, the injectable compositions comprise water, from about 2000 μg to about 4,000 μg of zinc, from about 200 μg to about 400 μg of copper, from about 30 μg to about 90 μg of selenium, and from about 20 μg to about 80 μg of manganese per 1 mL of the injectable composition and can be used as a component of or additive to a parenteral nutrition comprising at least one of an amino acid, a dextrose, a lipid, an electrolyte or a mixture thereof. The parenteral nutrition can include at least one of an amino acid, dextrose, a lipid, an electrolyte or a mixture thereof. The at least one of (i) the amino acid comprises lysine hydrochloride, phenylalanine, leucine, valine, threonine, methionine, isoleucine, tryptophan, alanine, arginine, glycine, proline, histidine, glutamic acid, serine, aspartic acid, tyrosine or a mixture thereof; (ii) the dextrose comprises dextrose monohydrate; (iii) the lipid comprises soybean oil, phospholipid, glycerin or a mixture thereof; or (iv) the electrolyte comprises sodium acetate trihydrate, potassium chloride, sodium chloride, potassium acetate, sodium glycerophosphate anhydrous, magnesium sulfate heptahydrate, calcium chloride dihydrate, calcium gluconate or a mixture thereof. The resulting parenteral nutrition (PN) compositions can have a pH in a range from about 3.5 to about 7.9.
The injectable PN compositions described in this disclosure can also be nonpyrogenic solutions. Unexpectedly, it has been found that including trace elements in the parenteral nutrition, allowed the parenteral nutrition to be stable when stored at about 2° C. to about 8° C. for at least up to about 14 days. In some instances, when stored from about 2° C. to about 8° C. for about 14 days, the parenteral nutrition can maintain a pH from about 5.86 to about 5.50. Moreover, in other instances, when stored from about 2° C. to about 8° C. for about 14 days, the parenteral nutrition comprises at least one of (i) no more than 12 particles per mL that are greater than 10 μm; or (ii) no more than 2 particles per mL that are greater than 25 μm.
The parenteral nutrition solutions containing 0.2 mL to 1 mL of trace elements injection per liter, can have no or negligible amounts of aluminum, for example, from about 0.2 μg/L to about 6 μg/L daily exposure, an amount that should not be exceeded.
In many embodiments, when stored from about 2° C. to about 8° C. for about 14 days, the parenteral nutrition does not exhibit microbial growth. Microbes that could otherwise grow in the parenteral nutrition composition include S. aureus, P. aeruginosa, E. coli, C. albicans, A. brasiliensis or a mixture thereof. As with other compositions described in this application, parenteral nutrition compositions including trace elements are dispensed in a container typically is from about a 50 mL container to about a 4000 mL container. The parenteral nutrition can be in glass, polyvinyl chloride, di(2-ethylhexyl) phthalate, polyethylene, polypropylene, polyvinyl chloride, polycarbonate, polyolefin or a combination thereof that can hold larger volume parenteral nutrition from about a 50 mL container to about a 4000 mL. The parenteral nutrition container can have at least one port for the injection of the trace elements and/or other additives into the parenteral nutrition container.
The trace elements, before being added to the parenteral nutrition, can be in a single use vial or an ampule or in a container which comprises a vial having a stopper acceptable for a parenteral drug product and/or a cap. In many aspects, the trace elements can be placed into a 1 mL single dose vial or in 10 mL multiple dose vial. The vial or ampules can be made of molded glass, glass coated with silica or polypropylene.
The trace elements composition can be added to one of an amino acid, a dextrose, a lipid, an electrolyte or a mixture thereof and administered to the patient parenterally (e.g., intravenously). Typically, the trace elements composition can be administered by intravenous infusion. For example, the trace elements composition can be added to parenteral nutrition and administered intravenously where about 100 mL to 4000 mL can be administered via IV infusion over, for example, about 4 hours to 24 hours, or about 8 hours to 48 hours to the patient.
Parenteral nutrition refers to solutions for the intravenous administration of nutrients necessary for the maintenance of life. Parenteral nutrition can be prepared not only for adult patients but also for pediatric and/or neonatal patients.
One or more trace elements can be added to the amino acids, dextrose, lipids, and/or electrolytes in the parenteral nutrition. The amino acids, dextrose, lipids, and/or electrolytes in the parenteral nutrition can be from commercially available parenteral nutrition products, such as for example, AminoProtect® (essential and non-essential amino acids, Anazao Health Corp.), Aminosyn® II (amino acid injection with electrolytes in dextrose injection with calcium, Hospira, Inc.), Aminosyn® II/Electrolytes (amino acid injection with electrolytes in dextrose injection with calcium, Hospira Inc.), Aminosyn® M (a crystalline amino acid solution with electrolytes, Hospira Inc.), Aminosyn® (a crystalline amino acid solution with electrolytes, Hospira Inc.), Aminosyn®-HBC (sulfite-free, amino acid injection high branched chain, Hospira Inc.), Aminosyn®-PF (sulfite-free, amino acid injection pediatric formula, Hospira Inc.), Aminosyn®-RF (sulfite free amino acid injection 5.2% renal formula, Hospira Inc.), Aminosyn®/Electrolytes (these are essential and non-essential amino acid injection with electrolytes, Hospira Inc.), BranchAmin® (branched chain amino acid solution of essential amino acids isoleucine, leucine, and valine, Baxter Healthcare Corp.), Clinimix® E/Dextrose (amino acid/dextrose 2.75/10, Baxter Healthcare Corp.), Clinimix® E/Dextrose (amino acid/dextrose 2.75/5, Baxter Healthcare Corp.), Clinimix® E/Dextrose (amino acid/dextrose 4.25/10, Baxter Healthcare Corp.), Clinimix® E/Dextrose (amino acid/dextrose 4.25/25, Baxter Healthcare Corp.), Clinimix® E/Dextrose (amino acid/dextrose 4.25/5, Baxter Healthcare Corp.), Clinimix® E/Dextrose (amino acid/dextrose 5/15, Baxter Healthcare Corp.), Clinimix® E/Dextrose (amino acid/dextrose 5/20, Baxter Healthcare Corp.), Clinimix® E/Dextrose (amino acid/dextrose 5/25, Baxter Healthcare Corp.), Clinimix® N14G30E (amino acid solution with electrolytes and a glucose solution with calcium, Baxter Healthcare Corp.), Clinimix® N9G15E (amino acid solution with electrolytes and a glucose solution with calcium chloride, Baxter Healthcare Corp.), Clinimix® N9G20E (amino acid solution 2.75% with electrolytes in dextrose 10% solution for injection, Baxter Healthcare Corp.), Clinimix®/Dextrose (amino acid/dextrose 2.75/5, Baxter Healthcare Corp.), Clinimix®/Dextrose (amino acid/dextrose 4.25/10, Baxter Healthcare Corp.), Clinimix®/Dextrose (amino acid/dextrose 4.25/20, Baxter Healthcare Corp.), Clinimix®/Dextrose (amino acid/dextrose 4.25/25, Baxter Healthcare Corp.), Clinimix®/Dextrose (amino acid/dextrose 4.25/5, Baxter Healthcare Corp.), Clinimix®/Dextrose (amino acid/dextrose 5/15, Baxter Healthcare Corp.), Clinimix®/Dextrose (amino acid/dextrose 5/20, Baxter Healthcare Corp.), Clinimix®/Dextrose (amino acid/dextrose 5/25, Baxter Healthcare Corp.), Clinisol® SF (sulfite-free amino acid injection, Baxter Healthcare Corp.), Clinolipid® (lipid injectable emulsion, Baxter Healthcare Corp.), Delflex® (peritoneal dialysis solutions (standard and low magnesium/low calcium) of dextrose and electrolytes in water for injection, Fresenius Medical Care North America), Elcys® (cysteine hydrochloride injection, Excela Pharma Science, LLC), FreAmine® HBC (amino acid injection, B. Braun Medical Inc.), FreAmine® III (amino acid injection, B. Braun Medical Inc.), Hyperlyte® CR (multi-electrolyte concentrate, B. Braun Medical Inc.), Hepatamine® (amino acid injection, B. Braun Medical Inc.), Intralipid® (purified soybean oil, purified egg lipids and glycerol anhydrous, Baxter healthcare Corp.), Isolyte® M in dextrose (multi-electrolyte injection in 5% dextrose, B. Braun Medical Inc.), Isolyte® P in dextrose (multi-electrolyte injection in 5% dextrose, B. Braun Medical Inc.), Isolyte® S in dextrose (multi-electrolyte injection, B. Braun Medical Inc.), Kabiven® (amino acids, electrolytes, dextrose and lipid injectable emulsion, Fresenius Kabi), Liposyn® II (intravenous fat emulsion contains 5% safflower oil, 5% soybean oil, up to 1.2% egg phosphatides, Hospira, Inc.), NephrAmine® (essential amino acid injection, B. Braun Medical Inc.), Novamine® (15% amino acids injection of essential and nonessential amino acids, Hospira Inc.), Nouress® (cysteine hydrochloride injection, Avadel Legacy Pharmaceuticals, LLC), Nutrilipid® (plant based fat emulsion, B. Braun Medical Inc.), Nutrilyte® Pro (multi-electrolyte injection, American Regent Inc.), Nutrilyte® II (multi-electrolyte injection, American Regent Inc.), Omegaven® (fish oil triglycerides, Fresenius Kabi), Perikabiven® (amino acids, electrolytes, dextrose and lipid injectable emulsion, Fresenius Kabi USA, LLC), Plasma-Lyte® 56 (multiple electrolytes and dextrose injection, Type 1, USP Baxter Healthcare Corporation) Plasma-Lyte 148 ® (multiple electrolytes and dextrose injection, Type 1, USP Baxter Healthcare Corporation), Procalamine® (3% amino acid and 3% glycerin injection with electrolytes, B. Braun Medical Inc.), Plenamine® (15% amino acid injection, B. Braun Medical Inc.), Premasol® (sulfite-free amino acid injection, Baxter Healthcare Corp.), Prosol® (amino acids injection, Baxter Healthcare Corp.), Renamin® (amino acid Injection, Baxter Healthcare Corp.), Ringer's injection, SMOFlipid (fish oil and plant based fat emulsion, Fresenius Kabi), Synthamin® 17 (10% amino acid infusion product, Baxter Healthcare Corp.), Travasol® (amino acid injection for intravenous use, Baxter Healthcare Corp.), TrophAmine® (amino acid injection, B. Braun Medical Inc.), dextrose, sodium chloride, calcium chloride, potassium chloride, magnesium chloride, sodium acetate, or a combination thereof.
Dosing recommendations for pediatric patients are based on body weight and range from 0.2 mL to 0.8 mL per day as shown in Table 2, where MDD refers to maximum daily dose in mL.
Parenteral nutrition has become an integral part of the support of the neonate who is either unable to receive or tolerate enteral feeding. Feeding practices are generally based on birth weight, with the smallest infants receiving parenteral nutrition for the longest time after birth. Generally, neonates include infants in the first four weeks after birth. Term neonates have an estimated weight of from about 3 kg to less than 5 kg and preterm neonates have an estimated weight of less than 3 kg. Neonates also include very low birth weight (those having a weight of less than 1500 g) and extremely low birth weight (those having a weight of less than 1000 g). These neonate infants are susceptible to growth failure in postnatal life if nutritional demands are not met. Poor postnatal growth in preterm infants is associated with adverse neurodevelopmental outcomes during childhood. Thus, early parental nutrition is of paramount importance to provide appropriate protein and energy in neonates, both preterm and term, when enteral nutrition is not feasible or is suboptimal. We have, therefore, prepared a stable parenteral nutrition that can be used in a wide spectrum of patients, adult, pediatric and neonate.
The nutrient components of PN include dextrose, amino acids, fat, electrolytes, multivitamins, trace elements and water. Regarding the content and amounts of multivitamins and trace elements in PN solutions or compositions compliance with recommendations by the American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) is followed. In accordance with A.S.P.E.N. recommendations, an injectable composition is provided which is a parenteral nutrition. The parenteral nutrition or parenteral nutrition composition of this application comprises at least one of an amino acid, a dextrose, a lipid, an electrolyte or a mixture thereof and a trace element component which comprises, consists essentially of or consists of at least one of zinc, copper, selenium, and manganese. This means that, in some cases, the parenteral nutrition contains only one of the trace elements, for example only zinc or copper or manganese or selenium. In other cases, the parenteral nutrition can include more than one trace element, for example, only zinc and copper or a mixture of all four of these elements.
In various embodiments, before any trace element compositions are added to the parenteral nutrition, the parenteral nutrition can comprise trace amounts of zinc, copper, manganese and chromium. For example, in some cases, the parenteral nutrition can comprise inherently and/or as impurities zinc in an amount of less than about 750 μg/L, copper in an amount of less than 75 μg/L, selenium in an amount of less than 15 μg/L, manganese in an amount of less than 13.7 μg/L and chromium in an amount of less than 0.25 μg/mL.
In various aspects, the parenteral nutrition comprises, consists essentially of or consists of from about 800 μg to about 4,000 μg of zinc, from about 40 μg to about 400 μg of copper, from about 4 μg to about 90 μg of selenium, and from about 1 μg to about 80 μg of manganese per about 250 mL to 4000 mL of parenteral nutrition. In some embodiments, the parenteral nutrition comprises, consists essentially of, or consists of 3,000 μg of zinc, 300 μg of copper, 60 μg of selenium, and 55 μg of manganese. In other embodiments, the parenteral nutrition comprises, consists essentially of, or consists of 1,000 μg of zinc, 60 μg of copper, 6 μg of selenium, and 3 μg of manganese.
The elemental zinc can be provided by zinc sulfate or zinc heptahydrate. Copper can be provided by cupric sulfate or cupric sulfate pentahydrate. Manganese can be provided from manganese sulfate or manganese sulfate monohydrate. Selenium can be provided from selenious acid. Thus, in many cases, in the parenteral nutrition, zinc comprises zinc sulfate or zinc sulfate heptahydrate in an amount of from about 13.1 mg to about 13.3 mg, copper comprises, consists essentially of or consists of cupric sulfate or cupric sulfate pentahydrate in an amount of from about 1.1 mg to about 1.2 mg, manganese comprises manganese sulfate or manganese sulfate monohydrate in an amount of from about 0.16 mg to about 0.18 mg and selenium comprises selenious acid in an amount of from about 95 μg to about 99 μg per about 250 mL to 4000 mL of parenteral nutrition.
In some embodiments, in the parenteral nutrition, the zinc sulfate or zinc sulfate heptahydrate comprises, consists essentially of, or consists of an amount of about 13.2 mg, the cupric sulfate or the cupric sulfate pentahydrate comprises, consists essentially of or consists of an amount of about 1.179 mg, the manganese sulfate or manganese sulfate monohydrate comprises, consists essentially of or consists of an amount of about 0.0169 mg and the selenious acid comprises, consists essentially of or consists of an amount of about 98 μg.
In some embodiments, each trace element can be added to a PN solution, one at a time and the injection composition of this application can contain only one of these trace elements, for example, only zinc, copper, manganese, or selenium. This approach allows for tailoring of a PN solution to the needs of a specific patient in need who might have a zinc deficiency only, for example, but is not deficient in copper, manganese, or selenium.
In some embodiments, the trace element comprises selenium. In some embodiments, a selenious acid injection, USP can be indicated for use as a supplement to intravenous solutions given for parenteral nutrition (PN). Administration of selenium in PN solutions helps to maintain plasma selenium levels and to prevent depletion of endogenous stores and subsequent deficiency symptoms. Each mL contains 98.0 μg of selenious acid, USP (equivalent to 60 μg of elemental selenium), nitric acid, national formulary (NF) for pH adjustment (1.8 to 2.4) and water for injection, USP quantity sufficient (q.s.). In some embodiments, the trace element composition comprises selenium or selenious acid and has a pH of from about 3.5 to about 7.9.
In many aspects, selenium is present in the concentration of 60 μg of elemental selenium per mL of the multi-trace elements product which contains zinc sulfate heptahydrate 13.20 mg (equivalent to 3 mg zinc), cupric sulfate pentahydrate 1.18 mg (equivalent to 0.3 mg copper), and manganese sulfate monohydrate 169 μg (equivalent to 55 μg manganese) sulfuric acid for pH adjustment and water for injection q.s. Since selenious acid injection, USP could be administered in parenteral solutions as both, single and a component of multi-trace solutions, it was deemed appropriate to utilize the study of the trace elements injection which also contains zinc, copper and manganese USP for selenious acid injection, USP.
In many aspects, the parenteral nutrition includes at least one of (i) the amino acid which comprises lysine hydrochloride, phenylalanine, leucine, valine, threonine, methionine, isoleucine, tryptophan, alanine, arginine, glycine, proline, histidine, glutamic acid, serine, aspartic acid, tyrosine or a mixture thereof; (ii) the dextrose which comprises dextrose monohydrate; (iii) the lipid which comprises soybean oil, phospholipid, glycerin or a mixture thereof; (iv) the electrolyte which comprises sodium acetate trihydrate, potassium chloride, sodium chloride, potassium acetate, sodium glycerophosphate anhydrous, magnesium sulfate heptahydrate, calcium chloride dihydrate, calcium gluconate or a mixture thereof and (v) water, generally water for injection. In various aspects, the parenteral nutrition solution is nonpyrogenic.
In various aspects, the parenteral nutrition has a pH that varies is from about 3.5 to about 7.9. In some cases, the pH can be from about 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.3, 5.5, 5.7, 5.8, 5.9, 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8 to about 7.9.
It has been surprisingly found that when stored from about 2° C. to about 8° C. for up to about 14 days, the parenteral nutrition which includes the trace element composition of this application is stable remaining in a state or condition that is suitable for administration to a patient and without undergoing a substantial change in the potency of the active agent in the formulation over this specified time period.
In some embodiments, the 14 days stability is measured from the time when the trace elements composition is added at room temperature to the parenteral nutrition. In some embodiments, the 14 days stability is measured from the time when the trace elements composition is added at room temperature to the parenteral nutrition and then stored under refrigeration at 2° C. to about 8° C. In some embodiments, the 14 days stability is measured from the time when the trace elements composition is added at room temperature to the parenteral nutrition and about to be administered to the patient, but is not and then is stored under refrigeration at 2° C. to about 8° C. for the 14 days.
Further, when stored from about 2° C. to about 8° C. for about 14 days the parenteral nutrition maintained a pH from about 5.86 to about 5.50. When stored from about 2° C. to about 8° C. for about 14 days, the parenteral composition of this application comprises, consists essentially of or consists of at least one of (i) no more than 12 particles per mL that are greater than 10 μm; or (ii) no more than 2 particles per mL that are greater than 25 μm. Moreover, when the parenteral nutrition of this disclosure is stored from about 2° C. to about 8° C. for about 14 days, it was surprisingly found that it did not exhibit any significant microbial growth with respect to such microbes as S. aureus, P. aeruginosa, E. coli, C. albicans, A. brasiliensis or a mixture thereof.
Generally parenteral nutrition can be prepared in a dual or triple chamber infusion bag which can have a separate port for the addition of trace elements prior to administration. Aluminium (Al) toxicity in parenteral nutrition solutions (PNS) has been a problem for many patients with impaired kidney function who frequently are in need of parenteral nutrition. In accordance with 21CFR201.323 (revised as of Apr. 1, 2019), regarding aluminum content, the Federal Drug Administration prescribes that the parenteral nutrition solution must contain a warning that the solution contains no more than 25 mcg/L of aluminum which may reach toxic levels with prolonged administration in patients with renal impairment. Preterm infants are at greater risk because their kidneys are immature, and they require large amounts of calcium and phosphate solutions which contain aluminum. Patients with renal impairment, including preterm infants, who receive parenteral levels of aluminum at greater than 4 to 5 mcg/kg/day, accumulate aluminum at levels associated with central nervous system and bone toxicity. Tissue loading may occur at even lower rates of administration. Nevertheless, whether or not the parenteral nutrition of this disclosure includes the trace elements composition as a component, the amount of aluminum in the trace element or trace elements composition should be kept in a daily exposure amount from about 0.1 μg/kg, 0.2, 0.3, 0.4, 0.5 to about 0.6 μg/kg, in any event not to exceed 0.6 μg/kg/day. In many cases, the parenteral nutrition of this application does not contain any aluminum and/or chromium as impurities.
In some embodiments, to the parenteral nutrition comprising at least one of an amino acid, a dextrose, a lipid, an electrolyte or a mixture thereof and a trace element, one or more injectable vitamins can be added. These one or more injectable vitamins can be added individually or together to the parenteral nutrition. These vitamins include one or more of vitamin A (e.g., retinol), vitamin D (e.g., ergocalciferol), vitamin E (e.g., dl-alpha-tocopheryl acetate), vitamin K (e.g., phytonadione), vitamin C (e.g., ascorbic acid), niacinamide, vitamin B2 (e.g., as riboflavin 5-phosphate sodium), vitamin B1 (e.g., thiamine), vitamin B6 (e.g., pyridoxine HCl), dexpanthenol (e.g., d-pantothenyl alcohol), biotin, folic acid, B12 (e.g., cyanocobalamin), or a combination thereof.
An example of vitamins for injection for adults (INFUVITE® Adult) that can be added to the parenteral nutrition before or after the addition of the trace elements include those vitamins in a two vial system listed below.
amg vitamin A equals 3,300 USP units.
b5 mcg ergocalciferol equals 200 USP units.
c10 mg vitamin E equals 10 USP units.
An example of pediatric injectable vitamins that can be added to the parenteral nutrition before or after the addition of the trace elements include those found in INFUVITE® Pediatric.
In various embodiments, the injectable composition containing trace elements is disposed in a container. The container can have a variety of volumes. Typically, the container for the trace elements, before it is added to the parenteral solution, can have a volume of from about 1 mL to about 10 mL. In some examples, the container can have a volume of from about 1 mL, 2, 3, 4, 5, 6, 7, 8, 9 to about 10 mL.
Containers in which the trace elements composition can be stored include any container that is suitable for storing a pharmaceutical. Typical containers can be inert to the trace elements composition. In some embodiments, treated glass containers such as siliconized glass containers are also useful. In some embodiments, plastic containers can also be used that are inert and/or are treated or coated to be inert. Suitable containers include vials, ampules, bottles, cartridges, syringes, pre-filled syringes, plastic IV bags, or the like. The container can be sealed with a closure, such as, for example, a rubber stopper, plunger, lid, top or the like. Suitable inert or non-reactive stoppers may be obtained from several commercial manufacturers. In general, the closures can be made with inert, non-reactive materials with little to no leachables. In some embodiments, closures also include those that are coated or treated with inert materials such as siliconized polymer or Teflon/fluoropolymer coated/treated closures. By way of example and not in limitation of the present application, rubber closures that are suitable in the present application include bromobutyl rubber, chlorobutyl rubber, fluoropolymers, silicones, siliconized bromobutyl rubber, and/or siliconized chlorobutyl rubber.
Non-reactive, non-elastomeric closures are also useful for the trace elements composition. For example, non-rubber closures include metal closures, or plastics such as polyethylene, polypropylene, nylon, polyurethane, polyvinylchloride, polyacrylates, polycarbonates, or the like that cause little to no degradation to the trace elements composition or that are treated or coated so as to cause little or no degradation of the trace elements composition.
In many aspects, useful containers for the injectable compositions of this disclosure include a single use vial or ampule or the containers comprise a vial having a barrier coated stopper and/or an aluminum cap. In some embodiments, the vial or ampule comprises molded glass or polypropylene. In other cases, the container for the injectable compositions of this disclosure can be made of a variety of materials. Non-limiting materials can include glass, a plastic (e.g., polyethylene, polypropylene, polyvinyl chloride, polycarbonate, etc.), the like, or a combination thereof provided that it can both prevent oxygen penetration and minimize aluminum, heavy metals and anions contamination to the composition. In certain embodiments, the container is fabricated from multilayered plastic (PL 2501, PL 2040), also known as a galaxy container, a plastic container primarily for intravenous use. Solutions are in contact with the polyethylene layer of the container and can leach out certain chemical components of the plastic in very small amounts within the expiration period. In some embodiments, the container can be plastic, which minimizes contaminants such as aluminum during storage.
In other aspects, the container can be fabricated from glass as a single use 1 mL vial, for example, a Type I glass vial for injectable products. In some aspects, the pharmaceutical compositions of this disclosure can also be stored in glass vials or ampules, for example, single use 1 mL glass vials or ampules. In various embodiments, the container can be Type I glass (e.g., molded glass, tubing glass, glass coated with silica, etc.), plastic (e.g., polymeric materials such as polypropylene, COC, COP, multi-shell, etc.) or the like. In some embodiments, Type I glass can be a borosilicate glass, which is relatively inert with good chemical resistance.
In some cases, the injectable composition is dispensed into a container that can be a single use container, for example, a single use vial or ampule or the container comprises a vial having a barrier coated stopper and/or an aluminum cap. As described above, the vial or ampule can be made of molded glass or polypropylene. The container may, optionally, further comprise a light barrier. In certain embodiments, the light barrier can be an aluminum material disposed over a pouch.
The injectable composition of trace elements can be dispensed, for example, in 1 mL single dose vial or can be dispensed in 10 mL multi-dose vials. In some cases, the vials can be prepared of Pyrex glass or sprayed or coated with silica or can be made of plastic material. This is to minimize the amount of aluminum that may potentially be leaching from a glass vial to a daily exposure amount not to exceed 0.6 μg/kg of body weight of a patient in need of trace elements treatment or no more than 25 μg/L of intravenous (IV) infusion. In some cases, the daily exposure amount of aluminum can vary from about 0.1 μg/kg to about 0.6 μg/kg of aluminum. In other cases, there is no detectable aluminum present in the injectable compositions of this application.
To ensure that the amount of aluminum in a multi-component PN is maintained below 25 μg/L (CFR 201.323), choosing a low aluminum content vial such as Gerresheimer Gx®33 is expected to reduce the amount of aluminum leached from a glass container. The West 4432 FluroTec® B2-40 coated stopper can be used because the barrier technology of the FluroTec® film, in combination with the B2-40 coating, utilized in the West 4432 FluroTec® B2-40 stopper can significantly reduce potential sources of particulate contamination, specifically by reducing inorganic and organic leachable substances and by providing lubricity without the need for free silicone oil. Using glass vials with or without a coated stopper can provide a targeted shelf-life of 24 months.
The container in which the injectable compositions are held may affect the level of certain components. In certain embodiments, the injectable composition can be enclosed in a single-use container. These containers can include, for example, vials, ampules, bag, or syringes.
As previously discussed, the pH range for the injectable composition of either parenteral nutrition and/or injectable composition comprising trace elements varies from about 1.0 to about 9. This pH may disrupt the plastic coating or silicon coating inside the glass container and aluminum, heavy metals and anions could leach during the shelf life of the product, especially over prolonged storage of the product.
Elemental impurities in the finished drug products described in this disclosure include without limitation Cd, Pb, As, Hg, Co, V, Ni, Tl, Au, Pd, Ir, Os, Rh, Ru, Se, Ag, Pt, Li, Sb, Ba, Mo, Cu, Sn, and Cr. In some embodiments, the injectable composition comprising trace elements or the parenteral nutrition comprising the injectable composition include 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, to about 5.0 ppb of these impurities. However, the levels of specific metal ions are monitored in the finished drug product units over the entire shelf life but are not quantified in the bulk Water for Injection (WFI), USP used to prepare the batch. Rather, the level of soluble metals and any other electrolytes is measured in the bulk WFI, USP via measurement of conductivity.
In some embodiments, the permitted daily limits (PDL) of the injectable trace elements of the current application include, as little as possible of cadmium, lead, arsenic, mercury, cobalt, vanadium, nickel, thallium, gold, palladium, iridium, osmium, rhodium, ruthenium, silver, platinum, lithium, antimony, barium, molybdenum, tin, chromium, aluminum, boron, calcium, iron, potassium, magnesium, sodium, tungsten, and/or silicon.
In some embodiments, the permitted daily limits (PDL) of the injectable trace elements of the current application are not to exceed, for example, about 0.4 μg/day of cadmium, about 0.5 μg/day of lead, about 0.4 μg/day of arsenic, about 0.4 μg/day of mercury, about 0.4 μg/day of cobalt, about 0.4 μg/day of vanadium, about 0.4 μg/day of nickel, about 0.4 μg/day of thallium, about 0.4 μg/day of gold, about 0.4 μg/day of palladium, about 0.4 μg/day of iridium, about 0.4 μg/day of osmium, about 0.4 μg/day of rhodium, about 0.4 μg/day of ruthenium, about 0.4 μg/day of silver, about 0.4 μg/day of platinum, about 0.4 μg/day of lithium, about 0.4 μg/day of antimony, about 0.4 μg/day of barium, about 0.4 μg/day of molybdenum, about 0.4 μg/day of tin, about 0.4 μg/day of chromium, about 0.4 μg/day of aluminum, about 0.4 μg/day of boron, about 0.4 μg/day of calcium, about 0.4 μg/day of iron, about 0.4 μg/day of potassium, about 0.4 μg/day of magnesium, about 0.4 μg/day of sodium, about 0.4 μg/day of tungsten, and/or about 0.4 μg/day of silicon,
In certain embodiments, the trace elements can further comprise within the container, headspace gas that includes oxygen in an amount of from about 0.5% v/v to about 5.0% v/v, or from about 0.5% v/v to about 4.0% v/v, or from about 0.5% v/v to about 3.5% v/v, from about 0.5% v/v to about 3.0% v/v, or from about 0.5% v/v to about 2.5% v/v, or from about 0.5% v/v to about 2.0% v/v, or from about 0.5% v/v to about 1.5% v/v, or from about 0.5% v/v to about 1.0% v/v, or in some cases from about 0.1% v/v to about 0.5% v/v, or from about 0.1% v/v to about 0.4% v/v, or from about 0.1% v/v to about 0.3% v/v, or from about 0.1% v/v to about 0.2% v/v. For the sake of clarity and the ease of discussion and measurement, these values are taken for the injectable composition at the time of its manufacture (“time zero” data point), or during and up to 1 month from time zero. Additional time points beyond the 1 month from time zero data point may provide similar headspace oxygen levels.
Without wishing to be bound by a particular theory, the dissolved oxygen levels, and the head space oxygen levels within a sealed container of injectable compositions described herein may reach an equilibrium at some time point during its shelf-life. Such equilibrium may be maintained for a very short time, i.e., for a few seconds, or for a very long time, i.e., for several months. Such equilibrium may on occasion be disturbed by simple agitation. Therefore, it should be recognized that dissolved oxygen levels and headspace oxygen levels may fluctuate from one time point to another in terms of absolute numbers. However, the numbers are expected to stay within the ranges disclosed herein. Occasionally, one number (e.g., dissolved oxygen) may exceed or fall out of a certain range (e.g., from about 0.5 to about 3.0 PPM) at a 15 day time point but may fall within that range at some other time point (e.g., 30 day time point, or later). Therefore, in some aspects, the ranges, subranges, and specific data points disclosed and discussed herein are suitable for time points beyond the time zero- and 1-month time points. In one aspect, the time points could be extended to from about 2 months, 3 months, 6 months, 9 months, 12 months, 15 months, 18 months, and about 24 months.
In some cases, the total amount of oxygen in the sealed container of trace elements may be an appropriate measure to evaluate the stability of the injectable compositions. For example, the total amount of oxygen within the container may be arrived at by adding up the amount of dissolved oxygen in the carrier and the amount of head space oxygen. These values can also be expressed independently in separate units (i.e., dissolved oxygen as ppm and head space oxygen as % v/v). An example would be that the parenteral nutrition or the injectable composition of trace elements contains a dissolved oxygen level of from about 0.0 ppm to 5.0 ppm, more specifically, from about 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, to about 5.0 ppm and a head space oxygen level of about 0.5% v/v to about 4.0% v/v. In certain embodiments, the total amount of oxygen within the container is expected to increase upon filling into vials due to the inherent aeration of the drug product during filling (e.g., splashing). Based on what has been seen for other drug products, the dissolved oxygen in the finished units (e.g., vials) is expected to be in the range of from about 0.0 ppm to about 7.0 ppm, more specifically, from about 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9 to about 7.0 ppm.
The amount of oxygen present in the headspace of the container holding the trace elements can be controlled by filling the headspace with an inert gas, such as nitrogen or argon. Alternatively, the head space oxygen may be controlled by vacuum operation without using an inert gas. In another aspect, the head space oxygen may be controlled by a combination of vacuum operation and inert gas overlay. In one other aspect, the head space oxygen is controlled by repeated pulses of vacuum and inert gas overlay in tandem such that the process may start first with vacuum operation followed by inert gas overlay followed by vacuum operation. The combination of vacuum operation and inert gas overlay (or inert gas overlay and vacuum operation) is considered one pulse when both steps are used together. A typical head space control operation may comprise from one to eight pulses. Typically, there could be two, three, four, or five pulses. Each pulse could last from about one tenth of one second to five seconds or from five to fifteen seconds when conducted by automated high-speed equipment custom designed for this specific purpose. In some embodiments, the pulse may last from about 0.1 to about 2.0 seconds. In some embodiments, the pulse may last from about 0.1 to about 1.0 seconds, or from about 0.1 to about 0.4 seconds. When done using manual methods, each pulse could take up to 30-60 seconds or longer.
In many cases, the headspace oxygen of the containers useful for the injectable compositions of this disclosure include (i) from about 0.5% v/v to about 5.0% v/v from the time of manufacture to about 6 months from manufacture when stored at temperatures from 25° C. to 60° C. or (ii) from about 0.5% v/v to about 10.0% v/v from the time of manufacture to about 6 months from manufacture when stored at temperatures from 25° C. to 60° C.; and the dissolved oxygen present in the injectable composition can be in an amount from about 0.1 parts per million (ppm) to about 9 ppm from the time of manufacture to about 1 month from manufacture when stored at room temperature, wherein the composition is enclosed in a single-use container having a volume of from about 1 mL to about 10 mL.
During a manufacturing process, in one embodiment, dissolved oxygen levels are controlled via sparging with an inert gas. Additionally, a blanket of inert gas (e.g., nitrogen, argon, helium) can be maintained throughout manufacturing and storage to control atmospheric oxygen exposure, while an opaque container (stainless steel or amber glass) is selected to protect the formulation from exposure to light.
In some embodiments, it was found that the trace elements injectable composition of this application containing at least one of zinc, copper, manganese and selenium or a mixture thereof, a USP injectable product, was not sensitive to oxygen and thus, a nitrogen blanket/sparging during admixing was not required during the manufacturing of the trace elements injectable composition.
In some embodiments, the injectable composition is preservative-free. As used herein, preservative-free includes compositions that do not contain any preservative. Thus, the composition does not contain, for example, benzalkonium chloride, methyl, ethyl, propyl or butylparaben, benzyl alcohol, phenylethyl alcohol, or benzethonium.
In some embodiments, one or more preservatives can be incorporated into the injectable pharmaceutical composition described in this disclosure, especially in a multi-dose injectable composition. Preservatives can be introduced into a pharmaceutical solution to kill bacteria, yeast, and mold. The bacteria, yeast, and mold can be introduced accidentally when multiple aliquots are withdrawn from a container which holds multiple doses of a medicament.
A number of preservatives are available which can kill or prevent the growth of commonly encountered contaminants; these contaminants include, but are not limited to the bacteria P. aeruginosa, E. coli and S. aureus; the yeast C. albicans; and the mold A. brasiliensis. In various embodiments, the preservative comprises benzyl alcohol in an amount of 0.9% by weight based on a total weight of the injectable composition.
The preservative or preservatives are present in an amount which is effective to impart the desired preservative characteristics and allows the final composition to comply with the European Pharmacopoeia 2011 Test for Efficacy of Antimicrobial Preservation, satisfying at least the B criteria for parenterals, and the United States Pharmacopeia 2011 Guidelines for Antimicrobial Effectiveness Testing for Category 1 (injectable) products.
The stable injectable compositions of the present application can be made by mixing from about 800 μg to about 4,000 μg of zinc, from about 40 μg to about 400 μg of copper, from about 4 μg to about 90 μg of selenium, and from about 1 μg to about 80 μg of manganese with water to form 1 mL of the injectable composition.
The components of the trace elements can be mixed in any order. For example, one or more trace elements can be added together and then mixed with water to form a solution having the desired concentration. The mixed trace elements solution pH can be adjusted to a desired value and then the pH adjusted solution can, optionally, be filtered through one or more 0.22 μm sterile filters. The filtered solution can then be filled into the desired container to form the injectable trace elements solution suitable for addition to a parenteral nutrition.
In some embodiments, the stable injectable compositions of trace elements comprise, consist essentially of, or consist of 3,000 μg of zinc, 300 μg of copper, 60 μg of selenium, and 55 μg of manganese per 1 mL of the injectable composition. These trace element compositions are useful for applications to adult and/or pediatric patients.
In other embodiments, the stable injectable composition of trace elements comprise, consist essentially of, or consist of 1000 μg of zinc, 60 μg of copper, 6 μg of selenium, and 3 μg of manganese per 1 mL of the injectable composition. These trace element injectable compositions are useful for applications to neonate patients.
In many aspects, the trace elements of the injectable composition are elemental metals, for example, the zinc is elemental zinc, the copper is elemental copper, the selenium is elemental selenium, the manganese is elemental manganese and the water is sterile water for injection. In other aspects, the trace elements are obtained from salts of these metals. For example, the elemental zinc is from zinc sulfate or zinc sulfate heptahydrate, the elemental copper is from cupric sulfate or cupric sulfate pentahydrate, the elemental manganese is from manganese sulfate or manganese sulfate monohydrate and the elemental selenium is from selenious acid. In these compositions, at least one of the zinc comprises from about 0.23 wt. percent to about 1.33 wt. percent, the copper comprises from about 0.05 wt. percent to about 0.13 wt. percent, the manganese comprises from about 0.026 wt. percent to about 0.013 wt. percent, the selenium comprises from about 0.002 wt. percent to about 0.02 wt. percent, or the water comprises from about 96 wt. percent to about 98.5 of the injectable composition based on a total weight of the injectable composition.
In many cases, in the trace metal injectable composition prepared by the above method, the zinc is sourced from zinc sulfate heptahydrate at a dose of from about 2.5 to about 7 mg/day, the copper is sourced form cupric sulfate pentahydrate at a dose of from about 0.5 to about 1.5 mg/day, the manganese is sourced from manganese sulfate monohydrate at a dose of from about 0.15 to about 0.8 mg/day, and the selenium is sourced from selenious acid at a dose of from about 20 to about 60 μg/day. In some other embodiments, the method of preparing the trace metal composition of this disclosure provides an injectable composition where the zinc is zinc sulfate heptahydrate at a dose of from about 2.5 to about 7 mg/day, the copper is cupric sulfate pentahydrate at a dose of from about 0.5 to about 1.5 mg/day, the manganese is manganese sulfate monohydrate at a dose of from about 0.015 to about 0.08 mg/day, and the selenium is sourced selenious acid at a dose of from about 20 to about 60 μg/day.
In some embodiments, the one or more trace elements are indicated for use as a supplement to intravenous solutions given for parenteral nutrition. Administration of the solution in parenteral TPN solutions helps to maintain plasma levels of one or more elements: zinc, copper, manganese, selenium or optionally chromium and to prevent depletion of endogenous stores of these trace elements and subsequent deficiency symptoms. In some embodiments, the one or more trace elements can be used to maintain, supplement or increase one or more trace elements: zinc, copper, manganese, selenium or optionally chromium.
The trace element can be elemental and from any salt, hydrate, and/or solvate forms thereof. For example, the elemental zinc can be from, for example, zinc gluconate trihydrate, zinc gluconate, zinc chloride, zinc sulfate, zinc sulfate heptahydrate, zinc oxide, zinc sulfide, zinc trisodium, zinc carbonate, zinc acetate, zinc citrate, zinc lactate, zinc hydroxide or a combination thereof. For example, the elemental manganese can be from, for example, manganese sulfate, manganese sulfate monohydrate, manganese chloride, manganese gluconate, manganese glycerophosphate, manganese carbonate, manganese hydroxide, or a combination thereof. For example, the elemental copper can be from, for example, cupric sulfate, cupric sulfate pentahydrate, cupric hydroxide, cupric oxide, copper carbonate, copper citrate, copper gluconate, or a combination thereof. For example, the elemental selenium can be from, for example, selenious acid, sodium selenite, disodium selenite, sodium hydrogen selenite, potassium selenite, zinc selenite, copper selenite, manganese selenite or a combination thereof. In some embodiments, the zinc selenite, copper selenite, or manganese selenite or a combination thereof are not readily soluble in water but at a pH of between about 1.5 to about 3.5, the zinc selenite, copper selenite, or manganese selenite or a combination are water soluble. For example, the elemental chromium can be from, for example, chromium trichloride, chromium trichloride hexahydrate, chromium trisulfate or a combination thereof.
The trace elements can be in the trace elements composition in the following ratios:
These ratios are elemental to elemental ratios (e.g., elemental Zn to elemental Cu, elemental Zn to elemental Mn, etc.). In some embodiments, these ratios can also be the ratios for the newer formulations that have no or little chromium. In some embodiments, the trace elements are in a ratio of: elemental zinc to elemental copper from about 100:1, 80:1, 70:1, 60:1, 50:1, 30:1, 20:1, 15:1, 10:1, 5:1, 2.5:1 to about 2:1; elemental zinc to elemental manganese in a ratio from about 4000:1, 3,000:1, 2,000:1, 1,000:1, 500:1, 200:1, 100:1, 60:1, 55:1, 50:1, 45:1, 40:1, 35:1, 30:1, 25:1, 20:1, 15;1, 10:1 to about 5:1; elemental zinc to elemental selenium in a ratio from about 1000:1, 500:1, 200:1, 100:1, 90:1, 85:1, 83.3:1, 80:1, 75:1, 70:1, 65:1, 60:1, 55:1, 50:1, 45:1, 40:1, 35:1, 30:1, 25:1, 20:1, 15:1, 10:1 to about 9:1; elemental copper to elemental selenium in a ratio from about 100:1, 50:1, 20:1, 15:1, 10:1, 5:1, 3:1, 2:1, 1:1 to about 0.4:1; elemental copper to elemental manganese in a ratio from about 400:1, 300:1, 200:1, 100:1, 90:1, 85:1, 80:1, 75:1, 70:1, 65:1, 60:1, 55:1, 50:1, 45:1, 40:1, 35:1, 30:1, 25:1, 20:1, 15:1, 10:1, 5.5:1, 5:1, 2.5:1, 2:1, 1:1 to about 0.5:1; and/or elemental selenium to elemental manganese in a ratio from about 100:1, 90:1, 75:1, 50:1, 30:1, 20:1, 10:1, 5:1, 3;1, 2:1, 1.1:1, 1:1, 0.5:1, 0.4:1 to about 0.05:1.
In some embodiments, the trace elements can be in the trace elements composition in the following elemental ratios: Zn/Cu: 10:1, Zn/Se: 50:1, Zn/Mn: 55:1, Cu/Se: 5:1, Cu/Mn: 5.5:1, and/or Se/Mn: 1.1:1. In some embodiments, these can lead to the trace elements composition stability and the parenteral nutrition stability.
Exemplary trace elements compositions for use in the current application include Multitrace®-4, available from American Regent Shirley, NY, USA.
Exemplary trace elements compositions for use in the current application can also include Multitrace®-5, available from American Regent Shirley, NY, USA.
Exemplary trace elements compositions that can be used in the current application can include those without chromium, some of which are listed below.
Trace Elements Compositions having 4 trace elements with no chromium are shown below.
In some embodiments, selenious acid, is a weak acid and it can form salts with metal oxides and hydroxides, such as potassium, zinc, copper, manganese, calcium, or molybdenum. It can also form salts with ammonia (e.g., ammonium selenite) and organic bases.
In various embodiments the method includes adding sodium hydroxide or sulfuric acid to adjust the pH of the trace elements. In many instances the pH of the trace elements composition varies in a range from about 1.0 to about 9. In some instances, the pH of the trace elements composition can be about 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8.0, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9 to about 9.0.
In some embodiments, the pH of the trace elements composition can be adjusted using pH adjusting agents including organic or inorganic acids and bases. In some embodiments, the pH can be adjusted using pH adjusting agents including organic or inorganic acids and bases. Suitable acids include, but are not limited to, inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid or the like, and organic acids such as acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid or the like. Suitable inorganic bases include, but are not limited to, sodium hydroxide, potassium hydroxide, K2CO3, Na2CO3, K3PO4, Na3PO4, K2HPO4, Na2HPO4, organic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines, ethanolamine, 2-diethylaminoethanol, lysine, arginine, histidine or the like.
In various embodiments, gamma radiation is used in a terminal sterilization step for making the trace elements, which involves utilizing ionizing energy from gamma rays that penetrate deeply into a vial containing the trace elements of this disclosure. Gamma rays are highly effective in killing microorganisms, they leave no residues, nor do they have sufficient energy to impart radioactivity to the apparatus. Gamma rays can be employed when the injectable composition is a vial or ampule because gamma ray sterilization does not require high pressures or vacuum conditions, and thus the container of the injectable composition is not stressed.
In other embodiments, electron beam (e-beam) radiation may be used to sterilize the injectable trace elements described in this disclosure. E-beam radiation comprises a form of ionizing energy, which is generally characterized by low penetration and high-dose rates. E-beam irradiation is similar to gamma ray processing in that it alters various chemical and molecular bonds on contact, including the reproductive cells of microorganisms. Beams produced for e-beam sterilization are concentrated, highly charged streams of electrons generated by the acceleration and conversion of electricity.
Autoclaving is usually performed in an autoclave. An autoclave uses pressurized steam as their sterilization agent. The basic concept of an autoclave is to have each item sterilized—whether it is a liquid, plastic ware, or glassware—come in direct contact with steam at a specific temperature and pressure for a specific amount of time. Time, steam, temperature, and pressure are the four main parameters required for a successful sterilization using an autoclave.
The amount of time and temperature required for sterilization of a vial or ampule containing the injectable composition can use higher temperatures for sterilization and requires shorter times. The most common temperatures used are 121° C. and 132° C. In order for steam to reach these high temperatures, steam has to be pumped into the chamber at a pressure higher than normal atmospheric pressure. In various embodiments, a terminal sterilization feasibility study confirmed that the finished product is stable and can maintain its characteristics upon terminal sterilization. Thus, the trace elements injectable compositions of this application are terminally sterilized at 122.2° C. for 15 minutes.
In many aspects, the present disclosure also provides methods for preparing sterile pharmaceutical compositions. Examples of suitable procedures for producing sterile pharmaceutical drug products include, but are not limited to, terminal moist heat sterilization, ethylene oxide, radiation (i.e., gamma and electron beam), and aseptic processing techniques. Any one of these sterilization procedures can be used to produce the sterile pharmaceutical compositions described herein.
Sterile pharmaceutical compositions may also be prepared using aseptic processing techniques. Sterility is maintained by using sterile materials and a controlled working environment. The containers and apparatus are sterilized, preferably by heat sterilization, prior to filling. Then, the container is filled under aseptic conditions, such as by passing the composition through a filter and filling the units. Therefore, the compositions can be sterile filled into a container to avoid the heat stress of terminal sterilization.
The trace elements of the current application include lower daily amounts of at least one of zinc, copper, manganese, or chromium per 1 mL of the composition than currently available products.
The trace elements in solution can be added to the parenteral nutrition typically at a port of the parenteral nutrition container using aseptic technique and, optionally, under a laminar flow hood. The parenteral nutrition can have essential and non-essential amino acids, dextrose, water, lipids, and/or electrolytes in it.
In many embodiments, a method of making a parenteral nutrition containing trace elements is provided. The method comprises adding trace elements to a parenteral nutrition, the trace elements comprising at least about 800 μg to about 4,000 μg of zinc, about 40 μg to about 400 μg of copper, about 4 μg to about 90 μg of selenium, and about 1 μg to about 80 μg of manganese per 250 mL to about 4000 mL of the parenteral nutrition, the parenteral nutrition comprising at least one of amino acid, a dextrose, a lipid, an electrolyte, or a mixture thereof. In some cases, the parenteral nutrition obtained by this method contains 3,000 μg of zinc, 300 μg of copper, 60 μg of selenium, and 55 μg of manganese. In other embodiments, the parenteral nutrition obtained by this method contains 1000 μg of zinc, 60 μg of copper, 6 μg of selenium, and 3 μg of manganese.
In other cases, in the parenteral nutrition, the zinc comprises zinc sulfate or zinc sulfate heptahydrate in an amount of about 13.1 mg to about 13.3 mg, the copper comprises cupric sulfate or cupric sulfate pentahydrate in an amount of about 1.1 mg to about 1.2 mg, the manganese comprises manganese sulfate or manganese sulfate monohydrate in an amount of about 0.16 mg to about 0.18 mg and the selenium comprises selenious acid in an amount of about 95 μg to about 99 μg per about 250 mL to 4000 mL of parenteral nutrition. In another embodiment, the parenteral nutrition obtained by this method comprises zinc sulfate or zinc sulfate heptahydrate in an amount of about 13.2 mg, cupric sulfate or cupric sulfate pentahydrate of the parenteral nutrition in an amount of from about 1.179 mg, manganese sulfate or manganese sulfate monohydrate in an amount of about 0.0169 mg and the selenious acid is in an amount of about 98 μg per 250 mL to 4000 mL of parenteral nutrition.
In some embodiments, there is a method of making a parenteral nutrition containing trace elements and at least one of (i) the amino acid comprises lysine hydrochloride, phenylalanine, leucine, valine, threonine, methionine, isoleucine, tryptophan, alanine, arginine, glycine, proline, histidine, glutamic acid, serine, aspartic acid, tyrosine or a mixture thereof; (ii) the dextrose comprises dextrose monohydrate; (iii) the lipid comprises soybean oil, phospholipid, glycerin or a mixture thereof; or (iv) the electrolyte comprises sodium acetate trihydrate, potassium chloride, sodium chloride, potassium acetate, sodium glycerophosphate anhydrous, magnesium sulfate heptahydrate, calcium chloride dihydrate, calcium gluconate or a mixture thereof. In the parenteral nutrition provided by this method, the dextrose comprises dextrose 5%, dextrose 10%, dextrose 20%, dextrose 25%, or dextrose 50% in water.
The parenteral nutrition provided by this method is stable when stored from about 2° C. to about 8° C. for up to about 14 days. In many instances, when stored from about 2° C. to about 8° C. for about 14 days, the parenteral nutrition maintained a pH from about 5.86 to about 5.50 and, in some cases, a pH from about 4.5 to about 7. Further, when stored from about 2° C. to about 8° C. for about 14 days, the parenteral nutrition comprises at least one of (i) no more than 12 particles per mL that are greater than 10 μm; or (ii) no more than 2 particles per mL that are greater than 25 μm. In other cases, when stored from about 2° C. to about 8° C. for about 14 days, the parenteral nutrition did not exhibit microbial growth when in contact with bacteria such as S. aureus, P. aeruginosa, E. coli, C. albicans, A. brasiliensis or a mixture thereof.
After addition of the trace elements to the parenteral nutrition, the parenteral nutrition can then be connected to an IV tube set and the parenteral nutrition administered via infusion over the desired period of time to the patient (e.g., 24 hours).
The parenteral nutrition can be used to provide a source of calories, protein, electrolytes, or essential fatty acids for adult patients requiring parenteral nutrition. In some embodiments, the method of the present application includes administering to a patient in need thereof an injectable parenteral nutrition formulation comprising at least one of amino acid, a dextrose, a lipid, an electrolyte, or a mixture thereof. Therefore, one or more trace elements (e.g., zinc, copper, selenium, manganese) can be added to injectable amino acids, dextrose, water, lipids, electrolytes or a combination thereof based on the specific need of the patient.
The trace elements can be a single trace element (e.g., zinc alone) or a combination of trace elements (e.g., zinc, copper, selenium, manganese) that can be added to the injectable amino acids, dextrose, water, lipids, electrolytes or a combination thereof based on the specific need of the patient.
In various other embodiments, the parenteral nutrition comprises from about 800 μg to about 4,000 μg of zinc, from about 40 μg to about 400 μg of copper, from about 4 μg to about 90 μg of selenium, and from about 1 μg to about 80 μg of manganese per 250 mL to 4000 mL of the parenteral nutrition. In some aspects, the parenteral nutrition comprises, consists essentially of, or consists of 3,000 μg of zinc, 300 μg of copper, 60 μg of selenium, and 55 μg of manganese. In other aspects, the parenteral nutrition comprises, consists essentially of, or consists of 1,000 μg of zinc, 60 μg of copper, 6 μg of selenium, and 3 μg of manganese.
In other aspects, the zinc comprises zinc sulfate or zinc sulfate heptahydrate in an amount of about 13.1 mg to about 13.3 mg, the copper comprises cupric sulfate or cupric sulfate pentahydrate in an amount of about 1.1 mg to about 1.2 mg, the manganese comprises manganese sulfate or manganese sulfate monohydrate in an amount of about 0.16 mg to about 0.18 mg and the selenium comprises selenious acid in an amount of about 95 μg to about 99 μg per about 250 mL to 4000 mL of parenteral nutrition. In yet other aspects, the zinc sulfate or zinc sulfate heptahydrate is in an amount of about 13.2 mg, the cupric sulfate or the cupric sulfate pentahydrate is in an amount of about 1.179 mg, the manganese sulfate or manganese sulfate monohydrate is in an amount of about 0.169 mg and the selenious acid is in an amount of about 98 μg.
The parenteral nutrition, before the trace metal is added to it, can comprise at least one of amino acid that provides a source of calories, the amino acid comprises lysine hydrochloride, phenylalanine, leucine, valine, threonine, methionine, isoleucine, tryptophan, alanine, arginine, glycine, proline, histidine, glutamic acid, serine, aspartic acid, tyrosine or a mixture thereof. The dextrose useful in the parenteral nutrition includes dextrose monohydrate, anhydrous and hydrous forms of dextrose, for example, dextrose 5%, dextrose 10%, dextrose 20%, dextrose 25%, or dextrose 50% in water or a combination thereof. Useful lipids include without limitation soybean oil, phospholipid, glycerin, or a mixture thereof. The electrolyte can comprise sodium acetate trihydrate, potassium chloride, sodium chloride, potassium acetate, sodium glycerophosphate anhydrous, magnesium sulfate heptahydrate, calcium chloride dihydrate, calcium gluconate or a mixture thereof.
In various aspects, the parenteral nutrition that provides a source of calories, protein, electrolytes, or essential fatty acids is nonpyrogenic and can have a pH that can vary from about 4.5 to about 7.
It has been surprisingly found that the parenteral nutrition used in the method of providing a source of calories, protein, electrolytes, or essential fatty acids is stable when stored from about 2° C. to about 8° C. for up to about 14 days. In many aspects, the stable parenteral nutrition when stored from about 2° C. to about 8° C. for about 14 days can maintain a pH from about 5.50 to about 5.86. In various instances, when stored from about 2° C. to about 8° C. for about 14 days, the parenteral nutrition comprises at least one of (i) no more than 12 particles per mL that are greater than 10 μm; or (ii) no more than 2 particles per mL that are greater than 25 μm. Also, when stored at from about 2° C. to about 8° C. for about 14 days, the parenteral nutrition did not exhibit microbial growth caused by such microbes as, for example, S. aureus, P. aeruginosa, E. coli, C. albicans, A. brasiliensis or a mixture thereof.
In various embodiments, a method of maintaining plasma trace elements in a patient in need thereof is provided. The method of maintaining plasma trace elements comprises administering at least an injectable composition to the patient, the injectable composition comprising water, about 2000 μg to about 4,000 μg of zinc, about 200 μg to about 400 μg of copper, about 30 μg to about 90 μg of selenium, and about 20 μg to about 80 μg of manganese per 1 mL of the injectable composition. In many aspects, when the injectable composition is stored from about 2° C. to about 8° C. for about 14 days, then the injectable composition comprises at least one of (i) no more than 12 particles per mL that are greater than 10 μm; or (ii) no more than 2 particles per mL that are greater than 25 μm. In other aspects, when stored from about 2° C. to about 8° C. for about 14 days, the injectable composition did not exhibit microbial growth caused by any one of several microbes, for example, S. aureus, P. aeruginosa, E. coli, C. albicans, A. brasiliensis or a mixture thereof. In many cases, when stored from about 2° C. to about 8° C. for about 14 days, the injectable composition maintained a pH from about 5.50 to about 5.86.
In various embodiments, the method of maintaining plasma trace elements in a patient in need thereof further comprises treating patients having a negative nitrogen balance. In other embodiments, the method of maintaining plasma trace elements in a patient in need thereof further comprises the use of the electrolyte as a supplement to intravenous solutions given for parenteral nutrition to maintain plasma levels of anyone of zinc, copper, manganese or selenium or a mixture thereof to prevent depletion of endogenous stores of these trace elements and subsequent deficiency symptoms.
These and other aspects of the present application will be further appreciated upon consideration of the following examples, which are intended to illustrate certain particular embodiments of the application, but they are not intended to limit its scope, as defined by the claims.
Examples of the stable parenteral compositions containing trace elements such as zinc, copper, selenium, and manganese are described in some of the examples below. The examples also include parenteral nutrition solutions with or without trace elements such as zinc, copper, selenium, and manganese. The trace elements of the current application include lower daily amounts of at least one of zinc, copper, manganese, or chromium per 1 mL of the trace element solution than currently available products. When added to parenteral solution the parenteral solution containing the trace elements remained stable for about at least 3 days up to 14 days under refrigeration.
In this example, an injectable sterile, nonpyrogenic solution including trace elements of zinc, copper, manganese, and selenium is prepared by mixing these elements with water for injection to form 1 mL of injectable composition. This composition contains not more than 1.0 μg chromium in conformance with USP formulation requirements. The formulation is summarized in Table 3.
Each mL of the trace elements solution contains: zinc sulfate, USP (heptahydrate) 13.20 mg (equivalent to 3 mg zinc); cupric sulfate, USP (pentahydrate) 1.18 mg (equivalent to 0.3 mg copper); selenious acid, USP 98 pig (equivalent to 60 pig selenium); manganese sulfate, USP (monohydrate) 169 pig (equivalent to 55 pig manganese); and water for injection, USP q.s. The pH range of the solution is 1.5 to 3.5 and may be adjusted with sulfuric acid, NF.
This example discusses studies of known parenteral nutrition admixed with the injectable compositions of trace elements described in this application. Studies of parenteral nutrition (PN) solutions admixed with the injectable compositions of trace elements of this application were conducted over a 3 day and 14-day interval. PN solutions used in these studies were CLINIMIX and KABIVEN® as listed in Table 4 below.
CLINIMIX E 4.25/25 contained 24% dextrose concentration and was used in a three (3)-day study. Because this formulation was discontinued, CLINIMIX E 4.25/10 which contained 10% dextrose concentration was used in the 14-day study. The same KABIVEN® formulation described in Table 2 was used in both 3-day and 14-day studies.
In these studies, 1 mL of the injectable trace element composition was added to two (2) L IV PN infusion bags of KABIVEN® and CLINIMIX E. KABIVEN® admixtures with and without 1 mL of Injectable trace element composition were stored for up to 3 days (72 hours) at 2-8° C. Upon testing as described below the KABIVEN® admixtures met the acceptance criteria of a “no growth” protocol. CLINIMIX E admixtures with and without the introduction of Injectable trace element composition found the admixtures stored for up to 3 days (72 hours) at either 2° C. to K° C. or 20° C. to 25° C. met the acceptance criteria of “no growth” protocol. Based on the results of these admixture studies, we concluded that the admixture of injectable trace element composition in 2 L infusion PN solutions of KABIVEN® and CLINIMIX E supported the manufacturers' original package insert labeling recommendations for KABIVEN® and CLINIMIX E.
For example, for KABIVEN®, the labeling recommendation states that “KABIVEN® should be used immediately after mixing and the introduction of additives. If not used immediately, the storage time and conditions prior to use should not be longer than 24 hours at 2° to 8° C. (36° to 46° F.). After removal from storage at 2° to 8° C. (36° to 46° F.), the admixture should be infused within 24 hours. Any mixture remaining must be discarded.”
For CLINIMIX E the labeling recommendations caution “Use promptly after mixing. Any storage with additives should be under refrigeration and limited to a period, no longer than 24 hours. After removal from refrigeration, use promptly and complete the infusion within 24 hours. Any mixture remaining must be discarded.”
In order to establish stability data for parenteral nutrition admixed with the injectable compositions of trace elements, we conducted a stability study of injectable trace element composition (trace elements injection-4, USP) in parenteral nutrition admixtures (assay test); a pH study of parenteral nutrition (PN) admixtures upon addition of injectable trace element composition (trace elements injection-4, USP); a compatibility study of injectable trace element composition (trace elements injection-4, USP) in parenteral nutrition admixtures; and a reduced inoculation antimicrobial effectiveness study for the injectable trace element composition (trace elements injection-4, USP) in parenteral nutrition admixtures.
These studies were intended to support the USP <797> medium risk storage for up to 9 days under refrigeration (2° to 8° C. (36° to 46° F.)). At the time of initiating the 14-day admixture studies, it was noted that the current package insert (PI) labeling of KABIVEN® and CLINIMIX now includes the following beyond use dating (BUD) statements for storage:
For KABIVEN®: in the absence of additives, once activated, KABIVEN® remains stable for 48 hours at 25° C. (77° F.). If not used immediately, the activated bag can be stored for up to 7 days under refrigeration (2° to 8° C. (36° to 46° F.)). After removal from refrigeration, the activated bag should be used within 48 hours. For CLINIMIX E: Storage after removal of overwrap: once removed from the protective clear overwrap, mixed (peel seal activated) or unmixed (peel seal intact), CLINIMIX E solutions may be stored under refrigeration for up to 9 days. The results or our studies are discussed in Example 3-6 below.
In this example, we evaluated whether the addition of an injectable trace element composition to parenteral nutrition (PN) admixtures would result in chemical degradation of individual ingredients under the prescribed in-use condition of up to 14 days. The PN admixtures were assay tested for zinc, copper, selenium, and manganese. Chromium was evaluated as a potential elemental impurity.
In this example, control PN admixtures (e.g., without an injectable trace element composition) of KABIVEN® and CLINIMIX E were tested for trace element levels of zinc, copper, selenium, manganese, and chromium and the findings are summarized in Tables 5 and 7 below. Tables 6 and 8 illustrate assay results of a KABIVEN® and CLINIMIX E PN IV solutions treated with the injectable trace element composition of this application and stored 14 days at 2° C. to 8° C.
The results of this study show that assay values of parenteral nutrition solutions of KABIVEN® and CLINIMIX E in two (2) L infusion solutions each spiked with 1.0 mL of the injectable trace element composition and stored under refrigeration (2° C. to 8° C.) remained within the protocol acceptance criteria of 90.0-110.0% acceptance criteria for the fourteen (14) day duration of the study.
In this example, a study was conducted to evaluate pH changes before and after the addition of the injectable trace element composition added to PN solutions of KABIVEN® and CLINIMIX E. The study was conducted to determine if the addition of the injectable trace element composition of this disclosure would significantly change the pH of the PN admixtures under the prescribed in-use conditions. The pH measurements were performed at Day 0, Day 5, Day 7, Day 10 and Day 14 on samples stored at 2° C. to 8° C. and the results are illustrated in Tables 9 and 10. In the assays summarized in Tables 9 and 10, the control sample is either KABIVEN® or CLINIMIX E PN mixture as found in an IV bag or TE-4 represents a bag of KABIVEN® or CLINIMIX E to which 1.0 mL of the injectable trace element composition containing zinc, copper, selenium, and manganese was added.
The results of these studies illustrate that pH of KABIVEN® and CLINIMIX E PN solutions, each spiked with 1.0 mL of Injectable trace element composition did not differ from the pH of their respective control samples. In addition, the pH of KABIVEN® control, CLINIMIX E and samples spiked with injectable trace element composition was unchanged after storage under refrigeration from 2° C. to 8° C. for up to 14 days.
Based on the results of these studies, it can be concluded that the addition of 1.0 mL of injectable trace element composition to the 2 L solution of KABIVEN® and/or CLINIMIX E will not alter the pH of the PN solutions when stored for 14 days at refrigeration (2° C. to 8° C.).
The studies summarized in Tables 11, 12, 13 and 14 were initiated to assure that the injectable trace element composition of this disclosure and PN solutions of KABIVEN and CLINIMIX E are physically compatible. The PN admixtures with and without the injectable trace element composition were tested for visual examination and particulate matter (PM) by means of USP <788> Method 2 (Microscopic Particle Count Test). The testing was performed at Day 0, Day 5, Day 7, Day 10, and Day 14 on samples stored at 2-8° C.
The compatibility study results for both, the control and admixture samples illustrated in Tables 11, 12, 13 and 14 indicated that particulate matter in these samples remained within USP <788> limits for large volume parenteral solutions. In addition, the consistency of the particle counts and particle morphologies of the control and injectable trace element composition admixture samples, demonstrated no evidence of incompatibility.
Based on the results of this study, the injectable trace element composition containing zinc, copper, selenium, and manganese of this application is compatible with KABIVEN® and CLINIMIX E solutions when stored for 14 days at refrigeration (2° C. to 8° C.).
In this example, the purpose of the reduced inoculation antimicrobial effectiveness study was to demonstrate whether or not there would be adventitious microbial contamination growth during the preparation and storage of parenteral nutrition admixtures with injectable trace element composition containing zinc, copper, selenium, and manganese. The PN admixtures of Kabiven® and CLINIMIX E treated with injectable trace element composition were challenged with five appropriate compendial microorganisms (i.e., Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans, and Aspergillus brasiliensis) at low inoculum levels 10-100 colony forming units/mL (CFU) for up to 14 days at 2-8° C. storage conditions.
It is noted that the inoculum concentration of Candida albicans exceeded protocol upper limit of 100 CFU/mL (obtained 120 CFU/mL) had a reported Log CFU recovery of 2.1. There was no impact on the study as the Log CFU recoveries which were accurately enumerated at each time point of the study.
At each test point, the Log CFU recovery values were measured, were 10-100 CFU is equivalent to 1-2 Log CFU. The acceptance criteria of the protocol was “no growth” which was defined as not more than 0.5 log increases from the calculated inoculum concentration. The results in tables 15, 16, 17, 18, 19, 20, 21 and 22 are reported as Log CFU/mL of product.
S. aureus (6538)
P. aeruginosa
E. coli (8739)
C. albicans
2.1a
A. brasiliensis
aInoculum concentration exceeded protocol limit of 100 CFU/mL (obtained 120 CFU/mL). There was no impact on the study.
S. aureus (6538)
P. aeruginosa
E. coli (8739)
C. albicans
A. brasiliensis
aInoculum concentration exceeded protocol limit of 100 CFU/mL (obtained 120 CFU/mL). There was no impact on the study.
S. aureus (6538)
P. aeruginosa
E. coli (8739)
C. albicans
A. brasiliensis
S. aureus (6538)
P. aeruginosa
E. coli (8739)
C. albicans
2.1a
A. brasiliensis
aInoculum concentration exceeded protocol limit of 100 CFU/mL (obtained 120 CFU/mL). There was no impact on the study.
KABIVEN® (contains dextrose, essential and nonessential amino acids with electrolytes, and a 20% lipid emulsion) with and without injectable trace elements containing zinc, copper, manganese, and selenium were stored for up to 14 days at 2° C. to 8° C. met the protocol's acceptance criteria of “no growth.” The marginally higher inoculum concentration of C. albicans did not enhance any microbial proliferation within the product.
S. aureus (6538)
P. aeruginosa
E. coli (8739)
C. albicans
2.1a
A. brasiliensis
aInoculum concentration exceeded protocol limit of 100 CFU/mL (obtained 120 CFU/mL). There was no impact on the study.
S. aureus (6538)
P. aeruginosa
E. coli (8739)
C. albicans
2.1a
A. brasiliensis
aInoculum concentration exceeded protocol limit of 100 CFU/mL (obtained 120 CFU/mL). There was no impact on the study.
S. aureus
E. coli (8739)
C. albicans
2.1a
A. brasiliensis
aInoculum concentration exceeded protocol limit of 100 CFU/mL (obtained 120 CFU/mL). There was no impact on the study
S. aureus (6538)
P. aeruginosa
E. coli (8739)
C. albicans
2.1a
A. brasiliensis
aInoculum concentration exceeded protocol limit of 100 CFU/mL (obtained 120 CFU/mL). There was no impact on the study.
The Log recovery values results of CLINIMIX E IV admixtures with and without injectable trace element composition containing zinc, copper, selenium and manganese found that admixtures stored for up to 14 days at 2° C. to 8° C. met the protocol's acceptance criteria of “no growth.”
The results of the reduced inoculation AME study, found both KABIVEN® and CLINIMIX E admixtures with and without the introduction of injectable trace element composition and stored for up to 14 days under refrigeration (2° C. to 8° C.) met the protocol's acceptance criteria of “no growth.”
Since the results of the four-admixture studies met our acceptance criteria, we concluded that the addition of injectable trace element composition to either 2 L infusion solution (KABIVEN® and/or CLINIMIX E) supports the manufacturers' current package insert (PI) labeling of both KABIVEN® and CLINIMIX E that the PN admixtures are stable for up to 9 days when kept under refrigeration. As a result, a package insert for the injectable trace element composition of this application can include the following USP <797> medium-risk BUD statements for package insert for refrigerated storage up to 9 days.
Therefore, the package insert for injectable trace element composition has been revised to include the following storage recommendation: “Use parenteral nutrition solutions containing injectable trace element composition promptly after mixing. Any storage of the admixture should be under refrigeration from 2° C. to 8° C. (36° F. to 46° F.) and limited to a period, no longer than 9 days. After removal from refrigeration, use promptly and complete the infusion within 24 hours. Discard any remaining admixture.” This package insert statement, in conjunction with our 14-day Admixture Studies at 2° to 8° C., now provide healthcare professionals, pharmacists and end-users extensive admixture stability information for selenious acid injection, USP, zinc sulfate injection, USP, and injectable trace element composition containing zinc, copper, manganese and selenium (Trace Elements Injection-4, USP) in parenteral nutrition infusion solutions under refrigeration (2° to 8° C. (36° to 46° F.)).
Additional Supplementation with Trace Element
For pediatric patients weighing 10 kg to 49 kg, additional zinc (in heavier patients in some weight bands), copper and selenium may be needed to meet the recommended daily dosage of these trace elements, shown below. To determine the additional amount of supplementation that is needed, compare the calculated daily recommended dosage based on the body weight of the patient to the amount of each trace element provided by Trace Element (Table 23) and other dietary sources:
Tralement™ is indicated in adult and pediatric patients weighing at least 10 kg as a source of zinc, copper, manganese, and selenium for parenteral nutrition when oral or enteral nutrition is not possible, insufficient, or contraindicated.
The trace element composition (Tralement™) can be in a single dose vial. Each mL contains zinc 3 mg (equivalent to zinc sulfate 7.41 mg), copper 0.3 mg (equivalent to cupric sulfate 0.75 mg), manganese 55 mcg (equivalent to manganese sulfate 151 mcg), selenium 60 mcg (equivalent to selenious acid 98 mcg), and water for injection. Sulfuric acid may be added to adjust pH between 1.5 and 3.5.
In some embodiments, the zinc used in the trace element composition can be zinc heptahydrate having the molecular formula ZnSO4·7H2O and a molecular weight of 287.54 g/mol.
In some embodiments, the copper used in the trace element composition can be cupric sulfate that is in pentahydrate form having the molecular formula CuSO4·5H2O and a molecular weight of 249.69 g/mol.
In some embodiments, the manganese used in the trace element composition can be manganese sulfate that is in a monohydrate form having the molecular formula MnSO4·H2O and a molecular weight of 169.02 g/mol.
In some embodiments, the selenium in the trace element composition can be selenious acid that has the molecular formula H2SeO3·H2O and a molecular weight of 128.97 g/mol.
The trace elements composition (Multrys™) can contain 4 trace elements in a sterile, non-pyrogenic, clear, and colorless to slightly blue solution, that can be used as a combination of four trace elements and an additive to intravenous solutions for parenteral nutrition. In this particular embodiment of this example, it has no preservative. Each single-dose vial can contain 1 mL. *Each mL contains zinc 1,000 mcg (equivalent to zinc sulfate 2,470 mcg), copper 60 mcg (equivalent to cupric sulfate 150 mcg), manganese 3 mcg (equivalent to manganese sulfate 8.22 mcg), selenium 6 mcg (equivalent to selenious acid 9.8 mcg), and water for injection. Sulfuric acid may be added to adjust pH between 1.5 and 3.5.
Zinc sulfate can be in a heptahydrate form having the molecular formula: ZnSO4·7H2O and molecular weight of about 287.54 g/mol. The cupric sulfate can be in a pentahydrate form having the molecular formula: CuSO4·5H2O and molecular weight: 249.69 g/mol. The manganese sulfate can be in a monohydrate form and have the molecular formula: MnSO4·H2O and molecular weight of about 169.02 g/mol. The selenious acid has the molecular formula: H2SeO3 and molecular weight of about 128.97 g/mol. In this particular embodiment of this example, the trace elements composition contains no more than 1,500 mcg/L of aluminum.
Multrys™ is a fixed-combination product. Each mL of Multrys™ provides zinc 1,000 mcg, copper 60 mcg, manganese 3 mcg, and selenium 6 mcg.
Recommended Dosage for Pediatric Patients Weighing 0.4 kg to 0.59 kg The total recommended dosage of Multrys™ is 0.2 mL every other day.
Daily supplementation of Zinc, Copper, and Selenium will be needed to meet daily requirements (See Table B below).
Recommended Dosage for Pediatric Patients Weighing 0.6 kg to less than 10 kg The recommended dosage of Multrys™ is 0.3 mL/kg/day rounded to nearest 0.1 mL for up to a maximum of 1 mL per day.
The recommended volume of Multrys™ to be added to parenteral nutrition ranges from 0.2 mL per day to 1 mL per day based on body weight, see Table A below.
Additional Trace Element Supplementation with Multrys™ Multrys™ is recommended oniy for pediatric patients who require supplementation with all four of the individual trace elements (i.e., zinc, copper, manganese and selenium).
To determine the additional amount ofsupplementation that is needed, compare the calculated daily recommended dosage based on the body weight of the patient to the amount of each trace element provided by Multrys™ and enteral nutrition sources.
Monitor zinc, copper, and selenium serum concentrations and manganese whole blood concentrations during long-term administration of parenteral nutrition.
In some embodiments, the amount of chromium in the parenteral nutrition containing the trace elements composition (e.g., Multrys™ or Tralement™) or the trace elements composition itself (e.g., Multrys™ or Tralement™) is not more than about 0.15 g/mL to not more than about 0.07 g/mL or lower. With the not more than about 0.15 μg/mL of chromium, the maximum potential exposure to chromium (e.g., 0.045 g/kg/day) will be 22.5% of the maximum chromium dose that can be used for parenteral nutrition in a target patient population (e.g., children (weighing 0.4-9.9 kg)). This can be based on a target dose volume of, for example, 0.3 mL/kg/day. In some embodiments, this will reduce the risk of toxicity from total chromium exposure in the parenteral nutrition (e.g., from intentionally added chromium and chromium as an impurity).
It will be apparent to those skilled in the art that various modifications and variations can be made to various embodiments described herein without departing from the spirit or scope of the teachings herein. Thus, it is intended that various embodiments cover other modifications and variations of various embodiments within the scope of the present teachings. Since modifications will be apparent to those of skill in the art, it is intended that this disclosure be limited only by the scope of the appended claims.
This application claims priority to U.S. Provisional Application Ser. No. 63/047,705, filed on Jul. 2, 2020, the entire disclosure of which is hereby incorporated by reference in its entirety into the present disclosure.
Number | Date | Country | |
---|---|---|---|
63047705 | Jul 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17365692 | Jul 2021 | US |
Child | 18643713 | US |