Claims
- 1. A location indicating system for finding and indicating the location direction of a parked vehicle with respect to a system user, said location indicating system comprising(a) a locator module, comprising: a first case for housing an electrical circuit, said first case being rigid and having a generally rectangular shape with a flat surface face and a parallel back surface; said first case including a visual display means for displaying planar angular direction arrows and elevation direction arrows, and a search initiation switch that are mounted on said face, said first case being sized for holding in a user's hand; and a first circuit for emitting a vehicle search signal and displaying the indicating signal results, said first circuit being mounted in said first case and comprising: a 12 vdc battery as the circuit power source for connection to all circuit components; a first programmable microprocessor; a locator activation switch and circuit connected to said microprocessor; the closing of said switch producing a start signal to said microprocessor; a digital compass, connected to said microprocessor and producing a signal indicating the direction of true north with respect to the forward axis of the held locator module; a digital altimeter, connected to said microprocessor and producing a signal indicating the instant elevation of the locator module; a first means for a radio signal transmitter, connected to said microprocessor; an omni-directional antenna, connected to the output of said transmitter; a second means for a radio signal receiver that is connected to said antenna and having an output connected to said microprocessor; and a display driver circuit, connected to said microprocessor and providing direction indicator activation signals to said visual display means; said microprocessor incorporating programs to generate and initiate an encoded search activation signal transmission upon demand; to activate and read said digital compass and said altimeter; and to process incoming signals from said receiver and output the resulting direction signals to said display driver circuit for visual display; said transmitter, upon receiving an encoded search activation signal from said microprocessor, generating a high frequency radio signal for transmission by said omni-directional antenna; and, (b) a receive/response module for mounting in a vehicle, said receive/response module comprising: a second case for housing a second electrical circuit, said second case being rigid and having a generally rectangular shape with elongated opposing, parallel sides, said second case including an externally mounted power connector for connection to a dc power source, and means for attaching said case to the inside surface of a vehicle; and, a second circuit for receiving a vehicle search signal emitted by said locator module, and responding by emitting an estimated AOA (angle-of-arrival with respect to true north) signal to said locator module; said second circuit being mounted in said second case and comprising: an input circuit for connection to said externally mounted power connector, said input circuit providing regulated 12 vdc power for connection to all circuit components; a programmable second microprocessor; a second digital compass, connected to said microprocessor and producing a signal indicating the direction of true north with respect to the forward axis of said receive/response module; a third means for a second transmitter, connected to said second microprocessor; an adaptive antenna array which comprises two independent linear arrays connected to the output of said transmitter; a fourth means for a radio signal receiver that is connected to said adaptive antenna array and having an output connected to said second microprocessor; said second microprocessor incorporating programs to activate and read said second digital compass, and to process incoming received antenna array pattern signals from said receiver, using two independent algorithms to determine and output an encoded estimated AOA (angle-of-arrival with respect to true north) signal to said second transmitter; said second transmitter, upon receiving an encoded estimated AOA signal from said second microprocessor, generating a high frequency, narrowband radio signal for transmission by said adaptive antenna array to said locator module; said locator module upon receiving said estimated AOA signal from said receive/response module, illuminating said visual display means with directional arrows that indicate the planar angular direction and elevation of the parked vehicle with respect to the forward facing direction of the hand-held locator module.
- 2. The location indicating system as defined in claim 1, wherein:said adaptive antenna array comprises two independent linear arrays that are arranged in a two-dimensional planar cross shape, each linear array incorporating a multiplicity of elements that are spaced apart; one said linear array being designated as a vertical array and placed on a vertical axis, and the other said linear array being designated as a horizontal array, said horizontal array having the center of its' axis placed across the center axis of said vertical array and rotated about said center axis to a horizontal axis, plus alpha degrees tilt counter-clockwise from the horizontal axis to provide additional incoming signal discrimination for the horizontal array.
- 3. The adaptive antenna array in accordance with claim 2, wherein:said alpha degrees tilt of the horizontal array is selected as being 30 degrees.
- 4. The location indicating system as defined in claim 1, wherein:said receive/response module for a vehicle includes a flashing light bulb, said light bulb being connected to said 12 vdc power input by a switch signal output from said second microprocessor, and adapted for mounting externally on top of said vehicle, to visually signal the location of said vehicle when a search activation signal is received by said receive/response module.
- 5. The location indicating system as defined in claim 1, wherein:said second circuit in said receive/response module includes a rechargeable 12 vdc battery and a charging circuit that is connected to a power connector that is mounted on said second case; said battery providing an emergency or alternate power source for said second circuit.
Parent Case Info
This application claims the benefit of U.S. Provisional Application No. 60/220,408 filed Jul. 24, 2000.
US Referenced Citations (8)
Provisional Applications (1)
|
Number |
Date |
Country |
|
60/220408 |
Jul 2000 |
US |