Parking meter with contactless payment

Information

  • Patent Grant
  • 11699321
  • Patent Number
    11,699,321
  • Date Filed
    Friday, October 23, 2020
    3 years ago
  • Date Issued
    Tuesday, July 11, 2023
    10 months ago
Abstract
A parking meter is described that comprises components for providing parking meter functionality and a display for displaying parking information and a metal housing for protecting the parking meter components from an environment that has a display aperture through which the display is visible. The parking meter also comprises an antenna for a contactless payment reader arranged in or on the parking meter in close proximity to the display.
Description
TECHNICAL FIELD

The present disclosure relates to parking meters and in particular to parking meters having contactless payment options.


BACKGROUND

Parking meters come in many shapes and sizes but are generally divided into two main types or classes: multi-space parking meters which are typically larger devices capable of managing the parking payment and control for typically six or more, or possibly even hundreds of parking spaces; and, single-space parking meters which are typically small devices capable of managing the parking payment and control of a single parking space, but also sometimes additional spaces, such as two, four, or six spaces which are located in close proximity to the parking meter.


For example, FIG. 1 depicts a conventional single space parking meter 100 installed on a pole 102. Single space parking meter mechanisms are typically installed in a protective housing on a pole 102 near a parking space. The protective housing components, which are directly exposed to the elements and the public, are traditionally separate from the actual parking meter mechanism (not shown). The protective housing components of previous single space parking meters 100 typically comprise a lower housing 104 that receives a removable parking meter mechanism. A cover cap 106 is placed over the parking meter mechanism and secured to the lower housing 104. The cover cap 106 may comprise a semi-circular opening no, covered by a transparent material through which a display of the parking meter mechanism is visible. In some previous single space parking meters the display is set back from the exterior surface of the cover cap 106, or the transparent material covering the opening. The lower housing 104 is typically secured to a coin vault 108 for storing coins received during operation of the parking meter 100. The coin vault 108 may be secured to the pole 102. The parking meter 100 is operated by inserting payment, either in the form of coins or payment cards such as credit cards, chip cards or electronic purse cards, into the parking meter 100 which then displays and counts down the purchased amount of parking time.


Parking meters are often located in unattended areas, and as such vandalism, tampering and theft are of concern. The protective housing, which typically comprises the lower housing 104 and the cover cap 106, provides protection for the components of the parking meter mechanism from vandalism, tampering and theft, as well as protection from the environment.


Numerous credit card companies have now issued contactless payment cards which allow the card holder to make payment at devices with the appropriate contactless card readers. Previous parking meters have employed contactless card readers that allowed receiving payment from a card without the need of the card reader coming into contact with the payment card. However, previous parking meters have incorporated the contactless card reader as a separate component or with other payment means, such as the coin chute. Alternatively, the card reader could replace other payment means entirely. Although the incorporation of contactless card readers in parking meters may provide flexibility in the payment options available to a user of the parking meter, the position of the contactless card reader within the parking meter provided unsatisfactory user interactions. For example, when a contactless card reader is positioned away from a display of a parking meter, it has been difficult to provide clear instructions using the display indicating where to make payment with the contactless card reader. In addition, a parking meter having a contactless card reader positioned away from a display may require a separate or additional opening in the housing of the parking meter, which may lead to more costly, complex and time consuming manufacturing of the housing, and may make the parking meter more susceptible to vandalism, tampering or theft.


There is therefore a need for a parking meter having an improved implementation for contactless payments.


SUMMARY

There is disclosed a parking meter comprising components for providing parking meter functionality; a display for displaying parking meter information; a metal housing for protecting the parking meter components from an environment, the housing comprising a display aperture through which the display is visible; and an antenna for a contactless payment reader arranged in or on the parking meter in close proximity to the display.


There is further disclosed a removable parking meter mechanism comprising components for providing parking meter functionality; a display for displaying parking information; and an antenna for a contactless payment reader arranged in close proximity to the display.





BRIEF DESCRIPTION OF THE DRAWINGS

Further features and advantages will become apparent from the following detailed description, taken in combination with the appended drawings, in which:



FIG. 1 is a schematic showing an installed previous single space parking meter;



FIG. 2 depicts illustrative components of a single space parking meter including contactless payment means;



FIG. 3 depicts illustrative components of a further single space parking meter including contactless payment means;



FIG. 4 depicts illustrative components of a further single space parking meter including contactless payment means;



FIG. 5 depicts illustrative components of a further single space parking meter including contactless payment means;



FIG. 6 depicts illustrative components of a further single space parking meter including contactless payment means;



FIG. 7 depicts illustrative components of a further single space parking meter including contactless payment means;



FIG. 8 depicts illustrative components of a multi-space parking meter including contactless payment means;



FIG. 9 depicts an illustrative contactless reader antenna;



FIG. 10 depicts a cross section of the solar panel aperture of FIG. 5 taken along line 10-10′;



FIG. 11 depicts the component layers within the solar panel aperture of FIG. 10; and



FIG. 12 depicts a layered construction of a solar panel assembly.





DETAILED DESCRIPTION


FIG. 2 depicts illustrative components of a single space parking meter. The single space parking meter 200 comprises a lower housing 202, a cover housing 210 and a removable parking meter mechanism 230. The parking meter mechanism 230 may be partially received within the lower housing 202, which is typically secured to a coin vault (not shown) that is mounted on a pole (not shown) when in use.


When the parking meter 200 is assembled, that is, the parking meter mechanism 230 is at least partially placed in the lower housing 202 and the cover housing 210 is secured and/or locked to the lower housing 202, the parking meter mechanism 230 is enclosed in a protective housing and protected from the environment, vandalism, tampering, theft or other unauthorized access. When assembled, the parking meter 200 includes a display opening 240 through which a display 242 of the parking meter mechanism 230 is visible. The parking meter mechanism 230 may include a contactless payment reader for providing payment using a contactless payment card issued by the parking operator or by a bank or financial institution under one of the credit card brands, or a card conforming to the ISO 14443 standard, although other types of near field communication (NFC) are possible such as an NFC enabled mobile phone, smartphone, wrist watch, or other appropriate tag, or token.


The contactless payment reader comprises a reader module (not visible) comprising electronics for controlling the operation of the contactless payment reader. The reader module is coupled to a contactless reader antenna 250. The contactless reader antenna 250 may be provided as a thin flexible ring of copper wiring around the perimeter of a viewing area of the display. The contactless reader antenna 250 is depicted by a dashed line in FIG. 2 as it is located behind the display 242. The contactless reader may be provided on a single board or component that includes both the contactless reader module and the contactless reader antenna 250. Alternatively, the contactless reader module may be separate from the contactless reader antenna 250 and connected to it by a wire or wires. The contactless reader module is in communication with electronics of the parking meter mechanism responsible for the overall operation of the parking meter. Alternatively, the contactless reader module may be incorporated into the electronics of the parking meter mechanism responsible for the overall operation of the parking meter.


When a contactless payment card, or other contactless payment device, is placed in close proximity to the contactless reader antenna 250, the contactless reader module can read information from the contactless payment card, which can be provided to the electronics of the parking meter mechanism in order to receive payment. In order to process the payment from the contactless payment card, the electronics of the parking meter mechanism may communicate with a remote server using wired or wireless communication technologies in order to receive authorization of the transaction.


Previous parking meters have included a contactless type payment method using a contactless payment reader. However, there were disadvantages associated with the placement of contactless payment readers, or more particularly the contactless reader antenna, within previous parking meters. For example, the difficulties included difficulty in providing adequate space to place a contactless payment reader as well as difficulty in providing instructions to a user, while still offering other payment means. Having the contactless reader antenna located away from the display, as in previous parking meters, makes it more difficult to provide instructions to a user for where to place the contactless payment card for payment.


The parking meter mechanism 230 includes a contactless payment reader that has a contactless reader antenna 250 located directly behind the display 242, which allows for payment by way of a contactless payment card or device (not shown). The display 242 is located in close enough proximity to the exterior of the parking meter 200 such that the contactless payment reader is able to adequately read contactless payment cards or devices placed over, or in close proximity to, the display 242, and so the contactless reader antenna 250. The maximum read distance between the contactless payment card or device and the contactless reader antenna is typically a function of the size of the contactless reader antenna 250, the presence of any material, and its nature if present, between, or in the vicinity of, the contactless reader antenna and the contactless payment card of device, and other operating conditions of the parking meter 200. The distance between the contactless reader antenna and the contactless payment card or device, as well as properties of any intervening material, may affect the probability of successfully reading the contactless payment card or device. Different applications may have different acceptable reading success rates and as such, may have varying acceptable distances between the contactless reader antenna and the contactless payment card or device. An adequate success rate for reading of contactless payment cards or devices by the contactless payment reader through the display 242 may be accomplished even with a double layer of a clear protective cover placed over the display 242. Since the contactless reader antenna 250 is placed behind the display 242, which is significantly more transparent to the wireless signals used by the contactless payment reader than housing components of the parking meter 200, which are typically made of metal, no additional openings or apertures need to be included in the housing components to provide adequate operation of the contactless payment reader. Thus, by placing the contactless payment reader behind the display 242, in addition to providing a convenient location for placing the contactless payment device to initiate payment, it is possible to provide housing components that provide greater security and environmental protection.


When making payment using the contactless payment reader, the display 242 may be used to display a logo, graphic and/or directions such as “Tap Here” or simply “Tap” as depicted, providing clear and convenient payment instructions to the user. The contactless reader antenna 250 is located sufficiently close to the display so that a user placing the contactless payment card or device in the vicinity of the display 242 as instructed by the display will have an acceptable success rate for reading the contactless payment card or device.


By placing the contactless reader antenna 250 behind the display 242, the amount of space required to offer this method of payment may be reduced, as the need of an additional opening or aperture in the housing components is eliminated. In addition, the display 242 and possible protective covering of the display 242 provide protection and ruggedness so as to allow the contactless payment reader to be deployed in unattended single space parking meters without the need for additional protection. Additionally, by placing the contactless reader antenna behind the display 242, the physical packaging of the parking meter mechanism 230 may be reduced to provide more freedom in the design of the parking meter 200, possibly allowing a smaller more appealing single space parking meter, which may be desirable given the large number of single space parking meters that may be present on a single street or block.


Placing the contactless reader antenna 250 behind the display 242 as described above may work acceptably well if the display 242 does not have a sufficient amount of metal to significantly impeded the RF signals. However, some displays, for example colour displays, may have a metal backing, impeding the transmission of RF signals.



FIG. 3 depicts illustrative components of a single space parking meter. The parking meter 300 is similar to the parking meter 200 described above; however, the contactless reader antenna 350 is placed on the front of the display 242. The contactless reader antenna 350 may be placed around the perimeter of an active section of the display that displays information in order to prevent obscuring the view of the display. The contactless reader antenna 350 on the front of the display 242 may be in sufficiently close proximity to the display 242 so that a contactless payment card or device placed in the vicinity of the display 242 as instructed will have an acceptable reading success rate.


The opening 240 in the parking meter housing, through which the display 242 is visible when the parking meter 300 is assembled, also allows the transmission and reception of the required RF signals at the contactless reader antenna 350 for the operation of the contactless payment. The opening 240 is sized so that the RF signals can pass through a non-metallic material used to seal the opening 240. As a result, the RF signals do not need to pass through the metallic housing, providing improved operation of the contactless payment reader.



FIG. 4 depicts illustrative components of a single space parking meter. The parking meter 400 is similar to the parking meters 200 and 300 described above; however, the contactless reader antenna 450 is placed on the interior of a material used to seal or cover the opening 240 in the parking meter housing through which the display 242 is visible. Typically, the external housing of the parking meter 400 is made of metal, which attenuates RF signals. The opening 240 is typically sealed using a transparent or semi-transparent material such as Lexan. The material used to enclose the opening 240 is typically transparent or semi-transparent to RF signals.


As depicted in FIG. 4, the contactless reader antenna 450, represented by a dashed line, is placed on the interior side of the material sealing the opening 240. The cover 210 may need to be separated from a lower portion 202 of the parking meter 400 in order to remove the parking meter mechanism 230. The contactless reader antenna 450 may be attached to the contactless reader module of the removable parking meter mechanism 230 by a detachable connection 452, 454. As such, when removing the cover 210, the contactless reader antenna 450 can be detached from the removable parking meter mechanism 230 and then reattached when assembling the parking meter 400.



FIG. 5 depicts illustrative components of a single space parking meter. The parking meter 500 comprises a meter housing 502 that encloses a parking meter mechanism and protects it from the environment and vandalism. The meter housing 502 is typically made out of a metal or metal alloy and comprises one or more apertures providing windows to internal components, including a solar panel opening 510 through which a solar panel 512 may be visible. As depicted, the meter housing 502 includes a display opening 504 through which a display 506 is visible when the parking meter 500 is assembled. The display opening 504 in the metal housing 502 is typically sealed with a transparent or semi-transparent protective material such as Lexan. The parking meter 500 may include a solar panel opening 510 in the housing 502 in which a solar panel 512 can sit, or through which a solar panel is visible.


The display 506 is located behind the display opening 504 so that it is viewable when the parking meter 500 is assembled. The display 506 includes a contactless reader antenna 508 surrounding a perimeter of the display 506. The reader antenna 508 is located within the display opening 504, providing a transmission path between the antenna 508 and the contactless payment device that is not impeded by the metal of the meter housing 502. Although described as being located around a perimeter of the display 506, it is contemplated that the contactless reader antenna 508 could be located in different locations in or on the parking meter and arranged in sufficiently close proximity to the display 506 so that a contactless payment device placed in the vicinity of the display 506 has an acceptable success rate for reading the contactless payment device.



FIG. 6 depicts illustrative components of a single space parking meter. The parking meter 600 comprises a meter housing 602 that encloses a parking meter mechanism and protects it from the environment and vandalism. The meter housing 602 is typically made out of a metal or metal alloy and comprises one or more apertures providing windows to internal components. As depicted, the meter housing 602 includes an opening 604 through which a display 606 is visible when the parking meter 600 is assembled. The opening 604 in the metal housing 602 is sized such that the display 606 is visible, and a section which incorporates a plurality of buttons 614 for controlling the parking meter 600 is exposed.


The display 606 is located behind the opening 604 so that it is viewable when the parking meter 600 is assembled. The display 606 includes a contactless reader antenna 608 surrounding a perimeter of the display 606. The reader antenna 608 is located within the opening 604 which is covered by a material providing a low attenuation of RF signals, providing a transmission path between the antenna 608 and the contactless payment device that is not impeded by the metal of the meter housing 602.


Although described as being located around a perimeter of the display 606, it is contemplated that the antenna 608 could be located in different locations in or on the parking meter 600 and arranged in sufficiently close proximity to the display 606 so that a contactless payment device placed in the vicinity of the display 606 has an acceptable success rate for reading a contactless payment device.



FIG. 7 depicts illustrative components of a single space parking meter. The parking meter 700 is substantially similar to parking meter 600; however, the contactless reader antenna 708a is depicted as being located on an interior side of the material used to seal or cover the opening 604 and in close proximity to the display 606. Additionally or alternatively, a second contactless reader antenna 70813 may be included on the interior side of the material used to seal or cover the opening 604 and surrounding the input components (i.e., buttons) 614 in close proximity to the display 606. With the contactless reader antenna 708a or 708b located on the interior side of the material used to seal or cover the opening 604, it may be connected to the electronics of the parking meter mechanism using a detachable connection.


Although described as being located around a perimeter of the display 606, it is contemplated that the antenna 708a could be located in different locations in or on the parking meter 700 and arranged in sufficiently close proximity to the display 606 so that a contactless payment device placed in the vicinity of the display 606 has an acceptable success rate for reading a contactless payment device. Likewise, although described as being located around the input components 614, it is contemplated that the antenna 708b could be located in different locations in or on the parking meter 700 and arranged in sufficiently close proximity to the display 606 so that a contactless payment device placed in the vicinity of the display 606 has an acceptable success rate for reading a contactless payment device.


Various possible positions of the antenna within the opening of the parking meter have been described above with reference to FIG. 7. Although the possible positions were described with regards to a single opening in the parking meter, a contactless reader antenna may also be positioned within or about a second opening separate from the opening for the display and still be in sufficiently close proximity to the display to facilitate clear payment instructions. For example, and with regards to FIG. 5, the contactless reader antenna could be placed in proximity to the solar panel opening 510, on the solar panel 512, on a cover of the solar panel opening 510, over the top surface of the solar panel 512, or a combination of one or more of the foregoing.


Alternatively, the contactless reader antenna could be placed on an exterior side of the parking meter, for example, over a protective cover of the display opening 504 or the solar panel opening 510. If the contactless reader antenna is placed on the exterior of the parking meter, it may be located at the same height, or slightly elevated relative to the metal housing surrounding the opening. The contactless reader antenna may be protected by a plastic bezel that encapsulates the contactless reader antenna and securely attaches to the parking meter.


Although the solar panel opening is described above as an opening, it may be provided by an indentation such that a solar panel and covering may rest flush with the rest of the housing. If the solar panel opening is provided by an indentation in the metal housing, the properties of the contactless reader antenna and/or the contactless reader module may be adjusted in order to account for the location of the metal.



FIG. 8 depicts illustrative components in a multi-space parking meter. The multi-space parking meter Boo provides metering functionality to a plurality of parking spaces. The multi-space parking meter Boo may be a pay and display type meter in which payment is made by a user and a printed ticket is displayed on the user's vehicle. Alternatively, the multi-space meter Boo may be a pay by space or pay by plate type of meter, in which payment is made and associated with a specific parking space or license plate. Regardless of the type of multi-space meter, the meter 800 typically comprises a metal cabinet or enclosure 802 that encloses the components of the parking meter. Components of the multi-space meter may be located or mounted within the enclosure 802 at convenient locations. In contrast to a single space meter, where a parking meter mechanism is typically removable as a unit, the mechanism of the multi-space meter may comprise the various components that provide parking meter functionality. The cabinet 802 includes a payment section 804 comprising input means 806 such as buttons and/or keypads, for controlling operation of the parking meter, one or more payment means 808 such as credit card, debit card and/or smart card readers and coin chutes, and a display Bio for displaying parking information. The multi-space parking meter Boo further includes a contactless payment reader that includes a contactless reader antenna 812 located in sufficiently close proximity to the display Bio so that a contactless payment device placed in the vicinity of the display Bio has an acceptable success rate for reading a contactless payment device.


The contactless reader antenna 812 is depicted as being located about a perimeter of the display 810. It is contemplated that the contactless reader antenna 812 could be located in different locations in or on the parking meter Boo and arranged in sufficiently close proximity to the display Bio so that a contactless payment device placed in the vicinity of the display Bio has an acceptable success rate for reading a contactless payment device.


The specific design of the contactless reader antenna may vary depending on numerous factors, including the size of the opening within which the antenna is located, the proximity of the contactless reader antenna to the metal of the parking meter housing, whether or not the opening has a metal backing, etc. Further, the wires or wire traces forming the contactless reader antenna may also vary, for example, if the contactless reader antenna is placed over the viewable portion of the display or solar panels, the wires or wire traces may be sufficiently small so as to not obstruct the view of the display, or functioning of the solar panel.



FIG. 9 depicts an illustrative contactless reader antenna. The contactless reader antenna 900 comprises a plurality of connected traces forming a single electrical wire. As depicted, the contactless reader antenna 900 comprises a tail portion 902 that is used to connect the contactless reader antenna to the contactless reader module and a loop portion 904 that surrounds a viewable area 906 of the display of the parking meter. It is noted that the loop portion 904 terminates at an inner location 908, however this inner location 908 is electrically connected to one of the traces of the tail portion 902. This electrical connection, depicted as wire 910, between the inner location 908 of the loop portion 904 and the tail portion 902 is electrically insulated from the other wires or wires traces of the loop portion 904.


The above has described placement of a contactless reader antenna within a parking meter. Advantageously, the antenna placement has been described as being located in close proximity to a display, facilitating easy instructions for the use of the contactless reader. As will be appreciated, single space parking meters commonly found in North America, and other parts of the world, have a common outer housing made of a high strength metal, such as ductile iron, nickel or zinc. The commonly shaped housing allows different parking meter mechanisms to be received within the housing. While convenient for replacing the parking meter mechanism, the use of a common housing reduces the locations that the contactless reader antenna may be placed, as the lower metal housing is common and generally already installed on the street. As such, it is desirable to locate the contactless reader antenna in a location on the replaceable parking meter mechanism that is not covered by the common lower housing when the parking meter is assembled. As described above, the contactless parking meter antenna may be located within an aperture of an upper housing or cover of the parking meter mechanism. The aperture has been described above as being provided for the parking meter display and/or input controls of the parking meter. Depending upon the size of the display aperture, the efficiency of the contactless reader antenna may be less than ideal. For example, if the display aperture is relatively small, a contactless reader antenna that surrounds the display may still be located in close proximity to the metal housing of the cover. The close proximity of the metal to the contactless antenna may adversely affect the operation of the contactless reader antenna and the antenna may not be able to achieve a desired performance level.


It is possible to locate the contactless reader antenna in a location other than surrounding, or immediately adjacent to, the display. For example, the parking meter 500 includes an opening or aperture 510 for receiving a solar panel 512. As depicted in FIG. 5, the solar panel aperture 510 is relatively large compared to the display opening 504, while still being located in close proximity to the display. It is contemplated that the contactless reader antenna may be located within the solar panel aperture 510.



FIG. 10 depicts a cross section of the solar panel aperture 510 of FIG. 5 taken along line 10-10′. FIG. n depicts the component layers within the solar panel aperture of FIG. 10. As depicted in FIGS. 10 and 11, a solar panel assembly 1000 located within a solar panel aperture is depicted. As depicted, the solar panel aperture is provided within a metal housing 1002 of the parking meter. The bottom of the solar panel aperture is lined with a radio frequency (RF) shielding material 1004 that absorbs RF signals, such as those radiated by the contactless antenna. The solar panel assembly is received on top of the RF shielding 1004 and includes a solar panel 1006 that is sized to be received within the solar panel aperture. A lower transparent covering 1008, such as a 1/16″ Lexan covering, is located on top of the solar panel 1006. The contactless reader antenna 1010, which may be a coiled loop of very fine gauge copper wires shaped in a 2″×3″ loop, is located on top of the lower transparent covering 1008. A second transparent covering 1012, such as a 1/16″ Lexan covering, may be placed on top of the contactless reader antenna 1010. The solar panel assembly, comprising the solar panel 1006, the first transparent covering 1008, the contactless reader antenna 1010 and the second transparent covering 1012 may be secured in place within the solar panel aperture by a metal covering plate or bezel 1014. The covering plate has an aperture through which light can pass through to the solar panel 1006. The covering plate may be secured in place using one or more screws or bolts 1016 that pass through the solar panel assembly and the RF shielding layer 1004 into the bottom of the solar panel aperture. Although depicted as passing though the different layers, it is contemplated that the individual layers may be sized such that the screws or bolts do not pass through them.


Advantageously, the size of the solar panel aperture allows the contactless reader antenna to be located a sufficient distance away from the surrounding metal housing to provide improved reading characteristics. Further, the placement of the contactless reader antenna 1010 on top of the first transparent covering 1008 and the solar panel 1006 provides a gap between the contactless reader antenna Kilo and the metal 1002 of the bottom of the solar panel aperture. Further, the RF shielding 1004 located in bottom of the solar panel aperture further improves the operation of the contactless reader antenna 1010. While the contactless reader antenna 1010 is located above the solar panel 1006, and so will block some light that would otherwise be incident upon the solar panel, the amount of light blocked may be negligible due to the fine gauge of the copper traces of the contactless reader antenna.


As described above with reference to FIGS. 10 and 11, a contactless reader antenna may be located within a solar panel aperture. As depicted in FIG. 5, the solar panel aperture 510 may be located in close proximity to the display 506 of the parking meter, possibly simplifying the instructions for the use of the contactless reader antenna. For example, the display 506 may be used during a payment to display easy-to-use instructions to a user for effecting contactless payment via the contactless reader antenna located within the proximal solar panel aperture 510. Locating the contactless reader antenna within the solar panel aperture 510 may also provide improved operating characteristics when compared to locating the contactless reader antenna within a possibly smaller display opening.


In addition to providing adequate operating characteristics, it is further desirable to provide a single space parking meter that is simple to manufacture and easy to maintain. It is possible to incorporate the contactless reader antenna and the solar panel in a single component that can be easily installed and/or replaced within a single space parking meter.



FIG. 12 depicts a layered construction of a solar panel assembly as described with reference to FIGS. 10 and 11. The solar panel assembly 1000 may be manufactured into a single component, allowing easy replacement of the solar panel component in the parking meter. As depicted in FIG. 12, the solar panel assembly 1000 may comprise a stacked arrangement of the solar panel 1006, the first transparent covering 1008, the contactless reader antenna 1010, and the second transparent covering 1012.


The solar panel assembly may be installed in a parking meter by first placing a layer of RF shielding material in the bottom the solar panel aperture; placing the solar panel assembly within the solar panel aperture, and attaching the contactless reader antenna to electronics of the parking meter as appropriate; and securing the solar panel assembly within the solar panel aperture with a cover plate or bezel.


As described above, a parking meter may be provided with a contactless payment means having a contactless reader antenna arranged within an opening in the metal housing of the parking meter. As described, the antenna may be arranged on either side of a display of the parking meter. Furthermore, the antenna may be arranged on an interior surface of a material sealing an opening in the parking meter housing. A decal may be placed on the covering of the opening to hide the antenna wires while not impeding the transmission of RF signals. Furthermore the individual conductive wires of the antenna of the contactless card reader may be sufficiently small in diameter or fine that even when placed in front of the display they do not significantly interfere with the display visibility, allowing the antenna to be placed over the display. Advantageously, the opening in the metal housing for the display is typically covered with a protective material through which the display is visible, such as Lexan. This material typically provides a low attenuation of RF signals and as such locating the antenna within the opening covered by the low attenuation material provides an improved transmission path, which can increase the likelihood of successfully communicating with a contactless payment device. Furthermore, since the opening is used for viewing the display, and since the display may be used to display a logo, graphic and/or directions such as “tap here”, providing clear and convenient payment instructions to the user, it is not necessary to provide an additional opening in the metal housing of the parking meter, which may improve the strength of the parking meter housing and/or possibly simplifying its construction.


Although various embodiments have been described with different placements of the contactless reader antenna, it is contemplated that the antenna could be located in or on the parking meter in different positions or configurations. The antenna should be placed in sufficiently close proximity to the display, when the parking meter is assembled, to provide an acceptable success rate of reading when a contactless payment device is placed in the vicinity of the display. Arranging the antenna in or on the parking meter in close proximity to the display allows clear instructions to be presented to the user on the display, indicating to the user where to place the contactless payment device. For example, the antenna could be located on an exterior side of the parking meter in close proximity to the display.


Various embodiments of parking meters with contactless payment means have been described. The above-described embodiments of the invention are intended to be examples of the present invention and alterations and modifications may be effected thereto, by those of ordinary skill in the art, without departing from the scope of the invention which is defined solely by the claims appended hereto.

Claims
  • 1. A parking meter comprising: a housing for protecting parking meter components from an external environment, the housing comprising a display aperture through which a display is visible;a controller configured to display payment instructions on the display;a contactless payment reader; andan antenna for the contactless payment reader arranged in or on the parking meter in close proximity to the display aperture to facilitate payment according to the payment instructions using a contactless payment, wherein the contactless payment reader and the antenna receive payment information from one or more of: a credit card;a card conforming to ISO 14443 standard;a mobile phone;a smartphone;a wrist watch;a tag; anda token.
  • 2. The parking meter of claim 1, wherein at least a portion of the antenna comprises a small diameter conductive wire or a fine conductive wire.
  • 3. The parking meter of claim 2, wherein at least some of the portion of the antenna comprising the small diameter conductive wire or the fine conductive wire is arranged in front of the display.
  • 4. The parking meter of claim 1 wherein the antenna is arranged adjacent to the display aperture.
  • 5. The parking meter of claim 4, wherein the antenna surrounds input components that interact with the parking meter.
  • 6. The parking meter of claim 5, wherein the input components comprise a plurality of buttons.
  • 7. The parking meter of claim 1, wherein the antenna at least partially surrounds one or more input components that interact with the parking meter.
  • 8. The parking meter of claim 1, wherein the antenna is arranged on an interior surface of a material sealing the display aperture.
  • 9. The parking meter of claim 1, wherein the antenna is arranged on a removable parking meter mechanism at least partially received within the housing.
  • 10. The parking meter of claim 8, wherein the display is located on the removable parking meter mechanism, and the antenna is arranged around at least a portion of the display.
  • 11. The parking meter of claim 1, wherein the antenna is arranged on a front side of the display.
  • 12. The parking meter of claim 1, wherein the antenna is arranged behind the display.
  • 13. The parking meter of claim 1, further comprising a solar panel.
  • 14. The parking meter of claim 13, wherein the housing further comprises an additional aperture and the solar panel is located within the additional aperture.
  • 15. The parking meter of claim 14, wherein the antenna is at least partially located within or about the additional aperture.
  • 16. The parking meter of claim 1, further comprising additional payment components comprising one or more of: a card slot in the front housing for receiving a payment card; anda coin slot for receiving coins.
  • 17. The parking meter of claim 1, wherein at least a portion of the housing is made of metal.
  • 18. The parking meter of claim 17, wherein the antenna is arranged on an exterior surface of the housing.
  • 19. The parking meter of claim 1, wherein the parking meter is a single space parking meter.
  • 20. The parking meter of claim 1, wherein the parking meter is a multi-space parking meter.
Priority Claims (2)
Number Date Country Kind
2733110 Mar 2011 CA national
2756489 Oct 2011 CA national
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/548,513, filed Aug. 22, 2019, which is a continuation of U.S. patent application Ser. No. 15/783,716 filed Oct. 13, 2017 now U.S. Pat. No. 10,424,147, which is a continuation of U.S. patent application Ser. No. 14/864,170 filed Sep. 24, 2015, now U.S. Pat. No. 9,934,645, which is a continuation of U.S. patent application Ser. No. 13/546,918, filed Jul. 11, 2012, now U.S. Pat. No. 9,406,056, which claims benefit by way of PCT patent application no. PCT/CA12/000191, filed Mar. 2, 2012; U.S. patent application Ser. No. 13/410,831, filed Mar. 2, 2012, now U.S. Pat. No. 8,770,371; Canadian patent application no. 2,733,110, filed Mar. 3, 2011; and Canadian patent application no. 2,756,489, filed Oct. 28, 2011.

US Referenced Citations (1052)
Number Name Date Kind
480108 Loch Aug 1892 A
1189991 Mugler Jul 1916 A
1445771 Keplinger Feb 1923 A
1818568 Melick Aug 1931 A
D98810 Magee Mar 1936 S
D100875 Michaels Aug 1936 S
D101237 Miller Sep 1936 S
D106561 Broussard et al. Oct 1937 S
D107577 McGay Dec 1937 S
2118318 Magee May 1938 A
D112677 Broussard et al. Dec 1938 S
2161046 Hitzeman Jun 1939 A
D116805 Reznek Sep 1939 S
2229183 Mitchell Jan 1941 A
2261353 Gaetano Nov 1941 A
2289838 Herschede et al. Jul 1942 A
D152294 Siegel et al. Jan 1949 S
D152587 Brundage Feb 1949 S
D154716 Simpson Aug 1949 S
2483805 Broussard et al. Oct 1949 A
2495784 Starts Jan 1950 A
D161888 Wilkin Feb 1951 S
D162698 Teague Mar 1951 S
2546433 Dick Mar 1951 A
2547272 Lawson et al. Apr 1951 A
2550433 Tichenor Apr 1951 A
2570920 Clough et al. Oct 1951 A
D166059 Yoss Feb 1952 S
2594388 Broussard Apr 1952 A
2595124 Campbell Apr 1952 A
D166753 Jones May 1952 S
2596122 Broussard May 1952 A
2596123 Broussard May 1952 A
2596124 Broussard May 1952 A
2599881 Woodruff Jun 1952 A
2613792 Broussard Oct 1952 A
2613871 Broussard et al. Oct 1952 A
2618371 Broussard Nov 1952 A
2633960 Broussard Apr 1953 A
D181359 Jones Nov 1957 S
2818371 Wessinger Dec 1957 A
2822682 Sollenberger Feb 1958 A
2832506 Hatcher Apr 1958 A
D189106 Leiderman Oct 1960 S
2956525 Blauvelt Oct 1960 A
2985978 Breen et al. May 1961 A
2988191 Grant Jun 1961 A
2995230 Moody et al. Aug 1961 A
3018615 Minton et al. Jan 1962 A
3056544 Sollenberger et al. Oct 1962 A
D199270 Michales Sep 1964 S
D200216 Broussard Feb 1965 S
3183411 Palfi May 1965 A
3199321 Sollenberger Aug 1965 A
3204438 Sollenberger Sep 1965 A
3208061 Gervasi et al. Sep 1965 A
3262540 Sollenberger et al. Jul 1966 A
3272299 Sollenberger Sep 1966 A
3324647 Jedynak Jun 1967 A
3373856 Kusters et al. Mar 1968 A
3438031 Fathauer Apr 1969 A
3486324 Andersson Dec 1969 A
3519113 Arzig et al. Jul 1970 A
3535870 Mitchell Oct 1970 A
3565283 Sciacero et al. Feb 1971 A
3637277 Krug et al. Jan 1972 A
3666067 Kaiser May 1972 A
3721463 Attwood et al. Mar 1973 A
3770090 Fayling et al. Nov 1973 A
D230511 Stieber Feb 1974 S
3858165 Pegg Dec 1974 A
D234606 Gamble Mar 1975 S
D235801 Gore Jul 1975 S
3941989 McLaughlin et al. Mar 1976 A
3964590 May et al. Jun 1976 A
3975934 Babai et al. Aug 1976 A
3982620 Kortenhaus Sep 1976 A
3991595 Bahry et al. Nov 1976 A
3999372 Welch et al. Dec 1976 A
4007564 Chisholm Feb 1977 A
4025791 Lennington et al. May 1977 A
4031991 Malott Jun 1977 A
4037700 Heraty Jul 1977 A
4043117 Maresca et al. Aug 1977 A
D246917 Sauter Jan 1978 S
4147707 Alewelt et al. Apr 1979 A
4237710 Cardozo Dec 1980 A
4248336 Fiedler Feb 1981 A
4249648 Meyer Feb 1981 A
4264963 Leach Apr 1981 A
4306219 Main et al. Dec 1981 A
4310890 Trehn et al. Jan 1982 A
4317180 Lies Feb 1982 A
4317181 Teza et al. Feb 1982 A
4323847 Karbowski Apr 1982 A
4379334 Feagins, Jr. et al. Apr 1983 A
4409665 Tubbs Oct 1983 A
D272291 Hauser et al. Jan 1984 S
4432447 Tanaka Feb 1984 A
4460080 Howard Jul 1984 A
4460965 Trehn et al. Jul 1984 A
4474281 Roberts et al. Oct 1984 A
4479191 Nojima et al. Oct 1984 A
4483431 Pratt Nov 1984 A
D278689 Jupe May 1985 S
4574936 Klinger Mar 1986 A
4615280 Shoop et al. Oct 1986 A
4639021 Hope Jan 1987 A
D288441 Lalonde Feb 1987 S
D289914 Willinger et al. May 1987 S
4678994 Davies Jul 1987 A
4742903 Trummer May 1988 A
4749074 Ueki et al. Jun 1988 A
4754126 Caldwell Jun 1988 A
D296795 Bouve Jul 1988 S
4763769 Levasseur Aug 1988 A
4798273 Ward, II Jan 1989 A
4809838 Houserman Mar 1989 A
4812805 Lachat et al. Mar 1989 A
4823928 Speas Apr 1989 A
4825425 Turner Apr 1989 A
4827206 Speas May 1989 A
4845484 Ellsberg Jul 1989 A
4848556 Shah et al. Jul 1989 A
4851987 Day Jul 1989 A
4872149 Speas Oct 1989 A
4875598 Dahl Oct 1989 A
4880097 Speas Nov 1989 A
4880406 Van Horn et al. Nov 1989 A
4895238 Speas Jan 1990 A
4951799 Xai Aug 1990 A
4967895 Speas Nov 1990 A
4976630 Schuder et al. Dec 1990 A
4989714 Abe Feb 1991 A
5027390 Hughes Jun 1991 A
5027935 Berg et al. Jul 1991 A
5029094 Wong Jul 1991 A
D319077 Arato et al. Aug 1991 S
5036859 Brown Aug 1991 A
5060777 Van Horn et al. Oct 1991 A
5065156 Bernier Nov 1991 A
5076414 Kimoto Dec 1991 A
5088073 Speas Feb 1992 A
5109972 Van Horn et al. May 1992 A
5119916 Carmen et al. Jun 1992 A
5142277 Yarberry et al. Aug 1992 A
5155614 Carmen et al. Oct 1992 A
5158166 Barson Oct 1992 A
D331996 Fukutake et al. Dec 1992 S
5184707 Van Horn et al. Feb 1993 A
5192855 Insulander et al. Mar 1993 A
5201396 Chalabian et al. Apr 1993 A
D335460 Tanaka May 1993 S
D336860 Clough Jun 1993 S
5222076 Ng et al. Jun 1993 A
D337953 Verborn et al. Aug 1993 S
5244070 Carmen et al. Sep 1993 A
D340038 Venne et al. Oct 1993 S
5259491 Ward, II Nov 1993 A
5266947 Fujiwara et al. Nov 1993 A
D342209 Clough Dec 1993 S
5273151 Carmen et al. Dec 1993 A
5287384 Avery et al. Feb 1994 A
5293979 Levasseur Mar 1994 A
5298894 Cerny et al. Mar 1994 A
5339594 Ventura-Berti Aug 1994 A
5343237 Morimoto Aug 1994 A
5351187 Hassett Sep 1994 A
D351193 Abe Oct 1994 S
5351798 Hayes Oct 1994 A
5360095 Speas Nov 1994 A
D354047 Leggate et al. Jan 1995 S
D354835 Brendel Jan 1995 S
5382780 Carmen Jan 1995 A
5402475 Lesner, Jr. et al. Mar 1995 A
5407049 Jacobs Apr 1995 A
5426363 Akagi et al. Jun 1995 A
D360734 Hall Jul 1995 S
D360737 Helbig, Jr. Jul 1995 S
5439089 Parker Aug 1995 A
5442348 Mushell Aug 1995 A
5454461 Jacobs Oct 1995 A
D364165 Esslinger Nov 1995 S
5471139 Zadoff Nov 1995 A
5475373 Speas Dec 1995 A
5489014 Menoud Feb 1996 A
5500517 Cagliostro Mar 1996 A
5507378 Leone Apr 1996 A
5526662 Diekhoff et al. Jun 1996 A
5563491 Tseng Oct 1996 A
5568441 Sanemitsu Oct 1996 A
D375607 Hall Nov 1996 S
5570771 Jacobs Nov 1996 A
5573099 Church et al. Nov 1996 A
5614892 Ward, II et al. Mar 1997 A
5617942 Ward, II et al. Apr 1997 A
5619932 Efland et al. Apr 1997 A
5640002 Ruppert et al. Jun 1997 A
5642119 Jacobs Jun 1997 A
5648906 Amirpanahi Jul 1997 A
D381976 Sandor et al. Aug 1997 S
5659306 Bahar Aug 1997 A
5687129 Kim Nov 1997 A
D388227 Dallman et al. Dec 1997 S
D388231 Magee et al. Dec 1997 S
5710743 Dee et al. Jan 1998 A
D391238 Sakata Feb 1998 S
5732812 Grainger et al. Mar 1998 A
D393212 Lucas Apr 1998 S
5737710 Anthonyson Apr 1998 A
5740050 Ward, II Apr 1998 A
5748103 Flach et al. May 1998 A
D395133 Makami et al. Jun 1998 S
5761061 Amano Jun 1998 A
5777302 Nakagawa et al. Jul 1998 A
5777951 Mitschele et al. Jul 1998 A
5777957 Lyman Jul 1998 A
5778067 Jones et al. Jul 1998 A
D396655 Anderson Aug 1998 S
5792298 Sauer et al. Aug 1998 A
5803228 Lucas Sep 1998 A
5805083 Sutton et al. Sep 1998 A
5806651 Carmen et al. Sep 1998 A
D400115 Yaron et al. Oct 1998 S
D400684 Dallman Nov 1998 S
5833042 Baitch et al. Nov 1998 A
5841369 Sutton et al. Nov 1998 A
5842411 Johnson Dec 1998 A
5845268 Moore Dec 1998 A
5852411 Jacobs et al. Dec 1998 A
D404025 Van Horne et al. Jan 1999 S
5903520 Dee et al. May 1999 A
5906260 Goodrich May 1999 A
5911763 Quesada Jun 1999 A
5915246 Patterson et al. Jun 1999 A
D411848 Maruska et al. Jul 1999 S
D412233 Cajacob et al. Jul 1999 S
D412289 Winwood Jul 1999 S
D413311 Blalock Aug 1999 S
5940481 Zietman Aug 1999 A
5946774 Ramsey et al. Sep 1999 A
5954182 Wei Sep 1999 A
5936527 Isaacman et al. Oct 1999 A
5966345 Dee et al. Oct 1999 A
D419277 Ishii et al. Jan 2000 S
6018327 Nakano et al. Jan 2000 A
6026946 McCarty, Jr. Feb 2000 A
6029888 Harvey Feb 2000 A
D421399 Bennett et al. Mar 2000 S
6037880 Manion Mar 2000 A
D423181 Dallman Apr 2000 S
D423755 Ha Apr 2000 S
6052453 Sagady et al. Apr 2000 A
D427413 Wallace et al. Jun 2000 S
6078272 Jacobs et al. Jun 2000 A
6081205 Williams Jun 2000 A
6081206 Keilland Jun 2000 A
6082153 Schoell et al. Jul 2000 A
D430045 Omuro et al. Aug 2000 S
6098361 Roten et al. Aug 2000 A
6107942 Yoo et al. Aug 2000 A
6109418 Yost Aug 2000 A
6111522 Hiltz et al. Aug 2000 A
D430810 Omuro et al. Sep 2000 S
6116403 Kiehl Sep 2000 A
6121880 Scott et al. Sep 2000 A
D431788 Tuxen et al. Oct 2000 S
D432286 Irie Oct 2000 S
6132152 Kaibach et al. Oct 2000 A
6147624 Clapper Nov 2000 A
D437468 Fukutake et al. Feb 2001 S
6188328 Ho Feb 2001 B1
6193045 Ishida et al. Feb 2001 B1
6195015 Jacobs et al. Feb 2001 B1
D439591 Reidt et al. Mar 2001 S
RE37193 Ward et al. May 2001 E
6227343 Neathway et al. May 2001 B1
6229455 Yost et al. May 2001 B1
6230868 Tuxen et al. May 2001 B1
6236716 Marcus et al. May 2001 B1
6243028 Krygler et al. Jun 2001 B1
6243029 Tomer Jun 2001 B1
6275169 Krygler et al. Aug 2001 B1
6275170 Jacobs et al. Aug 2001 B1
D447519 Pinchuk et al. Sep 2001 S
D447714 Cappiello Sep 2001 S
D448910 Kit et al. Oct 2001 S
D449010 Petrucelli Oct 2001 S
6307152 Bonilla et al. Oct 2001 B1
6309098 Wong Oct 2001 B1
D450253 Marguet Nov 2001 S
6312152 Dee et al. Nov 2001 B2
6321201 Dahl Nov 2001 B1
RE37531 Chaco et al. Jan 2002 E
6340935 Hall Jan 2002 B1
6344806 Katz Feb 2002 B1
D454421 Jeon et al. Mar 2002 S
D454807 Cappiello Mar 2002 S
6354425 Tuxen et al. Mar 2002 B1
6366220 Elliott Apr 2002 B1
6373401 Ho Apr 2002 B2
6373422 Mostafa Apr 2002 B1
6373442 Thomas Apr 2002 B1
6380851 Gilbert et al. Apr 2002 B1
D460005 Jacquet Jul 2002 S
D461728 Tuxen et al. Aug 2002 S
6456491 Flannery et al. Sep 2002 B1
D463749 Petrucelli Oct 2002 S
6457586 Yasuda et al. Oct 2002 B2
6467602 Bench et al. Oct 2002 B2
6477505 Ward, II et al. Nov 2002 B2
6477875 Field et al. Nov 2002 B2
D467954 Suzuki et al. Dec 2002 S
6493676 Levy Dec 2002 B1
6505774 Fulcher et al. Jan 2003 B1
D471238 Showers et al. Mar 2003 S
D472362 Zerman et al. Mar 2003 S
6527172 Lewis et al. Mar 2003 B1
6539370 Chang et al. Mar 2003 B1
6559776 Katz May 2003 B2
6575281 Lee Jun 2003 B2
D477030 Kolls et al. Jul 2003 S
D481516 Magee et al. Oct 2003 S
D485417 Magee et al. Jan 2004 S
6697730 Dickerson Feb 2004 B2
D488280 Zerman et al. Apr 2004 S
6731942 Nageli May 2004 B1
D490727 Kido et al. Jun 2004 S
D492080 Magee et al. Jun 2004 S
D492081 Magee et al. Jun 2004 S
D492085 Korte et al. Jun 2004 S
6747575 Chauvin et al. Jun 2004 B2
6763094 Conn et al. Jul 2004 B2
D494730 Magee et al. Aug 2004 S
6791473 Kibria et al. Sep 2004 B2
RE38626 Kielland Oct 2004 E
D497393 Herbst Oct 2004 S
6799387 Pippins Oct 2004 B2
D497814 Odinotski et al. Nov 2004 S
D498795 Nunn Nov 2004 S
6812857 Kassab et al. Nov 2004 B1
6823317 Ouimet et al. Nov 2004 B1
6856922 Austin et al. Feb 2005 B1
6874340 Berman Apr 2005 B1
6885311 Howard et al. Apr 2005 B2
D505240 Swaine et al. May 2005 S
D505765 Swaine et al. May 2005 S
6889899 Silberberg May 2005 B2
D506509 Nunn Jun 2005 S
D506769 Asai Jun 2005 S
6914411 Couch et al. Jul 2005 B2
D508064 Ramirez Aug 2005 S
6929179 Fulcher et al. Aug 2005 B2
6946974 Racunas, Jr. Sep 2005 B1
D510751 Magee et al. Oct 2005 S
7004385 Douglass Feb 2006 B1
7014355 Potter, Sr. et al. Mar 2006 B2
7019420 Kogan et al. Mar 2006 B2
7019670 Bahar Mar 2006 B2
7023360 Staniszewski Apr 2006 B2
7027773 McMillin Apr 2006 B1
7027808 Wesby Apr 2006 B2
7028888 Laskowski Apr 2006 B2
7029167 Mitschele Apr 2006 B1
D520883 Hillard et al. May 2006 S
7040534 Turocy et al. May 2006 B2
7046123 Goldberg May 2006 B1
D524834 Dozier et al. Jul 2006 S
7071839 Patel et al. Jul 2006 B2
7104447 Lopez et al. Sep 2006 B1
7110762 Cameron et al. Sep 2006 B1
D530880 Magee et al. Oct 2006 S
7114651 Hjelmvik Oct 2006 B2
7131576 Utz et al. Nov 2006 B2
D535268 Holger Jan 2007 S
7181426 Dutta Feb 2007 B2
7183999 Matthews et al. Feb 2007 B2
D538505 Kang et al. Mar 2007 S
7188070 Dar et al. Mar 2007 B2
D543588 Herbert et al. May 2007 S
7222031 Heatley May 2007 B2
7222782 Lute, Jr. et al. May 2007 B2
7230545 Nath et al. Jun 2007 B2
7237176 Briggs et al. Jun 2007 B2
D546365 Jost et al. Jul 2007 S
7237716 Silberberg Jul 2007 B2
7253747 Noguchi Aug 2007 B2
7262737 Zarnowitz et al. Aug 2007 B2
7284692 Douglass Oct 2007 B1
D559792 Gemme et al. Jan 2008 S
7319974 Brusseaux Jan 2008 B1
7321317 Nath et al. Jan 2008 B2
7330131 Zanotti et al. Feb 2008 B2
7347368 Gravelle et al. Mar 2008 B1
D570920 Choi Jun 2008 S
7382238 Kavaler Jun 2008 B2
7382281 Kavaler Jun 2008 B2
7382282 Kavaler Jun 2008 B2
7385484 Nath et al. Jun 2008 B2
7388349 Elder et al. Jun 2008 B2
7388517 Kavaler Jun 2008 B2
7391339 Howard et al. Jun 2008 B2
7393134 Mitschele Jul 2008 B2
D575168 King et al. Aug 2008 S
7419091 Scanlon Sep 2008 B1
7427931 Kavaler et al. Sep 2008 B1
D579795 Martinez et al. Nov 2008 S
7445144 Schlabach et al. Nov 2008 B2
D582125 Kang et al. Dec 2008 S
D587141 King et al. Feb 2009 S
D588916 DeMarco Mar 2009 S
D591181 Kanbar Apr 2009 S
D592825 Kang et al. May 2009 S
7533802 McGinley et al. May 2009 B1
7533809 Robinson et al. May 2009 B1
7554460 Verkleeren et al. Jun 2009 B2
D596373 Kang et al. Jul 2009 S
D596374 Kang et al. Jul 2009 S
7558564 Wesby Jul 2009 B2
7575166 McNamara Aug 2009 B2
7579964 Nath et al. Aug 2009 B2
7594235 Moreau Sep 2009 B2
D602225 Lute et al. Oct 2009 S
D604189 Leer et al. Nov 2009 S
7611045 Lute et al. Nov 2009 B1
7617120 Derasmo et al. Nov 2009 B2
D605145 Kellar Dec 2009 S
7624919 Meek et al. Dec 2009 B2
7632419 Grimbergen et al. Dec 2009 B1
7671803 Neill et al. Mar 2010 B2
7679526 Mardirossian Mar 2010 B2
7699224 Molé Apr 2010 B2
D615274 Kim et al. May 2010 S
7717327 Gomes May 2010 B2
D617799 Odhe et al. Jun 2010 S
7726558 Lute et al. Jun 2010 B1
7739000 Kevaler Jun 2010 B2
D620050 Hultzman et al. Jul 2010 S
7748620 Gomez et al. Jul 2010 B2
7772720 McGee et al. Aug 2010 B2
7780072 Lute et al. Aug 2010 B1
7783530 Stemmer et al. Aug 2010 B2
D624274 Pendleton Sep 2010 S
D625305 Bieck et al. Oct 2010 S
7806248 Hunter et al. Oct 2010 B2
D627814 Tzeng et al. Nov 2010 S
7825826 Welch Nov 2010 B2
D629585 Bleck et al. Dec 2010 S
7854310 King et al. Dec 2010 B2
7855661 Ponert Dec 2010 B2
7874482 Mitschele Jan 2011 B2
D632740 Adeline Feb 2011 S
7891546 Steinbach et al. Feb 2011 B1
D634417 Abbondanzio Mar 2011 S
D635035 Matsumoto Mar 2011 S
7899583 Mendelson Mar 2011 B2
7908149 Dar et al. Mar 2011 B2
7933841 Schmeyer et al. Apr 2011 B2
7945670 Nakamura et al. May 2011 B2
D645223 Bieck et al. Sep 2011 S
8035533 Kavaler Oct 2011 B2
8044139 Youn et al. Oct 2011 B2
D652329 MacKay et al. Jan 2012 S
D652872 Mougin et al. Jan 2012 S
D653014 Rohan et al. Jan 2012 S
D653420 Rohan et al. Jan 2012 S
D653421 Rohan et al. Jan 2012 S
D653424 Rohan et al. Jan 2012 S
D654816 MacKay et al. Feb 2012 S
RE43245 Ouimet et al. Mar 2012 E
D655263 Tsai Mar 2012 S
D656046 MacKay et al. Mar 2012 S
8138950 Leung Mar 2012 B1
8144034 Kavaler Mar 2012 B2
D659557 Jones et al. May 2012 S
8181857 Lute et al. May 2012 B1
8184019 Chauvin et al. May 2012 B2
D661603 MacKay et al. Jun 2012 S
D661608 Kimmich Jun 2012 S
8193540 Huang et al. Jun 2012 B2
8207394 Feldkamp et al. Jun 2012 B2
8232894 Weiss et al. Jul 2012 B2
8264401 Kavaler Sep 2012 B1
8279107 Krstanovic et al. Oct 2012 B2
D672525 Lee et al. Dec 2012 S
8325057 Salter Dec 2012 B2
D674985 Lee Jan 2013 S
D677035 Lee et al. Feb 2013 S
D677714 Helgesson et al. Mar 2013 S
8395532 Chauvin et al. Mar 2013 B2
8402281 Dahl Mar 2013 B2
8402380 Kikin-Gil et al. Mar 2013 B2
D680156 Hernandez et al. Apr 2013 S
8417715 Bruckhaus et al. Apr 2013 B1
D681717 Helgesson et al. May 2013 S
D682504 Lee et al. May 2013 S
8450627 Mittleman et al. May 2013 B2
D683779 Uemachi et al. Jun 2013 S
D683794 Randall Jun 2013 S
D683795 Randall Jun 2013 S
D684745 Reuter et al. Jun 2013 S
D684870 Jones et al. Jun 2013 S
8479909 King et al. Jul 2013 B2
8487754 Mitschele Jul 2013 B2
D687809 Bergmann et al. Aug 2013 S
8513832 Hunter et al. Aug 2013 B2
8517479 Lee Aug 2013 B2
D689554 Echanove Hernandez Sep 2013 S
D690771 Randall Oct 2013 S
D691165 Attoma Oct 2013 S
8566159 King et al. Oct 2013 B2
8568055 Marques Lito Velez Grilo Oct 2013 B2
D692784 Anderssen et al. Nov 2013 S
D693983 Budde et al. Nov 2013 S
8573484 Irudayam et al. Nov 2013 B1
8589216 Yu et al. Nov 2013 B2
8590687 King et al. Nov 2013 B2
8595054 King et al. Nov 2013 B2
D696484 Lee et al. Dec 2013 S
D696485 Lee et al. Dec 2013 S
8621245 Shearer et al. Dec 2013 B2
8631921 Jones et al. Jan 2014 B2
8662279 Jones et al. Mar 2014 B2
8666801 Cho Mar 2014 B2
D702913 Budde et al. Apr 2014 S
D702914 Budde et al. Apr 2014 S
8684158 Jones et al. Apr 2014 B2
8710798 Turner Apr 2014 B2
D705090 MacKay et al. May 2014 S
8727207 Church et al. May 2014 B1
D707140 King et al. Jun 2014 S
D707141 King et al. Jun 2014 S
D707142 King et al. Jun 2014 S
D707574 Ku et al. Jun 2014 S
8749403 King et al. Jun 2014 B2
8770371 MacKay et al. Jul 2014 B2
8770372 Dobbins et al. Jul 2014 B2
8807317 MacKay et al. Aug 2014 B2
D714165 Salama Sep 2014 S
D716156 Jones et al. Oct 2014 S
D716515 Cha et al. Oct 2014 S
8862494 King et al. Oct 2014 B2
8866624 Ales et al. Oct 2014 B2
D716671 Jones et al. Nov 2014 S
8884785 Groft et al. Nov 2014 B2
8936505 Bengtsson Jan 2015 B2
D722740 Budde et al. Feb 2015 S
8957787 Al-Hmalan et al. Feb 2015 B1
D724290 Cha et al. Mar 2015 S
D724811 Reitinger Mar 2015 S
D724812 Cha et al. Mar 2015 S
D728190 Sheley Apr 2015 S
9002723 King et al. Apr 2015 B2
D732263 Budde et al. Jun 2015 S
9047712 King et al. Jun 2015 B2
9064358 Lidror Jun 2015 B2
D733585 Jones et al. Jul 2015 S
D735437 Randall Jul 2015 S
D735438 Randall Jul 2015 S
D735439 Randall Jul 2015 S
D735440 Randall Jul 2015 S
D735963 Randall Aug 2015 S
D735964 Randall Aug 2015 S
D735965 Randall Aug 2015 S
D739637 Randall Sep 2015 S
D739638 Randall Sep 2015 S
D739639 Randall Sep 2015 S
9123184 Jones et al. Sep 2015 B2
9127964 Schwarz et al. Sep 2015 B2
9147345 Agrait et al. Sep 2015 B2
D741040 Budde et al. Oct 2015 S
D742090 Randall Oct 2015 S
9159080 Fiorucci et al. Oct 2015 B2
9169626 Guler et al. Oct 2015 B2
D742371 Bopp et al. Nov 2015 S
D743956 Kraft et al. Nov 2015 S
9196097 Jones et al. Nov 2015 B2
9196161 Lai et al. Nov 2015 B2
D746015 King et al. Dec 2015 S
D746704 Jones et al. Jan 2016 S
D748364 King et al. Jan 2016 S
D748888 King et al. Feb 2016 S
D749000 King et al. Feb 2016 S
D749290 Pollmann Feb 2016 S
9269216 Keilwert Feb 2016 B2
D750513 King et al. Mar 2016 S
D750978 van Slooten et al. Mar 2016 S
D752552 D'Ascanio et al. Mar 2016 S
D755649 King et al. May 2016 S
D755650 King et al. May 2016 S
D756807 King et al. May 2016 S
D756808 King et al. May 2016 S
D762040 King et al. Jul 2016 S
9384554 Xu et al. Jul 2016 B2
9391474 Hunter et al. Jul 2016 B2
9406056 MacKay et al. Aug 2016 B2
9407608 Mullick et al. Aug 2016 B2
9424691 King et al. Aug 2016 B2
9437050 Hilton et al. Sep 2016 B2
9443236 MacKay et al. Sep 2016 B2
D769570 Kraft et al. Oct 2016 S
D769571 Lee et al. Oct 2016 S
D769572 Park et al. Oct 2016 S
9489776 Keller et al. Nov 2016 B2
9494922 MacKay et al. Nov 2016 B2
9508198 King et al. Nov 2016 B1
9508260 Shaik Nov 2016 B2
9519761 Jakobsson Dec 2016 B2
9524498 Jones et al. Dec 2016 B2
9536235 Jones et al. Jan 2017 B2
9536370 Jones et al. Jan 2017 B2
D779771 King et al. Feb 2017 S
D779772 King et al. Feb 2017 S
D779773 King et al. Feb 2017 S
D779774 King et al. Feb 2017 S
9580198 Ehrmann et al. Feb 2017 B2
D781024 King et al. Mar 2017 S
9661403 King et al. May 2017 B2
9685027 King et al. Jun 2017 B2
9692256 Hunter et al. Jun 2017 B2
9697506 Jones et al. Jul 2017 B2
9707911 Myers et al. Jul 2017 B1
D795523 King et al. Aug 2017 S
9728085 Schwarz et al. Aug 2017 B2
9746954 Wyatt et al. Aug 2017 B2
9749823 Rowe et al. Aug 2017 B2
9773351 Hudson et al. Sep 2017 B2
D799992 Ehara Oct 2017 S
9779565 Rabbat Oct 2017 B2
9805518 King et al. Oct 2017 B2
D802874 King et al. Nov 2017 S
D802875 King et al. Nov 2017 S
D802876 King et al. Nov 2017 S
D802877 King et al. Nov 2017 S
D802878 King et al. Nov 2017 S
9842346 Fiorucci et al. Dec 2017 B2
9842455 MacKay et al. Dec 2017 B2
D813059 MacKay et al. Mar 2018 S
9934645 MacKay et al. Apr 2018 B2
10069233 Goto Sep 2018 B2
10089814 King et al. Oct 2018 B2
10141629 Mackay Nov 2018 B2
10154029 Griffin Dec 2018 B1
10192388 MacKay et al. Jan 2019 B2
10262345 King et al. Apr 2019 B2
10275650 Laaksonen Apr 2019 B2
10297150 Schwarz et al. May 2019 B2
10299018 King et al. May 2019 B1
D851605 Maetani et al. Jun 2019 S
D852454 King et al. Jun 2019 S
10315665 Halder Jun 2019 B2
D853079 King et al. Jul 2019 S
D853678 King et al. Jul 2019 S
D853679 King et al. Jul 2019 S
10366546 King et al. Jul 2019 B2
10423980 King et al. Sep 2019 B2
10424147 MacKay et al. Sep 2019 B2
D865315 King et al. Oct 2019 S
10464530 Falkson et al. Nov 2019 B2
10491972 King et al. Nov 2019 B2
10503990 Gleeson-May et al. Dec 2019 B2
D872600 King et al. Jan 2020 S
10573953 MacKay Feb 2020 B2
10574085 Hunter et al. Feb 2020 B2
10664880 King et al. May 2020 B2
10674236 King et al. Jun 2020 B2
10691904 Randall et al. Jun 2020 B1
10741064 Schwarz et al. Aug 2020 B2
10861278 MacKay et al. Dec 2020 B2
D911857 King et al. Mar 2021 S
10998612 MacKay et al. May 2021 B2
11074612 King et al. Jul 2021 B2
11100824 King et al. Aug 2021 B2
11132723 King et al. Sep 2021 B2
11172274 King et al. Nov 2021 B2
D955230 King et al. Jun 2022 S
D955231 King et al. Jun 2022 S
11386420 Nolan et al. Jul 2022 B2
D959298 Jones et al. Aug 2022 S
D959299 Jones et al. Aug 2022 S
D959997 Jones et al. Aug 2022 S
11423776 Schwarz et al. Aug 2022 B2
11430027 King et al. Aug 2022 B2
11436649 King et al. Sep 2022 B2
11462109 King et al. Oct 2022 B2
11475491 King et al. Oct 2022 B2
20010012241 Dee et al. Aug 2001 A1
20010027626 Natelli, Jr. Oct 2001 A1
20010037928 Bench et al. Nov 2001 A1
20010047278 Brookner et al. Nov 2001 A1
20010051531 Singhal et al. Dec 2001 A1
20020008639 Dee Jan 2002 A1
20020030606 Chauvin et al. Mar 2002 A1
20020062172 Bench et al. May 2002 A1
20020063035 Blad et al. May 2002 A1
20020074344 Long et al. Jun 2002 A1
20020080013 Anderson, III et al. Jun 2002 A1
20020100810 Amadeo Aug 2002 A1
20020109609 Potter et al. Aug 2002 A1
20020109610 Katz Aug 2002 A1
20020109611 Howard Aug 2002 A1
20020111768 Ghorayeb et al. Aug 2002 A1
20020134645 Alexander et al. Sep 2002 A1
20030010821 Silberberg Jan 2003 A1
20030017904 Lee Jan 2003 A1
20030092387 Hjelmvik May 2003 A1
20030112151 Chauvin et al. Jun 2003 A1
20030112597 Smith Jun 2003 A1
20030117904 Lank et al. Jun 2003 A1
20030121754 King Jul 2003 A1
20030128010 Hsu Jul 2003 A1
20030128136 Spier et al. Jul 2003 A1
20030132840 Bahar Jul 2003 A1
20030135407 Reinhardt et al. Jul 2003 A1
20030140531 Pippins Jul 2003 A1
20030144905 Smith Jul 2003 A1
20030144972 Cordery et al. Jul 2003 A1
20030169183 Korepanov et al. Sep 2003 A1
20030179107 Kibria et al. Sep 2003 A1
20030220835 Barnes, Jr. Nov 2003 A1
20030222792 Berman et al. Dec 2003 A1
20030229793 McCall et al. Dec 2003 A1
20030234888 Hong et al. Dec 2003 A1
20040011099 Andersson Jan 2004 A1
20040016796 Hanna et al. Jan 2004 A1
20040039632 Han et al. Feb 2004 A1
20040040028 Moreau Feb 2004 A1
20040059693 Hausen et al. Mar 2004 A1
20040068434 Kanekon Apr 2004 A1
20040084278 Harris et al. May 2004 A1
20040094619 Silberberg May 2004 A1
20040160905 Bernier et al. Aug 2004 A1
20040160906 Greszczuk et al. Aug 2004 A1
20040181496 Odinotski et al. Sep 2004 A1
20040207530 Nielsen Oct 2004 A1
20040232878 Couch et al. Nov 2004 A1
20040243526 Krygler et al. Dec 2004 A1
20040254840 Slemmer et al. Dec 2004 A1
20040254900 Reinhard Dec 2004 A1
20040262379 Gomes Dec 2004 A1
20040263117 Kogan et al. Dec 2004 A1
20040264302 Ward, II Dec 2004 A1
20050001779 Copeland Jan 2005 A1
20050029340 Ferraro Feb 2005 A1
20050035740 Elder et al. Feb 2005 A1
20050040951 Zalewski et al. Feb 2005 A1
20050068201 Wulff et al. Mar 2005 A1
20050099320 Nath et al. May 2005 A1
20050102075 Dar et al. May 2005 A1
20050155839 Banks et al. Jul 2005 A1
20050168352 Tomer Aug 2005 A1
20050178639 Brumfield et al. Aug 2005 A1
20050192911 Mattern Sep 2005 A1
20050216354 Bam et al. Sep 2005 A1
20050226201 McMilliin Oct 2005 A1
20060020487 Spittel et al. Jan 2006 A1
20060021848 Smith Feb 2006 A1
20060028919 Mitschele Feb 2006 A1
20060052055 Rowse et al. Mar 2006 A1
20060072286 Tseng Apr 2006 A1
20060114159 Yoshikawa et al. Jun 2006 A1
20060116972 Wong Jun 2006 A1
20060136131 Dugan et al. Jun 2006 A1
20060149684 Matsuura et al. Jul 2006 A1
20060152349 Ratnakar Jul 2006 A1
20060152385 Mandy Jul 2006 A1
20060173733 Fancher Aug 2006 A1
20060227010 Berstis et al. Oct 2006 A1
20060255119 Marchasin et al. Nov 2006 A1
20060259354 Yan Nov 2006 A1
20060267799 Mendelson Nov 2006 A1
20070011700 Johnson Jan 2007 A1
20070016539 Groft et al. Jan 2007 A1
20070017265 Andersson Jan 2007 A1
20070029825 Franklin et al. Feb 2007 A1
20070040449 Spurlin et al. Feb 2007 A1
20070044523 Davis Mar 2007 A1
20070046651 Sinclair et al. Mar 2007 A1
20070061155 Ji et al. Mar 2007 A1
20070074702 Nakamura et al. Apr 2007 A1
20070094153 Ferraro Apr 2007 A1
20070114849 Falik et al. May 2007 A1
20070119682 Banks et al. May 2007 A1
20070129974 Chen et al. Jun 2007 A1
20070136128 Janacek et al. Jun 2007 A1
20070171069 Allen Jul 2007 A1
20070184852 Johnson et al. Aug 2007 A1
20070189907 Kunihiro et al. Aug 2007 A1
20070208499 Kwong Sep 2007 A1
20070210935 Yost et al. Sep 2007 A1
20070276724 Catt Nov 2007 A1
20070285281 Welch Dec 2007 A1
20080052254 Al Amri Feb 2008 A1
20080061967 Corrado Mar 2008 A1
20080071611 Lovett Mar 2008 A1
20080093454 Yamazaki et al. Apr 2008 A1
20080147268 Fuller Jun 2008 A1
20080158010 Nath et al. Jul 2008 A1
20080165030 Kuo et al. Jul 2008 A1
20080208680 Cho Aug 2008 A1
20080218383 Franklin et al. Sep 2008 A1
20080238715 Cheng et al. Oct 2008 A1
20080245638 King et al. Oct 2008 A1
20080257965 Klein et al. Oct 2008 A1
20080265019 Artino et al. Oct 2008 A1
20080266138 Ponert Oct 2008 A1
20080270227 Al Amri Oct 2008 A1
20080277468 Mitschele Nov 2008 A1
20080289030 Poplett Nov 2008 A1
20080291054 Groft Nov 2008 A1
20080296365 Schliebe Dec 2008 A1
20080319837 Mitschele Dec 2008 A1
20090026842 Hunter et al. Jan 2009 A1
20090032368 Hunter et al. Feb 2009 A1
20090049875 Buhl et al. Feb 2009 A1
20090057398 Douglass et al. Mar 2009 A1
20090083149 Maekawa et al. Mar 2009 A1
20090095593 King et al. Apr 2009 A1
20090099761 Davis et al. Apr 2009 A1
20090102726 Imano et al. Apr 2009 A1
20090109062 An Apr 2009 A1
20090121889 Lin et al. May 2009 A1
20090137204 Chang May 2009 A1
20090146796 Goto et al. Jun 2009 A1
20090159674 King et al. Jun 2009 A1
20090174528 Toda et al. Jul 2009 A1
20090177580 Lowenthal et al. Jul 2009 A1
20090183966 King et al. Jul 2009 A1
20090192950 King Jul 2009 A1
20090199966 Coleman et al. Aug 2009 A1
20090254438 Johnson, Jr. et al. Oct 2009 A1
20090256707 Uschold Oct 2009 A1
20090267732 Chauvin et al. Oct 2009 A1
20090284907 Regimbal et al. Nov 2009 A1
20090287578 Paluszek et al. Nov 2009 A1
20090315720 Clement et al. Dec 2009 A1
20100019936 Kaveler Jan 2010 A1
20100025459 Yamada Feb 2010 A1
20100026522 Ward, II Feb 2010 A1
20100030629 Ward, II Feb 2010 A1
20100032266 Stephan Feb 2010 A1
20100103100 Yamamoto Apr 2010 A1
20100106517 Kociubinski et al. Apr 2010 A1
20100116883 Cost et al. May 2010 A1
20100153193 Ashby et al. Jun 2010 A1
20100161489 Goodall et al. Jun 2010 A1
20100168694 Gakhar et al. Jul 2010 A1
20100187300 Ramachandran et al. Jul 2010 A1
20100188932 Hanks et al. Jul 2010 A1
20100224682 Busch-Sorensen Sep 2010 A1
20100241564 Miller et al. Sep 2010 A1
20100243729 Russell et al. Sep 2010 A1
20100328104 Groft Dec 2010 A1
20100332394 Ioli Dec 2010 A1
20110022427 Dayan Jan 2011 A1
20110037562 Braukmann Feb 2011 A1
20110057815 King et al. Mar 2011 A1
20110060653 King et al. Mar 2011 A1
20110062230 Ward, II et al. Mar 2011 A1
20110063133 Keller et al. Mar 2011 A1
20110066297 Saberi et al. Mar 2011 A1
20110093314 Redmann Apr 2011 A1
20110106329 Donnelly et al. May 2011 A1
20110122036 Leung May 2011 A1
20110133613 Descamps et al. Jun 2011 A1
20110158331 Kavaler et al. Jun 2011 A1
20110203901 King et al. Aug 2011 A1
20110204847 Turner Aug 2011 A1
20110205087 Kell et al. Aug 2011 A1
20110210827 Lidror Sep 2011 A1
20110213656 Turner Sep 2011 A1
20110218940 Bergstrom et al. Sep 2011 A1
20110221624 Kavaler Sep 2011 A1
20110222957 Marques Lito Velez Grilo Sep 2011 A1
20110241604 Anderson Oct 2011 A1
20110261548 Gandhi Oct 2011 A1
20110276519 MacKay et al. Nov 2011 A1
20110289985 MacKay et al. Dec 2011 A1
20110313822 Burdick Dec 2011 A1
20110316716 MacKay et al. Dec 2011 A1
20110320243 Khan Dec 2011 A1
20110320256 Fiorucci et al. Dec 2011 A1
20120026015 Kavaler Feb 2012 A1
20120073222 Sargentini Mar 2012 A1
20120078686 Bashani Mar 2012 A1
20120084210 Farahmand Apr 2012 A1
20120092528 Jung et al. Apr 2012 A1
20120143657 Silberberg Jun 2012 A1
20120158466 John Jun 2012 A1
20120173171 Bajwa et al. Jul 2012 A1
20120185325 Shani Jul 2012 A1
20120197806 Hill Aug 2012 A1
20120208521 Hager et al. Aug 2012 A1
20120213351 Boyce et al. Aug 2012 A1
20120215375 Chang Aug 2012 A1
20120222935 MacKay Sep 2012 A1
20120223841 Chauvin et al. Sep 2012 A1
20120254040 Dixon et al. Oct 2012 A1
20120255333 MacKay et al. Oct 2012 A1
20120273322 MacKay et al. Nov 2012 A1
20120285790 Jones et al. Nov 2012 A1
20120285791 Jones et al. Nov 2012 A1
20120285792 Jones et al. Nov 2012 A1
20120285793 Jones et al. Nov 2012 A1
20120286036 Jones et al. Nov 2012 A1
20120286968 Jones et al. Nov 2012 A1
20120292385 MacKay et al. Nov 2012 A1
20130005445 Walker et al. Jan 2013 A1
20130016952 Knuth Jan 2013 A1
20130027218 Schwarz et al. Jan 2013 A1
20130085928 McKinney Apr 2013 A1
20130086375 Lyne et al. Apr 2013 A1
20130099943 Subramanya Apr 2013 A1
20130124270 Tziperman et al. May 2013 A1
20130124320 Karner May 2013 A1
20130143536 Ratti Jun 2013 A1
20130231985 MacKay et al. Sep 2013 A1
20130238406 King et al. Sep 2013 A1
20130257589 Mohiuddin et al. Oct 2013 A1
20130262275 Outwater et al. Oct 2013 A1
20130285455 Hunter et al. Oct 2013 A1
20140040028 King et al. Feb 2014 A1
20140041301 Oakley et al. Feb 2014 A1
20140058805 Paesler et al. Feb 2014 A1
20140108107 Jones et al. Apr 2014 A1
20140129158 Shea May 2014 A1
20140139360 Vilajosana Guillen et al. May 2014 A1
20140165885 Denny Jun 2014 A1
20140172518 King et al. Jun 2014 A1
20140174880 MacKay et al. Jun 2014 A1
20140174881 King et al. Jun 2014 A1
20140210646 Subramanya Jul 2014 A1
20140213176 Mendelson Jul 2014 A1
20140214499 Hudson et al. Jul 2014 A1
20140214500 Hudson et al. Jul 2014 A1
20140218527 Subramanya Aug 2014 A1
20140229246 Ghaffari Aug 2014 A1
20140231505 King et al. Aug 2014 A1
20140257943 Nerayoff et al. Sep 2014 A1
20140279565 Trump et al. Sep 2014 A1
20140289025 King et al. Sep 2014 A1
20140319211 MacKay et al. Oct 2014 A1
20140344891 Mullick et al. Nov 2014 A1
20150000511 Engl Jan 2015 A1
20150029041 Liu et al. Jan 2015 A1
20150045984 Hui et al. Feb 2015 A1
20150068827 Makitalo et al. Mar 2015 A1
20150084786 King et al. Mar 2015 A1
20150106172 Salama Apr 2015 A1
20150120336 Grokop et al. Apr 2015 A1
20150129391 Jones et al. May 2015 A1
20150160761 Lee et al. Jun 2015 A1
20150179070 Sanbrook Jun 2015 A1
20150191178 Roy et al. Jul 2015 A1
20150235503 King et al. Aug 2015 A1
20150242605 Du et al. Aug 2015 A1
20150278969 Benoy et al. Oct 2015 A1
20150283902 Tuukkanen Oct 2015 A1
20150288713 Lawrence et al. Oct 2015 A1
20150288932 Smith et al. Oct 2015 A1
20150294526 Vogt Oct 2015 A1
20150302057 Kealey et al. Oct 2015 A1
20150332587 Schwarz et al. Nov 2015 A1
20150333598 Conticchio et al. Nov 2015 A1
20150341241 Robertson Nov 2015 A1
20150356604 Kim et al. Dec 2015 A1
20150371483 Sun Dec 2015 A1
20150376891 Laurindo Dec 2015 A1
20160001782 Fiedler Jan 2016 A1
20160012418 MacKay et al. Jan 2016 A1
20160012602 Xu et al. Jan 2016 A1
20160040699 Nayar Feb 2016 A1
20160055322 Thomas Feb 2016 A1
20160069557 Rueckgauer Mar 2016 A1
20160086397 Phillips Mar 2016 A1
20160133085 Eagon et al. May 2016 A1
20160163119 Bashani Jun 2016 A1
20160267340 Jensen Sep 2016 A1
20160268838 Hunter et al. Sep 2016 A1
20160321714 King et al. Nov 2016 A1
20160371915 MacKay et al. Dec 2016 A1
20170031464 Montero Feb 2017 A1
20170032485 Vemury Feb 2017 A1
20170032582 Moran et al. Feb 2017 A1
20170034600 King et al. Feb 2017 A1
20170083043 Bowers et al. Mar 2017 A1
20170094517 Jakobsson Mar 2017 A1
20170096123 Gennermann et al. Apr 2017 A1
20170098339 Keller et al. Apr 2017 A1
20170116857 Moran et al. Apr 2017 A1
20170148230 Richard May 2017 A1
20170154368 Jones et al. Jun 2017 A1
20170168155 Richard Jun 2017 A1
20170186054 Fish et al. Jun 2017 A1
20170193734 King et al. Jul 2017 A1
20170197586 Kawamura et al. Jul 2017 A1
20170206716 King et al. Jul 2017 A1
20170256983 Hunter et al. Sep 2017 A1
20170262882 Shina Sep 2017 A1
20170299400 Joung et al. Oct 2017 A1
20170320501 Li et al. Nov 2017 A1
20170323227 Sadeghi Nov 2017 A1
20170323513 Jones Nov 2017 A1
20170325082 Rowe et al. Nov 2017 A1
20170369071 Gould et al. Dec 2017 A1
20180018179 Scheufler et al. Jan 2018 A1
20180025549 King et al. Jan 2018 A1
20180025550 Hudson et al. Jan 2018 A1
20180025629 Schwarz et al. Jan 2018 A1
20180061172 MacKay et al. Mar 2018 A1
20180068337 Fiorucci et al. Mar 2018 A1
20180082488 King et al. Mar 2018 A1
20180082489 King et al. Mar 2018 A1
20180082490 King et al. Mar 2018 A1
20180225908 MacKay et al. Aug 2018 A1
20180225909 MacKay Aug 2018 A1
20180322534 King et al. Nov 2018 A1
20180339708 Geller Nov 2018 A1
20180342165 Sweeney et al. Nov 2018 A1
20180350185 King et al. Dec 2018 A1
20190066424 Hassani et al. Feb 2019 A1
20190114869 MacKay et al. Apr 2019 A1
20190131819 Bell May 2019 A1
20190220011 Della Penna Jul 2019 A1
20190227954 Shi Jul 2019 A1
20190251608 King et al. Aug 2019 A1
20190272680 King et al. Sep 2019 A1
20190272681 King et al. Sep 2019 A1
20190304203 King et al. Oct 2019 A1
20190362383 King et al. Nov 2019 A1
20190370923 Randall et al. Dec 2019 A1
20190378368 MacKay et al. Dec 2019 A1
20190385454 King et al. Dec 2019 A1
20200059708 King et al. Feb 2020 A1
20200136229 MacKay et al. Apr 2020 A1
20200153270 Hunter et al. May 2020 A1
20200160263 Kuettner May 2020 A1
20200276503 Marchiorello Sep 2020 A1
20200310528 Upmanue et al. Oct 2020 A1
20200327801 Schwarz et al. Oct 2020 A1
20200334581 Skaling Oct 2020 A1
20200349666 Hodge et al. Nov 2020 A1
20200364967 Spice Nov 2020 A1
20210065263 King et al. Mar 2021 A1
20210067846 King et al. Mar 2021 A1
20210319485 King et al. Oct 2021 A1
20210344218 Hunter et al. Nov 2021 A1
20210407348 King et al. Dec 2021 A1
20220030335 King et al. Jan 2022 A1
20220076303 King et al. Mar 2022 A1
20220076304 King et al. Mar 2022 A1
20220076305 King et al. Mar 2022 A1
Foreign Referenced Citations (232)
Number Date Country
507762 Jul 2010 AT
4035701 Sep 2001 AU
200227724 Jan 2003 AU
2006203554 Sep 2006 AU
314132 May 2007 AU
315845 Aug 2007 AU
315846 Aug 2007 AU
315847 Aug 2007 AU
MU76023990 Jan 1998 BR
2233931 Apr 1997 CA
2260925 Jan 1998 CA
2186406 Mar 1998 CA
2227833 Jul 1998 CA
2346908 Apr 2000 CA
2352968 Jan 2001 CA
2373400 Aug 2001 CA
2401429 Sep 2001 CA
2377010 Dec 2001 CA
2357179 Mar 2002 CA
2437722 Aug 2002 CA
2453369 Jan 2003 CA
2363915 May 2003 CA
2413198 May 2003 CA
2414132 Jun 2003 CA
23 02922 Jan 2004 CA
2443 677 Oct 2004 CA
2248347 Oct 2005 CA
2595309 Jul 2006 CA
2511461 Feb 2007 CA
2631699 Jun 2007 CA
2622164 Aug 2008 CA
122930 Sep 2008 CA
126745 Sep 2008 CA
2693911 Jan 2009 CA
2650192 Jul 2009 CA
2650195 Jul 2009 CA
2933066 Jul 2009 CA
23 87540 Apr 2010 CA
134041 Sep 2010 CA
134042 Sep 2010 CA
2773132 Mar 2011 CA
2773135 Mar 2011 CA
2517717 Jan 2012 CA
2770093 May 2012 CA
2870544 May 2012 CA
2870592 May 2012 CA
2874155 May 2012 CA
2773250 Sep 2012 CA
155382 May 2015 CA
155383 May 2015 CA
155391 May 2015 CA
156990 May 2015 CA
156991 May 2015 CA
156992 May 2015 CA
156993 May 2015 CA
156994 May 2015 CA
156995 May 2015 CA
157067 May 2015 CA
157068 May 2015 CA
157069 May 2015 CA
161049 Oct 2015 CA
160598 Feb 2016 CA
163369 Feb 2016 CA
163370 Feb 2016 CA
2900177 Feb 2017 CA
2908793 Feb 2017 CA
2932667 Feb 2017 CA
168171 Mar 2017 CA
168172 Mar 2017 CA
168173 Mar 2017 CA
168198 Mar 2017 CA
168199 Mar 2017 CA
168200 Mar 2017 CA
171649 Nov 2017 CA
171650 Nov 2017 CA
171651 Nov 2017 CA
171652 Nov 2017 CA
171653 Nov 2017 CA
171654 Nov 2017 CA
2650195 Jan 2018 CA
3046774 Dec 2019 CA
189362 Mar 2021 CA
189363 Jun 2021 CA
189364 Jun 2021 CA
189365 Jun 2021 CA
189366 Jun 2021 CA
1037604 Nov 1989 CN
2395344 Sep 2000 CN
2470887 Jan 2002 CN
2544352 Apr 2003 CN
1549990 Nov 2004 CN
201303054 Sep 2009 CN
202217169 May 2012 CN
28 04 085 Feb 1977 DE
27 50 193 Nov 1977 DE
102005041290 Mar 2007 DE
006836128-0001 Jun 2019 EM
006836128-0002 Jun 2019 EM
006836128-0003 Jun 2019 EM
006836128-0004 Jun 2019 EM
006836128-0005 Jun 2019 EM
006836128-0006 Jun 2019 EM
006836128-0007 Jun 2019 EM
006836128-0008 Jun 2019 EM
006836128-0009 Jun 2019 EM
0265328 Apr 1988 EP
0329129 Aug 1989 EP
0933288 Aug 1999 EP
980055 Feb 2000 EP
1227448 Jul 2002 EP
1327962 Jul 2003 EP
1376491 Jan 2004 EP
1748393 Jan 2007 EP
1128350 Oct 2007 EP
1898360 Mar 2008 EP
2215605 Aug 2012 EP
002416206-0001 Mar 2014 EP
002416206-0002 Mar 2014 EP
002416206-0003 Mar 2014 EP
003076702-0001 Apr 2014 EP
003076702-0002 Apr 2014 EP
003076702-0003 Apr 2014 EP
003076702-0004 Apr 2014 EP
003076702-0005 Apr 2014 EP
003076702-0006 Apr 2014 EP
002479352-0001 Jun 2014 EP
002479352-0002 Jun 2014 EP
002479352-0003 Jun 2014 EP
002479360-0001 Jun 2014 EP
002479360-0002 Jun 2014 EP
002479360-0003 Jun 2014 EP
002479428-0001 Jun 2014 EP
002479428-0002 Jun 2014 EP
002479428-0003 Jun 2014 EP
003462183-0001 Nov 2014 EP
003462183-0002 Nov 2014 EP
003462183-0003 Nov 2014 EP
003462183-0004 Nov 2014 EP
003462183-0005 Nov 2014 EP
003462183-0006 Nov 2014 EP
004415164-0001 Oct 2017 EP
004415164-0002 Oct 2017 EP
004415164-0003 Oct 2017 EP
004415164-0004 Oct 2017 EP
004415164-0005 Oct 2017 EP
004415164-0006 Oct 2017 EP
2600448 Jun 1986 FR
2837583 Sep 2003 FR
2979726 Mar 2008 FR
2928678 Sep 2009 FR
1 237 579 Dec 1968 GB
1 283 555 Oct 1969 GB
1431862 Apr 1976 GB
2077475 Dec 1981 GB
2155228 Sep 1985 GB
2284919 Jun 1995 GB
2298510 Sep 1996 GB
2461397 Jan 2010 GB
149880 Jun 2007 IL
S58121494 Jul 1983 JP
S6437661 Feb 1989 JP
01165494 Jun 1989 JP
01303026 Dec 1989 JP
H028692 Jan 1990 JP
0261711 Mar 1990 JP
H02180623 Jul 1990 JP
0487533 Mar 1992 JP
H08305998 Nov 1996 JP
S5259000 May 1997 JP
2000286936 Oct 2000 JP
2002-42181 Feb 2002 JP
2002074430 Mar 2002 JP
2002099640 Apr 2002 JP
2002528799 Sep 2002 JP
3441832 Jun 2003 JP
JP2003527701 Sep 2003 JP
2005242888 Sep 2005 JP
2005267430 Sep 2005 JP
2007052773 Mar 2007 JP
4247079 Jan 2009 JP
2011060206 Mar 2011 JP
5238316 Apr 2013 JP
20000016671 Mar 2000 KR
20010028481 Apr 2001 KR
20050038077 Apr 2005 KR
1020060088085 Aug 2006 KR
100693204 Mar 2007 KR
1020080026282 Mar 2008 KR
20080041730 May 2008 KR
2008007047 Aug 2008 MX
530606 Nov 2006 NZ
WO 8100778 Mar 1981 WO
WO9520204 Jul 1995 WO
WO9611453 Apr 1996 WO
WO9712345 Apr 1997 WO
WO9733341 Sep 1997 WO
WO9737328 Oct 1997 WO
WO9804080 Jan 1998 WO
WO0059201 Oct 2000 WO
WO0124127 Apr 2001 WO
WO0169541 Sep 2001 WO
WO0180157 Oct 2001 WO
WO02063570 Aug 2002 WO
WO02084600 Oct 2002 WO
WO03005324 Jan 2003 WO
WO03009238 Jan 2003 WO
WO03065322 Aug 2003 WO
WO2004012352 Feb 2004 WO
WO2005027035 Mar 2005 WO
WO2005031494 Apr 2005 WO
WO2006076773 Jul 2006 WO
WO2006095352 Sep 2006 WO
WO2007063530 Jun 2007 WO
WO2009009854 Jan 2009 WO
WO2009154787 Dec 2009 WO
WO2010008610 Jan 2010 WO
WO2010062105 Jun 2010 WO
WO2010071974 Jul 2010 WO
WO2011029061 Mar 2011 WO
WO2011029062 Mar 2011 WO
WO2012015453 Feb 2012 WO
WO2012092609 Jul 2012 WO
WO2012154902 Nov 2012 WO
WO2012154913 Nov 2012 WO
WO2013016453 Jan 2013 WO
WO2013019273 Feb 2013 WO
WO2013049418 Apr 2013 WO
WO2014014494 Jan 2014 WO
WO2014127384 Aug 2014 WO
WO2014152369 Sep 2014 WO
WO2017024396 Feb 2017 WO
WO2017024397 Feb 2017 WO
Non-Patent Literature Citations (219)
Entry
US 8,636,133 B2, 01/2014, MacKay et al. (withdrawn)
US 9,640,016 B2, 05/2017, King et al. (withdrawn)
U.S. Appl. No. 08/959,109, filed Oct. 23, 1997.
U.S. Appl. No. 10/317,414, filed Dec. 12, 2002.
U.S. Appl. No. 12/430,733, filed Apr. 27, 2009.
U.S. Appl. No. 12/788,100, filed May 26, 2010.
U.S. Appl. No. 13,141/977, filed Jun. 23, 2011.
U.S. Appl. No. 13/141,983, filed Jun. 23, 2011.
U.S. Appl. No. 13/410,831, filed Mar. 2, 2012.
U.S. Appl. No. 13/454,976, filed Apr. 24, 2012.
U.S. Appl. No. 13/529,914, filed Jun. 21, 2012.
U.S. Appl. No. 13/545,871, filed Jul. 10, 2012.
U.S. Appl. No. 13/546,918, filed Jul. 11, 2012.
U.S. Appl. No. 29/367,429, filed Aug. 6, 2010.
U.S. Appl. No. 29/367,431, filed Aug. 6, 2010.
U.S. Appl. No. 29/391,605, filed May 11, 2011.
U.S. Appl. No. 29/410,857, filed Jan. 12, 2012.
U.S. Appl. No. 29/433,549, filed Oct. 1, 2012.
U.S. Appl. No. 61/048,133, filed Apr. 25, 2008.
U.S. Appl. No. 61/140,543, filed Dec. 23, 2008.
U.S. Appl. No. 13/782,818, filed Mar. 1, 2013.
U.S. Appl. No. 14/094,382, filed Dec. 2, 2013.
U.S. Appl. No. 29/489,572, filed Apr. 30, 2014.
U.S. Appl. No. 14/325,134, filed Jul. 7, 2014.
U.S. Appl. No. 14/743,691, filed Jun. 18, 2015.
U.S. Appl. No. 14/864,170, filed Sep. 24, 2015.
U.S. Appl. No. 15/220,228, filed Jul. 26, 2016.
U.S. Appl. No. 15/348,785, filed Nov. 10, 2016.
U.S. Appl. No. 15/783,716, filed Oct. 13, 2017.
U.S. Appl. No. 15/802,298, filed Nov. 2, 2017.
U.S. Appl. No. 16/165,844, filed Oct. 19, 2018
U.S. Appl. No. 16/218,219, filed Dec. 12, 2018
U.S. Appl. No. 16/548,513, filed Aug. 22, 2019
U.S. Appl. No. 16/709,531, filed Dec. 10, 2019
U.S. Appl. No. 13/410,831, filed Mar. 2, 2012, MacKay et al.
U.S. Appl. No. 13/545,871, filed Jul. 10, 2012, MacKay et al.
U.S. Appl. No. 14/325,134, filed Jul. 7, 2014, MacKay et al.
U.S. Appl. No. 15/220,228, filed Jul. 26, 2016, MacKay et al.
U.S. Appl. No. 15/802,298, filed Nov. 2, 2017, MacKay et al.
U.S. Appl. No. 16/218,219, filed Dec. 12, 2018, MacKay et al.
U.S. Appl. No. 15/783,716, filed Oct. 13, 2017, MacKay et al.
U.S. Appl. No. 13/546,918, filed Jul. 11, 2012, MacKay et al.
U.S. Appl. No. 14/864,170, filed Sep. 24, 2015, MacKay et al.
U.S. Appl. No. 16/548,513, filed Aug. 22, 2019, MacKay et al.
(Cell Net Data Systems) “First Wireless Monitoring of Parking Meters Results in Theft Arrests Using CellNet Data Systems Technology,” PRNewswire, May 11, 1999 (2 pgs).
Ambravan, B., “Improved-Clarity Polycarbonate (PC) Resins used in liniLED PU,” http://organiclighting.com/tag/polycarbonate-pc-resins/, Sep. 26, 2016 (1 pg).
Anonymous, “The Originators of Metered Parking, Series II, APM-E Mechanism, Service Manual,” POM Incorporated, May 23, 2006 revision (22 pgs).
Barefoot, D., “There'll be lies, there'll be tears, a jury of your peers,” DarrenBarefoot.com: Dec. 2005, pp. 8-9 (39 pages).
Basu et al., “Networked Parking Spaces: Architecture and Applications,” MCL Technical Report No. Jul. 1, 2002, Proc. IEEE Vehicular Transportation Conference, Vancouver, Canada, Sep. 2002 (10 pgs).
Bayless et al., “Smart Parking and the Connected Consumer,” ITS America Research, Dec. 2012 (39 pgs).
Bernspång, F., “Smart Parking using Magnetometers and Mobile Applications,” Master's Thesis, Master of Science in Engineering Technology, Computer Science and Engineering, Luleá University of Technology, Nov. 2010-May 2011 (35 pgs).
Bridge IR Group, Inc., Changing the Way the World Pays for On-Street Parking, Research Report, United States-Technology Processing Systems/Products, Dec. 6, 2006 (23 pgs).
Burden et al., “Near Field Communications (NFC) in Public Transport,” Digital Identity Forum, 2006 (18 pgs).
Byrd, Dennis, “City officials plug solar-powered parking meters, Electronic eye ends free parking,” Lawrence Journal World, Apr. 30, 1989, p. 11C (1pg).
Byrd, Dennis, Parking Meter Manufacturer Sees Bright Future for New Sun-Powered Devices, Los Angeles Times, May 14, 1989 (2 pgs).
Cardinal Tracking Inc.—MobileCite brochure, dated prior to Jun. 15, 2015 (2 pgs).
Cosgrove, D., “SmartPark,” Senior Project Report, Jun. 12, 2013 (20 pgs).
CWT MAX Single/Dual Space Meter, Technical Data, May 18, 2016 (4 pgs).
DAT Self-Service System Limited, Product Brochure, Version 1.0, Date: May 2005, pp. 1-39 (39 pgs), plus English translation (42 pgs).
Digital Payment Technologies—LUKE brochure, dated prior to Jun. 15, 2015 (4 pgs).
Digital Payment Technologies—LUKE website, https://web.archive.org/web/20061025094839/http:www.digitalpaytech.com/luke.html, Oct. 25, 2006 (5 pgs).
Digital Payment Technologies, Credit Card Processing with LUKE and SHELBY, Dec. 2007 (15 pgs).
Digital Payment Technologies, Digital Payment Technologies and PXT Payments Forge Partnership to Bring Cities Smart Parking Meters and Merchant Loyalty Debit Cards, www.digitalpaytech.com, Apr. 27, 2010 (2 pgs).
Digital Payment Technologies, Request for Proposal #B09030—Parking Pay Stations, City of Dover, New Hampshire, Oct. 22, 2008 (part 1—110 pgs).
Digital Payment Technologies, Request for Proposal #B09030—Parking Pay Stations, City of Dover, New Hampshire, Oct. 22, 2008 (part 2—160 pgs).
Digital Payment Technologies, Request for Proposal for Multi-Space Parking Meters, City of Fort Lauderdale, Jan. 13, 2010 (89 pgs).
Digital Payment Technologies, Sierra Wireless Case Study, Dec. 7, 2009(2 pgs).
Digital Payment Technologies, Technologies Launches LUKE II Multi-Space Parking Pay Station, May 16, 2011 (3 pgs).
Duncan Parking Technologies, Inc. v. IPS Group Inc., Case IPR2016-00068, Decision, Mar. 30, 2016 (13 pgs).
Duncan Parking Technologies, Inc. v. IPS Group Inc., Case IPR2016-00070, Decision, Apr. 1, 2016 (17 pgs).
Duncan Parking Technologies, Inc. v. IPS Group Inc., Case IPR2016-00069, Decision, Apr. 1, 2016 (13 pgs).
Duncan Parking Technologies, Inc. v. IPS Group Inc., Case IPR2016-00067, Decision, Mar. 30, 2016 (19 pgs).
Duncan Parking Technologies, Inc. v. IPS Group Inc., Case IPR2016-00067, Preliminary Response, Jan. 29, 2016 (38 pgs).
Duncan Parking Technologies, Inc. v. IPS Group Inc., Case IPR2016-00068, Patent Owner's Preliminary Response, Feb. 1, 2016 (48 pgs).
Duncan Parking Technologies, Inc. v. IPS Group Inc., Case IPR2016-00069, Patent Owner's Preliminary Response, Feb. 1, 2016 (48 pgs).
Duncan Parking Technologies, Inc. v. IPS Group Inc., Case IPR2016-00070, Preliminary Response, Feb. 1, 2016 (49 pgs).
Duncan Parking Technologies, Inc. v. IPS Group Inc., Case IPR2016-00067, Patent Owner's Mandatory Notices, Nov. 6, 2015 (4 pgs).
Duncan Parking Technologies, Inc. v. IPS Group Inc., Case IPR2016-00067, Scheduling Order, Mar. 30, 2016 (9 pgs).
Duncan Parking Technologies, Inc. v. IPS Group Inc., Final Written Decision, dated Mar. 27, 2017 (19 pgs).
Duncan Parking Technologies, Inc. v. IPS Group Inc., Petition for Inter Partes Review of U.S. Pat. No. 7,854,310, IPR2016-00067, Oct. 22, 2015 (66 pgs).
Duncan Parking Technologies, Inc. v. IPS Group Inc., Petition for Inter Partes Review of U.S. Pat. No. 7,854,310, IPR2016-00068, Oct. 22, 2015 (64 pgs).
Duncan Parking Technologies, Inc. v. IPS Group Inc., Petition for Inter Partes Review of U.S. Pat. No. 8,595,054, IPR2016-00069, Oct. 22, 2015 (67 pgs).
Duncan Parking Technologies, Inc. v. IPS Group Inc., Petition for Inter Partes Review of U.S. Pat. No. 8,595,054, IPR2016-00070, Oct. 22, 2015 (61 pgs).
Duncan Parking Technologies, Inc. v. IPS Group Inc., Patent Owner's Preliminary Response, Case IPR2016-01144, dated Sep. 8, 2016 (58 pgs).
Duncan Parking Technologies, Inc. v. IPS Group Inc., Patent Owner's Preliminary Response, Case IPR2016-01145, dated Sep. 8, 2016 (52 pgs).
Duncan Parking Technologies, Inc. v. IPS Group Inc., Patent Owner Response, Case IPR2016-00067, dated Jul. 12, 2016 (32 pgs).
Duncan Parking Technologies, Inc. v. IPS Group Inc., Petition for Inter Partes Review, U.S. Pat. No. 8,595,054, dated Jun. 3, 2016 (79 pgs).
Duncan Parking Technologies, Inc. v. IPS Group Inc., Petition for Inter Partes Review, U.S. Pat. No. 7,854,310, dated Jun. 3, 2016 (70 pgs).
Duncan Solutions—AutoCITE brochure, 2013 (2 pgs).
Duncan Solutions—Eagle 2100 brochure, 2013 (2 pgs).
Duncan Solutions—Eagle CK brochure, 2013 (2 pgs).
Duncan Solutions—Intermec CN50 webpage, Mar. 8, 2011 (2 pgs).
Duncan Solutions—Motorola MC75 webpage, Mar. 8, 2011 (2 pgs).
Duncan Solutions—VM Pay-by-Space Multi-Space Meter brochure, 2013 (2 pgs).
Duncan Solutions “Single-Space Meters” brochure (2 pgs); Rev. 04/06, 2006 Duncan Solutions, Inc.
Duncan Solutions, AutoCITE™ X3 Handheld Computer, 2013 (2 pgs).
Duncan Solutions, Duncan VS, 2006 (2 pgs).
Duncan Solutions, Pay-by-Space Parking Meters, Customer Support Manual, Jul. 2006 (part 1—113 pgs).
Duncan Solutions, Pay-by-Space Parking Meters, Customer Support Manual, Jul. 2006 (part 2—103 pgs).
Duncan Solutions/Reino, RSV3 Digital Parking Meter, Jul. 5, 2011 (2 pgs).
Duncan, Duncan VM-Solar Power meter photograph, pre-Mar. 2011 (1 pg).
Exhibit 1003—Declaration of Todd Magness in Support of Petition for Inter Partes Review of U.S. Pat. No. 7,854,310, dated Oct. 21, 2015 (70 pgs).
Exhibit 1004—Declaration of Anderson Moore in Support of Petition for Inter Partes Review of U.S. Pat. No. 8,595,054, dated Oct. 21, 2015 (19 pgs).
Exhibit 1005—U.S. Appl. No. 60/741,920, filed Dec. 2, 2005 (20 pgs).
Exhibit 1009—Tung, Y., “Design of an Advanced On-street Parking Meter,” Thesis, Rochester Institute of Technology, 2001 (75 pgs).
Exhibit 1010—Christian, S.E., “Parking Meter Winding Up for Computer Age,” Chicago Tribune, May 19, 1995 (6 pgs).
Exhibit 1011—Associated Press, “New parking meters based on computer,” The San Diego Union, Feb. 1, 1987 (1 pg).
Exhibit 1012—Lunden, J., Good Morning America transcript, Nov. 6, 1986 (3 pgs).
Exhibit 1013—LUKE Parking Station ad (p. 28), Parking Today, vol. 10, No. 4, Apr. 2005 (64 pgs).
Exhibit 1014—Blass, E., “Changing times,” Lansing State Journal, Feb. 19, 1987 (1 pg).
Exhibit 1015—Gabriele, M.C., “Electronic Parking Meters Rival Mechanical Units,” American Metal Market/Metalworking News, Sep. 29, 1986 (1 pg).
Exhibit 1016—Sandler, L., “Lovely VISA, meter maid: Use credit card to park,” Milwaukee Journal Sentinel, Jun. 13, 2005 (1 pg).
Exhibit 1017—Item for Finance Committee, “Capital Works Reserve Fund, Head 708—Capital Subventions and Major Systems and Equipment,” FCR(Mar. 2002)18, May 24, 2002 (15 pgs).
Exhibit 1018—Anonymous, “Happy %#@! Anniversary, First Parking Meter Installed Jul. 16, 1935,” The Expired Meter News, Views, Information on Driving in Chicago, Jul. 16, 2009 (10 pgs).
Exhibit 1019—Anonymous, Parking Meter Patented 72 Years Ago Today, the Expired Meter News, Views, Information on Driving in Chicago, May 24, 2010 (6 pgs).
Exhibit 1020—U.S. Pat. No. 2,118,318 to Magee, May 24, 1938 (11 pgs).
Exhibit 1032—U.S. Pat. No. 5,570,771 to Jacobs, Nov. 5, 1996 (29 pgs).
Exhibit 1034—Anonymous, “Smart Cards and Parking,” TC-06001, Smart Card Alliance Transportation Council White Paper, Jan. 2006 (52 pgs).
Exhibit 1037—Catalog Entry for Exhibit 1009, Tung, Y., “Design of an advanced on-street parking meter,” Oct. 18, 2015 (2 pgs).
Exhibit 1038—POM Parking Meters website, Oct. 20, 2015 (4 pgs).
Fidelman, C., “Time's running out for parking meters at present locations: $270,000 cited as replacement cost. City employees who ticket motorists find electronic meters unsuitable,” The Gazette, Final Edition, Montreal, Quebec, Canada, Nov. 12, 2002, p. A7 (2 pgs).
Flatley, J., “In San Francisco, hackers park for free,” posted Jul. 31, 2009, www.engadget.com (1 pg).
GE Plastics, “Weatherable PC applications expand,” http://www.plasticstoday.com/weatherable-pc-applications-expand/14554616432605, Sep. 26, 2016 (2 pgs).
Howland, S., “How M2M Maximizes Denver's Revenue,” FieldTechnologiesOnline.com, Oct. 2011, pp. 9-12 (4 pgs).
Information Disclosure Statement by Applicant filed for U.S. Appl. No. 12/355,734 on May 23, 2012 (22 pgs).
Information Disclosure Statement by Applicant filed for U.S. Appl. No. 12/355,740 on May 23, 2012 (25 pgs).
Information Disclosure Statement by Applicant filed for U.S. Appl. No. 12/875,959 on May 24, 2012 (22 pgs).
Information Disclosure Statement by Applicant filed for U.S. Appl. No. 12/875,975 on May 24, 2012 (22 pgs).
Information Disclosure Statement by Applicant filed Oct. 23, 2012 for U.S. Appl. No. 12/355,734 (4 pgs).
International Preliminary Report on Patentability issued in related application No. PCT/CA2012/000191, dated Sep. 12, 2013 (7 pgs).
International Preliminary Report on Patentability, issued for application No. PCT/US2010/047907, dated Mar. 15, 2012 (6 pgs).
International Preliminary Report on Patentability, issued for application No. PCT/US2010/047906, dated Mar. 6, 2012 (5 pgs).
International Preliminary Report on Patentability, issued for application No. PCT/IB2006/054574, dated Mar. 10, 2009 (5 pgs).
International Search Report & Written Opinion, PCT/CA12/000191, dated Jun. 20, 2012 (8 pgs).
International Search Report and Written Opinion issued in application No. PCT/CA2016/050928, dated Oct. 12, 2016 (12 pgs).
International Search Report and Written Opinion issued in application No. PCT/CA2016/050927, dated Nov. 25, 2016 (14 pgs).
International Search Report issued for PCT/US2012/048190, dated Jan. 22, 2013 (4 pgs).
International Search Report issued in application No. PCT/US2012/037229, dated Jan. 28, 2013 (6 pgs).
International Search Report issued in application No. PCT/US2012/037205, dated Oct. 4, 2012 (3 pgs).
International Search Report issued in application No. PCT/US2013/021201, dated Apr. 30, 2013 (3 pgs).
International Search Report issued in related application No. PCT/CA2007/001266, dated Apr. 21, 2008 (3 pgs).
International Search Report, PCT/CA2009/001058, dated Nov. 12, 2009 (4 pgs).
International Search Report, PCT/CA2009/001657, dated Feb. 17, 2010 (2 pgs).
International Search Report, PCT/IB06/054574, dated Oct. 27, 2008 (2 pgs).
International Search Report, PCT/US2010/047906, dated Mar. 30, 2011 (3 pgs).
International Search Report, PCT/US2010/047907, dated Apr. 26, 2011 (3 pgs).
Intrinsync Software International, Inc., Intrinsyc and Digital Pioneer Partner on Development of New Leading Edge Parking Terminal Solution, Aug. 14, 2003 (2 pgs).
IPS Group Inc., Exhibit 2001, Design of an advanced on-street parking meter, Jan. 12, 2016 (2 pgs).
IPS Group Inc., Exhibit 2002, About RIT Digital Media Library, Jan. 12, 2016 (1 pg).
IPS Group Inc., Exhibit 2003, the U.S. Conference of Mayors Presents ‘Best-Practice’ Awards, Jan. 20, 2012 (2 pgs).
IPS Group Inc., Exhibit 2004, City of Los Angeles, Card & Coin Parking Meter Lease, Nov. 29, 2010 (4 pgs).
IPS Group Inc., Exhibit 2005, City of Culver City, California, Approval of a Contract with IPS Group Inc., for the Sole-Source Purchase of 1,000 Parking Meters, Dec. 12, 2011 (3 pgs).
IPS Group Inc., Exhibit 2006, City of San Luis Obispo City Manager Report, Award of Credit Card Meters and Service Contract, RFP Specification No. 91137, Jan. 20, 2012 (5 pgs).
IPS Group Inc., Exhibit 2007, Walnut Creek, Alternate Downtown Parking Pay Technology, Oct. 20, 2011 (4 pgs).
IPS Group Inc., Exhibit 2008, How M2M Maximizes Denver's Revenue, Oct. 2011 (4 pgs).
IPS Group Inc., Exhibit 2009, Somerville, MA, T&P Introduces User-Friendly Parking Meters & Service Upgrades with Electronic Meter Pilot, Apr. 19, 2011 (2 pgs).
IPS Multi Bay Parking Meter product description, http://www.design-industry.com.au/work/multi-bay-parking-meter/, Oct. 6, 2015 (6 pgs).
IPS Single Bay Parking Meter product description, http://www.design-industry.com.au/work/ips-single-parking-meter/, Oct. 6, 2015 (6 pgs).
Kienzle, meter photograph, pre-Mar. 2011 (1 pg).
MacKay Custodian™ Multi-Space Machine Configuration Guide, 2003-2005 (184 pgs).
MAX Dual Space Meter advertisement, Jun. 25, 2015 (2 pgs).
McCullagh, D., “Hackers: We can bypass San Francisco e-parking meters,” Jul. 30, 2009, http://news.cnet.com (2 pgs).
Meter Solutions, Single-Space Meters brochure, downloaded from www.duncansolutions.com website, revised Apr. 2006 (2 pgs).
Micrel, Application Note 51 Frequency Hopping Techniques, Jun. 2006, Rev. 1.0 (8 pgs).
Photo Violation Technologies—Revolutionizing the Industry by Perfecting How People Park, https://web.archive.org/web/20060813094459/http://photoviolation.com/, Aug. 13, 2006 (65 pgs).
Photo Violation Technologies—Revolutionizing the Industry by Perfecting How People Park, https://web.archive.org/web/20060823100739/http://photoviolation.com/, Aug. 23, 2006 (65 pgs).
Photo Violation Technologies—Revolutionizing the Industry by Perfecting How People Park, https://web.archive.org/web/20080222104246/http://photoviolation.com/, Feb. 22, 2008 (47 pgs).
Photo Violation Technologies—Revolutionizing the Industry by Perfecting How People Park, https://web.archive.org/web/20060110041849/http://photoviolation.com/, Jan. 10, 2006 (57 pgs).
Photo Violation Technologies—Revolutionizing the Industry by Perfecting How People Park, https://web.archive.org/web/20060715195511/http://photoviolation.com/, Jul. 15, 2006 (49 pgs).
Photo Violation Technologies—Revolutionizing the Industry by Perfecting How People Park, https://web.archive.org/web/20070628195927/http://www.photoviolation.com/, Jun. 28, 2007 (50 pgs).
Photo Violation Technologies Corp.—Products, Oct. 2, 2015 (3 pgs).
Photo Violation Technologies Corp. Press Releases, Jul. 18, 2005-Jan. 17, 2006 (9 pgs).
Photo Violation Technologies Corp., https://web.archive.org/web/20131118213440/http://photoviolationmeter.com/, Nov. 18, 2013 (8 pgs).
Photo Violation Technologies Corp., https://web.archive.org/web/20040401225217/http://photoviolation.com/, Apr. 1, 2004 (50 pgs).
PhotoViolationMeter pamphlet, dated Jan. 18, 2006 (2 pgs).
POM APM photographs, dated Apr. 29, 2010 (33 pgs).
POM APM Solar Powered Meter advertisements, dated Apr. 28, 2010 (5 pgs).
Reino International, Recommended Cashbox Handling Guidelines, Version 2.0, Nov. 26, 2003 (7 pgs).
Reino Meter Advertisement, the power of a paystation, Parking Today, Aug. 2003 (1 pg).
Reino Parking Systems: On-Street Service Procedures, Jun. 29, 2004 (19 pgs).
Reino, Operator User Manual, 2003 (106 pgs).
Reino, Parking Systems RSV2 Service Manual, Version 3.1, Dec. 2003 (78 pgs).
Reino, RSV3 brochure, Nov. 10, 2007 (4 pgs).
Remedios et al., “NFC Technologies in Mobile Phones and Emerging Applications,” 2006, IFIP International Federation for Information Processing, vol. 220, Information Technology for Balanced Manufacturing Systems, ed. Shen, W., (Boston: Springer, pp. 425-434 (10 pgs).
Request for Continued Examination (RCE) and Information Disclosure Statement by Applicant filed for U.S. Appl. No. 12/973,109 on May 31, 2012 (43 pgs).
Request for Continued Examination, dated Mar. 30, 2012 in U.S. Appl. No. 12/355,734 (32 pgs).
Request for Continued Examination, dated Sep. 27, 2011 in U.S. Appl. No. 12/059,909 (18 pgs).
Shaheen, S., “Smart Parking Management Field Test: A Bay Area Rapid Transit (BART) District Parking Demonstration,” Institute of Transportation Studies, UC Davis, Jan. 1, 2005 (139 pgs).
Spyker, R.L., “Predicting capacitor run time for a battery/capacitor hybrid source,” Power Electronic Drives and Energy Systems for Industrial Growth, 1998, abstract only (2 pgs).
StreetSmart Technology, LLC, “Technical Specifications and System Features for the StreetSmart Solution” Brochure, May 2011 (8 pgs).
Supplementary European Search Report issued in related application No. EP07784953, dated Jul. 1, 2010 (1 pg).
The Patented PhotoViolationMeter Solution book view, dated Mar. 28, 2006 (12 pgs).
The PhotoViolationMeter Case Study, Photo Violation Technologies Corp., Dec. 15, 2015 (4 pgs).
The United States Conference of Mayors Press Release, “The U.S. Conference of Mayors Presents ‘Best-Practice’ Awards,” Jan. 20, 2012, (3 pgs).
Transcript & Screenshots of https://web.archive.org/web/20080222104246/http://www.photoviolation.com/videos/PCM.wmv, Photo Violation Technologies Corp.—“ParkCardMeter™ System,” dated prior to Jun. 15, 2015 (6 pgs).
Transcript & Screenshots of https://web.archive.org/web/20080222104246/http://www.photoviolation.com/videos/HHU.wmv, Photo Violation Technologies Corp.—“PhotoViolationHandHeldUnite™,” dated prior to Jun. 15, 2015 (7 pgs).
Transcript & Screenshots of https://web.archive.org/web/20080222104246/http://www.photoviolation.com/videos/PBS.wmv, Photo Violation Technologies Corp.—“The PBS Solution,” dated prior to Jun. 15, 2015 (10 pgs).
Transcript & Screenshots of https://web.archive.org/web/20080222104246/http://www.photoviolation.com/videos/PVM.wmv, Photo Violation Technologies Corp.—“The PVM Solution,” dated prior to Jun. 15, 2015 (7 pgs).
Design U.S. Appl. No. 29/466, 268, filed Sep. 5, 2013 (19 pgs).
Design U.S. Appl. No. 29/466,267, filed Sep. 5, 2013 (19 pgs).
Design U.S. Appl. No. 29/466,269, filed Sep. 5, 2013 (19 pgs).
Design U.S. Appl. No. 29/477,176, filed Dec. 19, 2013 (24 pgs).
Design U.S. Appl. No. 29/477,195, filed Dec. 19, 2013 (21 pgs).
Design U.S. Appl. No. 29/477,196, filed Dec. 19, 2013 (21 pgs).
Design U.S. Appl. No. 29/477,339, filed Dec. 20, 2013 (21 pgs).
Design U.S. Appl. No. 29/477,402, filed Dec. 20, 2013 (24 pgs).
Design U.S. Appl. No. 29/477,405, filed Dec. 20, 2013 (24 pgs).
U.S. Appl. No. 15/474,773, filed Mar. 30, 2017 (68 pgs).
Video link, “ParkCardMeter™ System,” https://web.archive.org/web/20080222104246/http://www.photoviolation.com/videos/PCM.wmv, Photo Violation Technologies Corp., dated prior to Jun. 15, 2015.
Video link, “PhotoViolationHandHeldUnit™,” https://web.archive.org/web/20080222104246/http://www.photoviolation.com/videos/HHU.wmv, Photo Violation Technologies Corp., dated prior to Jun. 15, 2015.
Video link, “The PBS Solution,” https://web.archive.org/web/20080222104246/http://www.photoviolation.com/videos/PBS.wmv, Photo Violation Technologies Corp., dated prior to Jun. 15, 2015.
Video link, “The PVM Solution,” https://web.archive.org/web/20080222104246/http://www.photoviolation.com/videos/PVM.wmv, Photo Violation Technologies Corp., dated prior to Jun. 15, 2015.
Written Opinion issued in application No. PCT/US2012/037205, dated Oct. 4, 2012 (5 pgs).
Written Opinion issued in application No. PCT/US2012/037229, dated Jan. 28, 2013 (6 pgs).
YouTube video, “The PhotoViolationMeter TM” https://www.youtube.com/watch?v=YEFuebnwn_Y, Dec. 15, 2006 (2 pgs).
Independent News, “Technology Breakthrough counters abuse of disabled parking”, Car Parking Technologies, Dec. 7, 2011, 1 pg.
Spp Reporter, No change for car park charge? Just RingGo, accessed May 27, 2022, https://www.northern-times.co.uk/news/no-change-for-car-park-charge-just-ringgo-140901/, 7 pgs.
Parking Pay Stations, City of Cocoa Beach, Florida, accessed May 27, 2022, web archive 2 pgs.
Sedadi, Amir, City of Los Angels Inter-Department Correspondence, Card & Coin Meter Lease, Nov. 29, 2010 (4 pages).
Related Publications (1)
Number Date Country
20210043027 A1 Feb 2021 US
Continuations (4)
Number Date Country
Parent 16548513 Aug 2019 US
Child 17079385 US
Parent 15783716 Oct 2017 US
Child 16548513 US
Parent 14864170 Sep 2015 US
Child 15783716 US
Parent 13546918 Jul 2012 US
Child 14864170 US