This invention relates in general to parking space barricades.
Parking spaces are available for parking vehicles and other motorized devices. Often a driver or other person would like to reserve a parking space while removing the vehicle parked in the parking space so that the driver will be able to again park in the parking space when the driver returns. If the parking space is not reserved another driver may park in that parking space when the original driver leaves. Then upon return the original driver may need to search for another parking space, which may not be as close or as convenient as the parking space that the driver previously vacated.
The present inventor recognized the need for a device for reserving a parking space. The present inventor recognized the need for a lightweight and portable device for reserving a parking space. The present inventor recognized the need for a device that can be made smaller for storage when not in use. The present inventor recognized the need for a device for reserving a parking space that can be user-disassembled for storage.
A parking space barricade is disclosed. In some embodiments, the barricade comprises a crossmember, a first pair of legs, and a second pair of legs. The crossmember comprises a first fork end and a second fork end. The first fork end is opposite the second fork end.
The first pair of legs are joined at a first upper end. The first upper end comprises a first crossmember mount. The second pair of legs are joined at a second upper end, the second upper end comprises a second crossmember mount. The first crossbar mount is pivotally connected to the first fork end. The first pair of legs comprise a first vertical pivot axis extending through the first crossbar mount. The second crossbar mount is pivotally connected to the second fork end. The second pair of legs comprise a second vertical pivot axis extending through the second crossbar mount.
The first and second pair of legs comprise a deployed position and a stored position. In some embodiments, the first and second pair of legs each are pivotal between the stored position and the deployed position. The first and second pair of legs are transverse to the crossbar when in the deployed position. The first and second pair of legs are adjacent the crossbar when in the stored position.
Numerous other advantages and features of the present invention will become readily apparent from the following detailed description of the invention and the embodiments thereof, from the claims, and from the accompanying drawings.
The following description is presented to enable any person skilled in the art to make and use the invention. For the purposes of explanation, specific nomenclature is set forth to provide a plural understanding of the present invention. While this invention is susceptible of embodiment in many different forms, there are shown in the drawings, and will be described herein in detail, specific embodiments thereof with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the invention to the specific embodiments illustrated.
A parking space barricade 30 is disclosed. The barricade comprises a first A-frame 32, a second A-frame 34, and a crossbar 36. The crossbar is connected to and extends between the first and second A-frames.
Each of the A-frames 32, 34 are identical so only one will be described in detail. Not all embodiments, require identical A-frames. The outside side 35 of A-frame 32 is shown in
An open area 48 is provided between the crossmember 46 and the first and second legs 38, 40. In some embodiments, the open area 48 is not provided and the open area is filled or partially filled. In some embodiments, the bottom of the crossmember is co-planer or substantially co-planer with the feet so that a continuous bottom support surface extends between the legs.
Each of the legs and the crossmember comprise a recessed area 50, 52, 54. Recessed area 50 comprises a first sidewall 56, a second sidewall 58, a bottom wall 60, a top wall 62, a floor 64, and further recessed areas 66. The first and second sidewall converge toward the floor 64. The first and second sidewalls join with the floor. The top and bottom wall converge towards each other and join with the floor. The floor comprises further recessed areas 66 that are compressed for strength on opposite sides of the A-frame. Recessed area 52 and 54 are arranged similar to that of recessed area 50, as shown in the figures. Each of the legs 38, 40 comprise a lower stacking recess 68, 70. The lower stacking recess 68, 70 is located in the foot area 72, 74 adjacent the feet 42, 44 on the legs. The apex area 37 on the outside 35 comprises an upper stacking recess 76 and a recessed label area 78. The A-frame comprises a top surface 80.
The apex area 37 on the outside 35 comprises a crossbar mount 94, an upper crossbar stop recess 96, and a lower crossbar stop recess 98. The crossbar mount 94 is shown in more detail in
The top surface 100 comprises a top pivot recess 102 and a top guide channel 104. The mount 94 comprises first and second upper lock recesses 108, 110. The first and second upper lock recesses 108, 110 intersect with both the top surface 100 and the perimeter wall 97. The top channel 104 extends from the pivot recess to the perimeter wall at the upper lock recess 108, as is shown in
The bottom surface 101 comprises a bottom pivot recess 112 and a bottom guide channel 114. The mount 94 comprises first and second lower lock recesses 118, 120. The first and second lower lock recesses 118, 120 intersect with both the bottom surface 101 and the perimeter wall 97. The bottom channel 114 extends from the pivot recess 112 to the perimeter wall 97 at the lower lock recess 118, as is shown in
In some embodiments, the mount 94 is shaped as a half cylinder, and the upper and lower surfaces 100, 101 each comprise a half circle shape.
The upper crossbar stop recess 96 comprises a wider mouth area 122, a main channel 124, and a narrowing end 126. The lower crossbar stop recess 98 comprises a circular bottom 128, a main channel 130, and a narrowing upper end 132.
At the intersection of the upper surface 148 and the back surface 150 is an upper pivot lock protrusion 158. At the intersection of the lower surface 152 and the back surface 150 is a lower pivot lock protrusion 160. In some embodiments, the upper and lower pivot lock protrusions 158, 160 have a height that is taller than the upper and lower pivot protrusion 154, 156, as is shown in
At the intersection of the upper surface 178 and the back surface 180 is an upper pivot lock protrusion 188. At the intersection of the lower surface 182 and the back surface 180 is a lower pivot lock protrusion 190. In some embodiments, the upper and lower pivot lock protrusions 188, 190 have a height that is taller than the upper and lower pivot protrusion 184, 186, as is shown in
The top and bottom pivot recesses 102, 112 are recessed further than the top and bottom channels 104, 114, so that while a portion of the upper and lower pivot protrusions 154, 156 are visible in
The crossbar 36 has a front side 201 and an opposite back side 203. The front and back side are mirror image identical about a vertical midplane extending along a longitudinal length of the crossbar. The front side 201 of the crossbar 36 comprises a laterally centrally located ID tag or label pocket or recess 200. Adjacent the label recess on opposite sides are arrow recesses 202. Adjacent the arrow recesses on a side opposite the label recess are logo recesses 204. The logo recesses may be circular in shape or may comprise other shapes. Adjacent the logo recesses opposite the label recess 200 are angled linear recesses 206. There are four angled linear recesses 206 shown in the drawings but any number of these recesses 206 or the other recesses 204, 202, 200 may be provided.
To move the barricade 30 from the deployed configuration as shown in
The engagement of the locking rails with the crossbar stop recesses at the respective ends 140, 170 keeps the A-frames in the deployed position shown in
When the barricade is in the deployed position and located on an external flat or substantially flat support surface, the crossbar will be parallel or substantially parallel to the flat support surface. In some embodiments, the A-frames 32, 34 will be perpendicular to the flat support surface and to the crossbar. In some embodiments, the A-frames 32, 34 will be transverse to the flat support surface and transverse to the crossbar. In some embodiments, when the A-frames are moved between the first stored position, the deployed position, and second stored position, the A-frames remain perpendicular to the flat support surface.
Another A-frame can be received in the lower stacking recesses 71, 73 and upper stacking recess 77 of A-frame 34 at the left in
To remove the crossbar 36 from the mounts 94, 95, separating force is applied to the crossbar and/or the corresponding A-frame to drive the upper and lower pivot protrusions 154, 156 from the top and bottom pivot recesses 102, 112, into the top and bottom channels 104, 114 and off of the mount. Reversing those steps, the crossbar can be mounted to the mounts 94, 95.
In some embodiments, the barricade or any component of the barricade is made of or comprises a thermoplastic, such as polyethylene, a metal, a wood, or other materials or composites. The polyethylene maybe the polyethylene described in U.S. Patent Application No. 62/192,833, filed on Jul. 15, 2015, which is herein incorporated by reference.
A method of reserving a parking space is disclosed. The barricade is moved or carried to the desired parking space to be reserved, the A-frames 32, 34 are moved to the deployed position. The barricade is position on the ground in, at, or adjacent the parking space to prevent or to deter others from parking a vehicle in the parking space. The barricade can be removed from the parking space by moving the barricade from the parking space to a temporary or permanent storage location. The A-frames 32, 34 can be moved to the first or second stored position before or after the barricade is moved to the temporary or permanent storage location.
The crossbar assembly 224 comprises a male bar 232, a female bar 236, and a sleeve 234. The female bar 236 comprises a first fork end 238. The first fork end 238 is the same as first end 140. The male bar 232 comprises a second fork end 240. The second fork end 240 is the same as second end 270. The female bar 236 comprises a hollow core 242 that is sized to receive the male bar 232. The sleeve 234 comprises a hollow core 244 that is sized to receive the female bar 236 and the male bar 232. In some embodiments, the sleeve is not used and only the male bar and female bar are used. The sleeve may comprise a laterally centrally located ID tag or label pocket or recess (not labeled), which may be the same as the laterally centrally located ID tag or label pocket or recess 200.
The barricade 220 may be moved between a compact configuration as shown in
The first support member 222 is identical to the second support member 226 so only the second support member will be described in detail. The second support member 222 comprises a first leg 246, a second leg 248, an upper area 250, and a lower crossmember 252. The second support member 222 comprises a generally triangular shape. The first and second legs converge towards the upper area and diverged towards the lower crossmember. The lower crossmember is located at the bottom of each leg so that a continuous surface is provided for support along the lower surface of the crossmember.
The crossbar mounts 228, 230 connect to the fork ends 238, 240 in the same manner as the mount 94 connects to the first end 140. The first and second support members 222, 226 are pivotal/positionable relative to the crossbar assembly 224 in the same manner as the A-frames 32, 34 are pivotal/positionable relative to crossbar 36. In some embodiments, the barricade 30 comprises the crossbar assembly 244 instead of crossbar 36.
From the foregoing, it will be observed that numerous variations and modifications may be effected without departing from the spirit and scope of the invention. It is to be understood that no limitation with respect to the specific apparatus illustrated herein is intended or should be inferred.
This application claims the benefit of U.S. Patent Application No. 62/192,833, filed on Jul. 15, 2015.
Number | Name | Date | Kind |
---|---|---|---|
4624210 | Glass | Nov 1986 | A |
4681302 | Thompson | Jul 1987 | A |
4880210 | Cucksey | Nov 1989 | A |
5762444 | Giannelli | Jun 1998 | A |
5993103 | Christensen | Nov 1999 | A |
7540682 | Christensen | Jun 2009 | B1 |
8302937 | Mettler | Nov 2012 | B2 |
8424644 | D'Abbraccio | Apr 2013 | B2 |
8808600 | Christensen | Aug 2014 | B1 |
20030197165 | Perelli | Oct 2003 | A1 |
20040188667 | Ray | Sep 2004 | A1 |
20070158628 | Tsao | Jul 2007 | A1 |
20090013923 | Lund | Jan 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20170016190 A1 | Jan 2017 | US |
Number | Date | Country | |
---|---|---|---|
62192833 | Jul 2015 | US |