The present invention relates generally to parking systems and, more particularly, to methods, systems and devices for automatically detecting the presence of a vehicle in a parking space with a high degree of accuracy.
Smart parking meter systems have been developed, such as those disclosed in U.S. Pat. Pub. Nos. 2014/0214499 A1 and 2014/0214500 A1 (which are both incorporated herein by reference in their entirety herein), which can monitor a given parking space for violations and automatically issue a citation electronically if a violation occurs. In order for such smart parking meters to operate automatically, they must have the ability to detect when a vehicle enters and leaves the parking space being monitored. Attempts to use in-ground sensors have been made. Alternatively, attempts have been made to use the images collected by the smart parking meter's camera(s) to determine vehicle presence. Both methods have drawbacks.
In-ground sensors typically sense magnetic field strength. For example, the sensor is embedded in the roadway above the location where a vehicle would be parked. When a vehicle is parked over the sensor, the magnetic field increases above a pre-set threshold value, which causes the meter to conclude that a vehicle is present in the monitored space.
A vehicle leaving the parking space is determined in the similar, but opposite manner. The magnetic field drops below a pre-set threshold, which is read by the meter as a change of state to indicate a vehicle leaving the monitored space.
Unfortunately, the in-ground magnetic sensors are prone to magnetic bouncing, which is where the magnetic field reading fluctuates due to a variety of factors. For example, a large industrial truck, such as a plow, driving by on the street next to the parking space will cause an increase and then a decrease in the measured magnetic field. This can cause the meter to correspondingly incorrectly determine that the parked vehicle has left the parking space and then re-entered the space. As a result, the vehicle could be issued a ticket even though it never moved. Weather can similarly affect the operation of the magnetic in ground sensors. Applicant has found that the in-ground magnetic sensors are only about 92-93% accurate.
Employing machine vision using the cameras on the meters poses problems as well. For example, machine vision at night or in rain or snow is less reliable, and sun angles reflecting off of vehicles and shining into the cameras can cause reading anomalies. The cameras can also become covered with snow or dirt, which compromises their ability to read vehicle presence.
Thus, there is a need to provide improved automated vehicle detection systems and methods.
Disclosed are devices, systems and methods for managing parking monitoring and enforcement. In one aspect, an in ground sensor provides a first vehicle detection technique and a video camera employing machine vision provides a second vehicle detection technique. A vehicle detection technique for a smart parking meter utilizes both of the first and second detection techniques to make a highly accurate determination of a vehicle entering a parking space and a vehicle exiting a parking space. The second detection technique can be used to perform a double check on the first technique, or vice versa.
The disclosure includes a method of determining whether a vehicle is present in a parking space. The method can include monitoring the parking space with a first vehicle detection technique, monitoring the parking space with a second vehicle detection technique, and concluding that the vehicle is present in the parking space only when both of the first and second vehicle detection techniques indicate that the vehicle is present in the parking space.
The method can further include concluding that the vehicle is not present in the parking space only when both of the first and second vehicle detection techniques indicate that the vehicle is not present in the parking space.
Monitoring the parking space with the first vehicle detection technique can include disposing a magnetic sensor beneath the parking space, and sensing a change in the magnetic field in the parking space with the magnetic sensor. Magnetic field data can be broadcast from the magnetic sensor to a parking meter. The parking meter can include a processor, a memory, and software code stored in the memory. The monitoring of the parking space with the second vehicle detection technique can include performing a machine vision analysis of the parking space with a camera. The machine vision can be a background (foreground) subtraction process performed on video imaged by a video camera. The video camera can be housed inside of the parking meter or can be placed remote from the meter and coupled or networked with the meter.
A conclusion that the state of the vehicle has not changed can be reached when one of the first and second vehicle detection techniques indicates that the vehicle is not present in the parking space and the other of the first and second vehicle detection techniques indicates that the vehicle is present in the parking space.
The parking space can be monitored for a change of vehicle state for a predetermined length of time, and a conclusion that the vehicle state has changed can be reached only if a monitored parking space state change persists for the entire predetermined length of time.
A measured result of the monitoring can be compared against a hysteresis threshold, and a determination made that the state of the vehicle in the parking space has changed only if the measured result is above the hysteresis threshold.
The disclosure further includes a parking space monitoring system. The system can include a first parking sensor disposed within a parking space and configured to sense a change of state due to a vehicle entering or leaving the parking space, a second parking sensor disposed adjacent to the parking space, the second parking sensor comprising a video camera oriented to image video of at least a portion of the parking space, and a parking meter coupled to the video camera. The parking meter can include a processor, a memory and software code stored in the memory that are all disposed within a housing of the parking meter. The software code is executable by the processor and provides for the parking meter to receive a reading from the first parking sensor that is broadcast to the parking meter. The reading can be stored in memory. The processor can perform a machine vision analysis of the imaged video from the camera to determine whether the vehicle has entered or left the parking space. The processor can be configured to evaluate the reading from the first parking sensor to determine whether the vehicle has entered or left the parking space. The processor can be configured to conclude that a vehicle has entered or left the parking space only if the determinations of the machine vision analysis and the reading from the first parking sensor are in concordance.
The parking meter can be disposed adjacent to the parking space and the video camera is disposed within the housing of the parking meter. The parking meter can include an infrared light oriented to illuminate the parking space during imaging by the video camera.
The first parking sensor can be configured to read a magnetic field strength in the parking space. The first parking sensor can be disposed in the road, pavement or surface underneath the parking space, or the sensor can be embedded in a nearby structure, such as a curb adjacent to the parking space. The first parking sensor can broadcast its reading to the parking meter via a Bluetooth or other wireless communication protocol, and the meter is configured to receive such broadcast.
The processor in the meter can be further configured to determine whether the vehicle has entered or left the parking space via the machine vision analysis only upon a determination of state that persists for at least a predetermined period of time.
The disclosure also includes a parking meter that includes a housing disposed atop a pole. A video camera can be disposed within the housing and aimed towards a parking space adjacent to the parking meter such that the video camera can image video of at least a portion of the parking space. A processor, memory and software code stored in the memory can each be disposed within the housing. The software code is executable by the processor, which configures the processor to perform a background subtraction analysis on a portion of the imaged video from the camera to determine whether a vehicle has entered or left the parking space.
The processor can also be configured by the software code to determine whether the vehicle has entered or left the parking space via the background subtraction analysis only upon a determination of state that persists for at least a predetermined period of time. The processor can be further configured by the software code to determine whether the vehicle has entered or left the parking space via the background subtraction analysis only upon finding a concordance with a determination of state based upon data from a parking sensor that is separate from the video camera.
The above summary is not intended to limit the scope of the invention, or describe each embodiment, aspect, implementation, feature or advantage of the invention. The detailed technology and preferred embodiments for the subject invention are described in the following paragraphs accompanying the appended drawings for people skilled in this field to well appreciate the features of the claimed invention. It is understood that the features mentioned hereinbefore and those to be commented on hereinafter may be used not only in the specified combinations, but also in other combinations or in isolation, without departing from the scope of the present invention.
While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular example embodiments described. On the contrary, the invention is to cover all modifications, equivalents, and alternatives falling within the scope of the invention as defined by the appended claims.
In the following descriptions, the present invention will be explained with reference to various exemplary embodiments. Nevertheless, these embodiments are not intended to limit the present invention to any specific example, environment, application, or particular implementation described herein. Therefore, descriptions of these example embodiments are only provided for purpose of illustration rather than to limit the present invention.
Referring to
As explained in U.S. Pat. Pub. No. 2014/0214499 A1, the meters 100 include microprocessors, memory and computer code that enable the meters to monitor parking events, including determining the presence of a vehicle 105 in a parking space 104, determining the identity of the vehicle, permitting the parking user to pay for parking time, determining parking violation notices, and other intelligent functions.
A computer readable program code can be stored in the physical memory (e.g., random access memory, flash memory or hard-drive) of the meter. The computer readable program code is configured such that when executed by the microprocessor, the code causes the meter to perform the steps of the invention described herein.
Referring to
The rear side of the housing 108 includes a plurality of violation indicator lights 124 windows through which the cameras 102 can see, infrared (IR) illuminators 126 to provide supplemental IR light to aid the cameras' sight, and a lock mechanism 128 to keep unwanted persons from opening the housing 108.
Each of the meters 100 can also be networked with a central or control computer for added control and functionality as explained in U.S. Pat. Pub. No. 2014/0214499 A1. Further, one smart meter 100 can be networked with one or more remote cameras disposed adjacent to additional parking spaces so that one meter can monitor several different parking spaces and parking events.
The same or similar smart parking meter 100 can also be configured as a kiosk and placed adjacent to a parking lot or ramp to monitor entry and exit events at a lot or ramp as explained in U.S. Pat. Pub. No. 2014/0214500 A1. A kiosk can also simultaneously function as a parking space meter. A single kiosk or meter can further be coupled to one or more remote cameras that each monitor individual parking spaces so that the single kiosk or meter monitors multiple individual parking spaces or events throughout a lot, ramp or street segment.
Note that when the term meter is used throughout this application, such use should be understood to include both smart meters and kiosks.
Referring now to
In addition, an in-ground sensor 106 is embedded in the road underneath the vehicle 105 when the vehicle is present in the parking space 104. The in-ground sensor 106 can also be located in alterative positions such as in the curbing.
The in-ground sensor 106 is preferably a magnetic sensor. The sensor can be disc-shaped to facilitate embedding in the roadway. The sensor 106 can alternatively perform sensing of the vehicle using other means such as radar.
The in-ground sensor 106 broadcasts a status message to the nearby meter 100 as shown in
In one preferred embodiment, the magnetic in-ground sensor 106 is powered by an internal lithium-based battery and a sensing/broadcast cycle is performed once per second in order to conserve battery life. A sensor life expectancy of several years can be achieved using such battery and operating method. In other embodiments, the in-ground sensor can be hard-wired for power and/or broadcast.
The cameras or optical sensors 102 disposed in the parking meter (or remotely from the meter housing as discussed above) use image sensors (e.g. ccd or cmos) and apply a background subtraction methodology to determine whether a vehicle 105 has entered or left the parking space 104. Note that the background subtraction methodology can also be referred to as foreground subtraction and foreground detection.
In particular, the vehicle status determination protocol is based upon monitoring a segment or window of the image sensor's viewed image. Referring to
Note that the in-ground sensor 106 can be seen as a disc-shaped object in
Now referring to
Next, the overall vehicle detection algorithm is employed. The detection algorithm, method and technique combine data from the in ground sensor 106 and from the camera 102.
First, the overall magnetic field strength “sum” is read from the in-ground sensor 106 in step 200 along with the magnetic field strength in the “z-axis” (vertical direction normal to the parking surface). Then in steps 202 and 203, it is determined by the magnetic sensor 106 whether the parking space 104 has been vacated and stayed vacant for more than 15 seconds. If yes, then the state of the camera-based computer vision (image sensing algorithm—referred to as “Unicorn” in
Next, a series of double check queries are performed by the processor in the parking meter as part of the algorithm to ensure that no false positive or false negative state determinations have been made by the in ground sensor 106. A query 206 is performed to confirm that the magnetic sensor's Z-axis reading is greater than a pre-set threshold. The processor also determines whether the magnetic sensor's Z-axis flag is on 208, whether the Z-axis reading is above a hysteresis threshold 209, whether the Sum value is above a hysteresis threshold 210, whether the low energy flag has been set to “on” 211 and 212, whether the Sum value is greater than a low low hysteresis threshold 213, whether the Z-axis value is less than a low hysteresis threshold 214 and whether the Sum value is lower than the low low hysteresis threshold 215. These queries by the processor check various parameters and states of the in-ground sensor's 106 readings and state to ensure that a valid parking space state change is being set by the overall system.
Next, the processor performs a series of queries involving the machine vision evaluation of the parking space to ensure that a conclusion regarding the occupancy state of the parking space being evaluated is reached with a high degree of certainty. In
The determinations for parking space locking 220 and pre-locking are also explained in
The queries above are double-checks to using the machine vision evaluation to ensure that the determination made from the in-ground sensor is confirmed. If any of these double-check queries fails to confirm the initially determined state, then the current state is changed 223 and the algorithm iterates again. The specific outcome of these determinations described above is provided in
A vehicle is determined to be arriving 224 if the current state is “occupied” and a subsequent valid iteration of the algorithm determines that the state has changed from “unoccupied” to “occupied”. The reverse is true for determining a vehicle departure 226.
By combining the state determinations and sensing data from both the in-ground sensor 106 and the machine vision analysis using the image sensor 102, a high degree of confidence can be formed for achieving the correct state of vehicle occupancy in a parking space. Thus, the occurrence of false readings as compared to the conventional techniques can be greatly reduced or eliminated. Reducing false readings ensures that parking revenue is maximized and that there is no false issuance of parking tickets and the ill will associated with the same.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiments, it will be apparent to those of ordinary skill in the art that the invention is not to be limited to the disclosed embodiments. It will be readily apparent to those of ordinary skill in the art that many modifications and equivalent arrangements can be made thereof without departing from the spirit and scope of the present disclosure, such scope to be accorded the broadest interpretation of the appended claims so as to encompass all equivalent structures and products. Moreover, features or aspects of various example embodiments may be mixed and matched (even if such combination is not explicitly described herein) without departing from the scope of the invention.
This application claims the priority benefit of U.S. Provisional Application No. 62/246,787, filed on Oct. 27, 2015, which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5777951 | Mitschele et al. | Jul 1998 | A |
5845268 | Moore | Dec 1998 | A |
6229455 | Yost et al. | May 2001 | B1 |
7104447 | Lopez | Sep 2006 | B1 |
7393134 | Mitschele | Jul 2008 | B2 |
7579964 | Nath et al. | Aug 2009 | B2 |
7714742 | Noworolski et al. | May 2010 | B1 |
7874482 | Mitschele | Jan 2011 | B2 |
8120513 | Ioli | Feb 2012 | B2 |
8487754 | Mitschele | Jul 2013 | B2 |
8666117 | Bulan et al. | Mar 2014 | B2 |
8682036 | Wang et al. | Mar 2014 | B2 |
8737690 | Bulan et al. | May 2014 | B2 |
8744132 | Bulan et al. | Jun 2014 | B2 |
9129524 | Delibaltov et al. | Sep 2015 | B2 |
9171213 | Bulan | Oct 2015 | B2 |
9367966 | Fan et al. | Jun 2016 | B2 |
9773351 | Hudson et al. | Sep 2017 | B2 |
10018703 | Bernal et al. | Jul 2018 | B2 |
20010012241 | Dee | Aug 2001 | A1 |
20030169183 | Korepanov et al. | Sep 2003 | A1 |
20040074685 | Tham | Apr 2004 | A1 |
20060028919 | Mitschele | Feb 2006 | A1 |
20060136131 | Dugan | Jun 2006 | A1 |
20060152349 | Ratnakar | Jul 2006 | A1 |
20070150335 | Arnett | Jun 2007 | A1 |
20080319837 | Mitschele | Dec 2008 | A1 |
20100328103 | Goldman et al. | Dec 2010 | A1 |
20110099126 | Belani | Apr 2011 | A1 |
20110270669 | Rowe et al. | Nov 2011 | A1 |
20120092190 | Stefik et al. | Apr 2012 | A1 |
20120095791 | Stefik | Apr 2012 | A1 |
20120127308 | Eldershaw | May 2012 | A1 |
20120130777 | Kaufman | May 2012 | A1 |
20120158466 | John | Jun 2012 | A1 |
20120286968 | Jones et al. | Nov 2012 | A1 |
20130117077 | Li et al. | May 2013 | A1 |
20130138481 | Handley | May 2013 | A1 |
20130258107 | Delibaltov et al. | Oct 2013 | A1 |
20130265419 | Bulan et al. | Oct 2013 | A1 |
20130265423 | Bernal | Oct 2013 | A1 |
20130265426 | Fan et al. | Oct 2013 | A1 |
20130266185 | Bulan et al. | Oct 2013 | A1 |
20130266187 | Bulan et al. | Oct 2013 | A1 |
20130266188 | Bulan et al. | Oct 2013 | A1 |
20130266190 | Wang et al. | Oct 2013 | A1 |
20140176349 | Smullin | Jun 2014 | A1 |
20140214499 | Hudson et al. | Jul 2014 | A1 |
20140214500 | Hudson et al. | Jul 2014 | A1 |
20140266803 | Bulan | Sep 2014 | A1 |
20140343891 | Becker et al. | Nov 2014 | A1 |
20140372155 | Wang | Dec 2014 | A1 |
20150066349 | Chan | Mar 2015 | A1 |
20150084790 | Arpin et al. | Mar 2015 | A1 |
20150106172 | Salama | Apr 2015 | A1 |
20150117705 | Zhang et al. | Apr 2015 | A1 |
20150138001 | Davies | May 2015 | A1 |
20170024619 | Wu | Jan 2017 | A1 |
20170101089 | Bales | Apr 2017 | A1 |
20170116790 | Kusens | Apr 2017 | A1 |
20170168155 | Richard | Jun 2017 | A1 |
20170249626 | Marlatt | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
2567464 | Nov 2005 | CA |
2567464 | Nov 2005 | CA |
202009013742 | Feb 2010 | DE |
2006063079 | Jun 2006 | WO |
2010069002 | Jun 2010 | WO |
2014152369 | Sep 2014 | WO |
2015118084 | Aug 2015 | WO |
Entry |
---|
The International Search Report and Written Opinion rendered by the International Searching Authority for PCT/US16/59081, dated Mar. 10, 2017, 11 pages. |
Extended European Search Report to the corresponding European Patent Application No. 16860776.0 rendered by the European Patent Office (EPO) dated Jun. 14, 2019, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20170116857 A1 | Apr 2017 | US |
Number | Date | Country | |
---|---|---|---|
62246787 | Oct 2015 | US |