The present invention relates to a parking support device that can support driving operation by a driver when parking a vehicle.
There are known parking support devices that can reduce the burden on a driver when parking a vehicle. In Patent Reference 1, mentioned below, there is described a parking support device that displays, superimposed on an image peripheral to a vehicle captured by a vehicle-mounted camera, a pair of rear projection lines that show a projected trajectory of a rear end of the vehicle according to a steering angle of the reversing vehicle, a pair of vehicle width extension lines extending rearward of the vehicle irrespective of the steering angle of the vehicle, or another indicator; and uses such indicators as well as an audible element to support a driving operation by a driver when parking.
However, in the parking support device described above, depending on the progress of the parking operation, indicators that are not necessarily required are superimposed and displayed. Therefore, there are instances in which the amount of information provided to the driver becomes excessive, an indicator that requires attention is more difficult to recognize, and the driving operation is not necessarily supported in an effective manner.
Also, since the indicators are displayed superimposed on the image peripheral to the vehicle, there are instances in which an unnecessary indicator hides the peripheral image, making it difficult to visually observe the image peripheral to the vehicle.
The problems described above become more significant for an indicator displayed using a thicker line or otherwise made more prominent in order to facilitate visual observation of the indicator.
With the above-mentioned problems in view, it is an object of the present invention to provide a parking support device that can support the operation of parking by a driver in a reliable manner.
In order to solve the above-mentioned problems, a configuration of a parking support device according to the present invention is characterised in comprising an image acquisition portion for acquiring an image peripheral to a vehicle captured by a vehicle-mounted image pickup device; an image display portion, provided within a vehicle chamber, for displaying the peripheral image; and an indicator output portion for generating, in accordance with a driving operation step, an indicator comprising a pair of left and right vehicle width extension lines extending rearwards of the vehicle, and for superimposedly displaying the indicator on the peripheral image, in order to guide a driver during a parking operation by the driver; the parking support device supporting parallel parking, comprising a first turning step, in which the vehicle is reversed while being turned and caused to enter a parking area, and a second turning step, in which the vehicle is aligned in a parallel direction while being turned in a direction opposite to that in the first turning step; the indicator output portion superimposedly displaying, during the second turning step, only the vehicle width extension line that is on an outside of the turn out of the vehicle width extension lines.
Normally, when parallel parking is being performed, there exists, on an outside of the turn during the second turning step, a wall, a hard shoulder, or a similar reference for determining a parallel direction; and a driver aligns the vehicle to the reference to align the vehicle with the parallel direction. Therefore, in an instance where the driver references a superimposedly displayed vehicle width extension line and aligns the vehicle to the parallel direction, it is preferable that the driver references the vehicle width extension line on the outside of the turn, nearer the reference. However, in an instance where a pair of left and right vehicle width extension lines are superimposedly displayed, it is not clear which of the left and right vehicle width extension lines needs to be referenced. In an instance such as that according to the present configuration in which, out of the left and right vehicle width extension lines, only the vehicle width extension line that is on the outside of the turn during the second turning step is superimposedly displayed, and the indicator that needs to be referenced is thereby made clearer to the driver. Also, there is a reduction in the number of indicators displayed superimposed on the image peripheral to the vehicle, and the region of the peripheral image that is covered by the indicators thereby becomes smaller. Therefore, it is possible to prevent any reduction in the ability of the peripheral image to be observed. As a result, it is possible to provide a parking support device that can support a driving operation in an effective manner.
Another aspect is characterised in comprising an image acquisition portion for acquiring an image peripheral to a vehicle captured by a vehicle-mounted image pickup device; an image display portion, provided within a vehicle chamber, for displaying the peripheral image; and an indicator output portion for generating, in accordance with a driving operation step, an indicator comprising a vehicle width extension line extending rearwards of the vehicle and a rear projection line extending in a direction in which the vehicle is projected to travel, and for superimposedly displaying the indicator on the peripheral image, in order to guide a driver during a parking operation by the driver; the parking support device supporting perpendicular parking, comprising a turn-reversing step in which the vehicle is reversed while being turned and aligned to a perpendicular direction, and a linear reversing step in which the vehicle is reversed in a straight line and driven into a parking area; the indicator output portion superimposedly displaying only the rear projection line out of the rear projection line and the vehicle width extension line during the turn-reversing step, and superimposedly displaying only the vehicle width extension line out of the rear projection line and the vehicle width extension line during the linear reversing step.
When perpendicular parking is being performed, during the turn-reversing step, there is a need to reverse the vehicle while adjusting the steering angle to align the vehicle to a direction of perpendicular parking, and the driver must identify a relationship between the steering angle and a path of the vehicle. Therefore, adjusting the steering angle while referencing the rear projection line in portionicular out of the indicators makes it possible to perform the turn-reversing step in a reliable manner. During a linear reversing step, it is necessary to reverse the vehicle while ensuring that the vehicle is being contained in the parking area. Therefore, reversing the vehicle while referencing the vehicle width extension line in portionicular out of the indicators makes it possible to perform the linear reversing step in a reliable manner. However, in an instance where both of the rear projection line and the vehicle width extension line are superimposedly displayed as indicators regardless of the step being performed, it is not clear which of the indicators needs to be referenced during each of the steps. In an instance such as that according to the present configuration in which only the rear projection line is superimposedly displayed during the turn-reversing step and only the vehicle width extension line is superimposedly displayed during the linear reversing step, the indicator that needs to be referenced is thereby made clearer. Also, there is a reduction in the number of indicators displayed superimposed on the image peripheral to the vehicle, and the region of the peripheral image that is covered by the indicators thereby becomes smaller. Therefore, it is possible to prevent any reduction in the ability of the peripheral image to be observed. As a result, it is possible to provide a parking support device that can support a driving operation in an effective manner.
Another aspect is characterised in that the indicator output portion switches between superimposedly displayed indicators based on a steering angle of the vehicle.
The first turning step and the second turning step, or the turn-reversing step and the linear reversing step, can be distinguished from each other from a difference in the steering angle. Therefore, switching between the superimposedly displayed steering angles based on the steering angle, as in the present configuration, makes it possible to display the respective indicator that needs to be referenced during each of the steps in a reliable manner.
Another aspect is characterized in that the indicator output portion switches between displaying the rear projection line and displaying the vehicle width extension line based on a relative angle between the vehicle and a parking area line demarcating a parking area.
Normally, a parking area for perpendicular parking has a parking area line, and the relative angle between the vehicle and the parking area line varies between before and after the turn-reversing step. Switching between displaying the rear projection line and displaying the vehicle width extension line based on the relative angle between the vehicle and the parking area line, as in the present configuration, makes it possible to display the respective indicator that needs to be referenced during each of the steps in a reliable manner.
The indicator output portion can also be configured so as to not superimposedly display the vehicle width extension line among the pair of left and right vehicle width extension lines that is on an inside of a turn.
In an instance described above in which only the vehicle width extension line that is on the outside of the turn is superimposedly displayed, the superimposedly displayed vehicle width extension line on the outside of the turn is made more noticeable to the driver, and the indicator that needs to be referenced is made clearer to the driver. Also, there is a reduction in the number of indicators displayed superimposed on the image peripheral to the vehicle, and the region of the peripheral image that is covered by the indicators thereby becomes smaller. Therefore, it is possible to prevent any reduction in the ability of the peripheral image to be observed. As a result, it is possible to provide a parking support device that can support a driving operation in an effective manner.
The indicator output portion can be configured to superimposedly display, in addition to the above-described vehicle width extension line on the outside of the turn, a rear projection line extending in a direction in which the vehicle is projected to travel.
In an instance where the rear projection line is superimposedly displayed, the driver is able to clearly identify a positional relationship with an obstacle or another object present in the vicinity of the reversing vehicle. Therefore, the driver can adjust the parking position of the vehicle by performing a steering or brake pedal operation according to necessity.
An embodiment of the present invention will now be described with reference to the drawings.
A monitor 20 (i.e., a display device), comprising a touch panel 23 formed on a display portion 21, is provided at a position on an upper portion of a console in the vicinity of the driving seat. In the present embodiment, the monitor 20 is of a liquid crystal type provided with a back light. A speaker 22 is provided to the monitor 20. The touch panel 23 is of a pressure sensitive type or an electrostatic type, and outputs location data representing a position of contact with a finger or another object. As described further below, in the present embodiment, the touch panel 23 of the monitor 20 is used as means for inputting an instruction to initiate parking support. In an instance in which the vehicle has a navigation system, the monitor 20 is preferably one that is also used as a display device for the navigation system.
The monitor 20 may also be of a plasma display type or a CRT type, and the speaker 22 may be provided to an inside of a door or another location. In an instance where there is provided a switch or other means for inputting an instruction to initiate parking support, the touch panel 23 of the monitor 20 need not necessarily be used as the means for inputting an instruction to initiate parking support.
A steering sensor 14 is provided to an operating system for the steering device 24 and a direction and amount of steering operation are measured. A shift position sensor 15 is provided to an operating system for a shift lever 25 and a shift position is determined. An accelerator sensor 16 is provided to an operating system for the accelerator pedal 26 and the amount of operation is measured. A brake sensor 17 is provided to an operating system for the brake pedal 27 and a braking operation or other action is detected.
A rotation sensor 18 for measuring the amount of rotation of at least one of the front wheels 28f and the rear wheels 28r is provided as a travel distance sensor. The present embodiment shows an example in which the rotation sensor 18 is provided to the rear wheels 28r. With regards to the travel distance, the amount of travel of the vehicle 30 may also be measured at the transmission mechanism 34 from the amount of rotation of a driving system. The vehicle 30 is also provided with an ECU (electronic control unit) 10, which is a core of the parking support device according to the present invention, for performing movement control including parking support.
A camera 12 for capturing an image of a view behind the vehicle 30 is provided to a rear portion of the vehicle 30. The camera 12 is a digital camera, installed with a CCD (charged coupled device), a CIS (CMOS image sensor), or another image-capturing element, for outputting information captured by the image-capturing element as video information in real time. The camera 12 is provided with a wide-angle lens and has a field angle of, for example, about 140° from left to right. The camera 12 is provided so as to be oriented rearwards of the vehicle 30 at an angle of depression of, for example, about 30° and captures an image of a region up to about 8 meters behind the vehicle. The captured image is inputted into the ECU 10 and used for parking support or a similar use.
A parking support device according to the present embodiment configured with the ECU 10 at the core performs parking support during, for example, parallel parking in a parking space E between two parked vehicles 40 (i.e., 41 and 42), as shown in
Point A in the drawing shows a position in which the vehicle 30 moving from the reversing start position P2 while turning does not come into contact with an obstacle in front of the vehicle 30. In the example shown in
The image acquisition portion 2 is a functional portion for acquiring an image peripheral to the vehicle 30, captured by the camera 12 (i.e., vehicle-mounted image pickup device). The image acquisition portion 2 is configured so as to have a frame memory device for storing an image, a synchronizing separator circuit, and other portions. The display control portion 3 is a functional portion for displaying the image peripheral to the vehicle 30 captured by the camera 12 on the monitor 20 (i.e., the display device) in a vehicle chamber. The display control portion 3 superimposes an indicator for guiding a driver as described further below onto the peripheral image.
The calculation portion 1 sets the parking target position P4 of the vehicle 30 and calculates a guidance path to the parking target position P4. The parking target setting portion 4 provided to the calculation portion 1 is a functional portion for setting the parking target position P4 of the vehicle 30. The guidance portion 5 provided to the calculation portion 1 is a functional portion for calculating a guidance path to the parking target position P4. Detection results from the steering sensor 14, the shift position sensor 15, the accelerator sensor 16, the brake sensor 17, the rotation sensor 18, and other sensors are inputted into the calculation portion 1. The calculation portion 1 calculates the parking target position P4 and the guidance path based on the detection results.
In an instance where the parking support device is used, the driver performs a plurality of driving operation steps, and the vehicle 30 is thereby made to follow the guidance route and parked in the parking target position P4. The indicator output portion 6 generates, in accordance with the step, an indicator for guiding the driver during parking, and displays the indicator, via the display control portion 3, superimposed on the peripheral image.
Although a detailed description is given further below, a broad parallel parking procedure guided by the parking support device according to the present embodiment will now be described with reference to
[First Step]
In order to reverse the vehicle 30 to perform parallel parking, the driver causes the vehicle 30 to advance until the parking space E enters an image capture range F of the camera 12 provided to a rear of the vehicle 30, and stops the vehicle. It is difficult to cause the vehicle 30 to stop so as to coincide with the reversing start position P2 shown in
[Second Step]
The driver operates the steering device 24 while keeping the vehicle 30 stationary at the reversing start position P2, moves an indicator c (i.e., a parking area line) shown in
The distance in the lateral direction between the parking space E and the vehicle 30 may vary according to the driver. The geometrical relationship between the reversing start position P2 and the parking space E in the longitudinal direction of the vehicle 30 is adjusted by the first step to an appropriate position. The geometrical relationship between the reversing start position P2 and the parking space E in a lateral direction of the vehicle 30 varies according to the driver, and is therefore adjusted in the second step. During the second step, the parking area line c is set to within the parking space E. Therefore, the ECU 10 is able to determine the parking target position P4. When the reversing start position P2 and the parking target position P4 have been determined, the ECU 10 is able to determine the guide path and the steering turn-back position P3.
Setting of the reversing start position P2, the parking target position P4 (i.e., the parking area line c), the guidance path, and the steering turn-back position P3 in the first and second steps are performed by the parking target setting portion 4 and the guidance portion 5 of the calculation portion 1 working in coordination. The setting may be performed in a sequence in which the guidance path and the steering turn-back position are set after the reversing start position P2 and the parking target position P4 have been determined, or in a reverse sequence. In other words, with respect to the reversing start position P2, the parking target position P4 may be set while positions to which the vehicle 30 can be guided to are calculated.
[Third Step]
The driver reverses the vehicle 30, maintaining the steering angle set during the second step while referencing an indicator d (i.e., a steering turn-back line), as shown in
[Fourth Step]
Once the driver reverses the vehicle 30, maintaining the steering angle set during the second step while referencing the steering turn-back line d, until a predetermined position (i.e., the steering turn-back position P3) is reached as shown in
[Fifth Step]
While keeping the vehicle 30 stationary at the position at which it stopped in the fourth step (i.e., the steering turn-back position P3), the driver operates the steering device 24 and turns back the steering until the steering angle is at substantially a maximum in a reverse direction as shown in
The driver maintains the set steering angle and reverses the vehicle 30 while referencing a rear projection line g. When the driver observes that an indicator e (vehicle rear line) becomes substantially parallel to the parking space E as shown in
A rear projection line g extends in a direction in which the vehicle 30 is projected to travel. The direction in which the vehicle 30 is projected to travel can be obtained from, for example, the steering angle of the steering device 24.
The above-mentioned steps perform parallel parking of the vehicle 30 in the parking space E. In an instance where there is a need to finely adjust the position in the longitudinal direction within the parking space E, the driver operates the steering device 24 or otherwise moves the vehicle 30. Preferably, the vehicle rear line e and the rear projection line g continue to be displayed, in which case the steering device 24 can be operated so that the two indicators overlap and the steering device 24 thereby returned to a neutral position.
A change on a screen displayed on the monitor 20 during each step will now be described with reference to
The driver advances further forward of the reversing start position P2 shown in
Upon receiving a detection result from the shift position sensor 15 indicating that the shift lever 25 has been shifted to reverse, the ECU 10 displays the peripheral image captured by the camera 12 onto the display portion 21 of the monitor 20 via the display control portion 3. Also, the rear projection line g generated by the indicator output portion 6 is superimposed on the peripheral image via the display control portion 3. The rear projection line g is an indicator for showing a projected trajectory of a rear end of the vehicle 30, and other lines, according to the steering angle of the reversing vehicle 30. In
The ECU 10 issues, through the speaker 22, an audible message such as one that says “Parking support for parallel parking is initiated. Please reverse until the vertical guide line meets the rear end of the adjacent vehicle”. At this point, the indicator a such as that shown in
In an instance where the vehicle 30 has been stopped rearward of the reversing start position P2, the vertical indicator a cannot be brought to a suitable position by reversing. In such an instance, the driver initially causes the vehicle 30 to advance, then operates the touch panel 23 and the shift lever 25 and reverses to bring the vertical indicator a to the suitable position.
When a predetermined time of, for example, three to five seconds, has elapsed after the vehicle 30 has been reversed and brought to a stop according to the vertical indicator a, the ECU 10 determines that the first step is complete. Alternatively, the ECU 10 determines that the first step is complete upon detecting that the steering device 24 has been operated. Then, a rectangular indicator c is superimposed on the peripheral image, as shown in
The ECU 10 issues, through the speaker 22, an audible message such as one that says “Please turn the steering wheel to the left so that the rectangular parking area line matches the parking space”.
When the steering angle remains unchanged, or in other words, no operation is performed on the steering device 24, for a predetermined time of, for example, three to five seconds, the ECU 10 determines that the parking area line c has been matched to the parking space E. Then, a new indicator d (i.e., the steering turn-back line) is superimposed on the peripheral image as shown in
In an instance where the driver releases the brake pedal 27 and begins to reverse immediately after matching the parking area line c to the parking space E, the ECU 10 determines, without waiting for the predetermined time to elapse, that the second step is complete and the workflow has proceeded to the third step.
When the workflow proceeds to the third step, the ECU 10 issues, through the speaker 22, an audible message such as one that says “Please maintain the steering position and reverse until the indicator comes into contact with the hard shoulder”. When a predetermined time has elapsed after the vehicle 30 begins to reverse, the ECU 10 determines that the third step is complete, and proceeds to processing of the fourth step.
In the fourth step, the parking area line c is removed as shown in
When a predetermined time of, for example, three to five seconds, has elapsed after the vehicle 30 is reversed and brought to a stop according to the steering turn-back line d, the ECU 10 determines that the fourth step is complete. Then, the ECU 10 initiates instructions for the fifth step, and issues an audible message such as one that says “When the indicator comes into contact with the hard shoulder, please turn back the steering wheel fully in the reverse direction”. In an instance where the driver begins to operate the steering device 24 in a reverse direction immediately after stopping the vehicle 30, the ECU 10 determines that the parking target setting portion 4 is complete without waiting for the predetermined time to elapse.
The ECU 10 further issues, through the speaker 22, an audible message such as one that says “Please maintain the steering position and reverse until the indicator comes into contact with the hard shoulder.” The driver reverses the vehicle 30 so that the vehicle width extension line e1 on the outside of the turn becomes substantially parallel to the hard shoulder of the parking space E. When the vehicle width extension line e1 on the outside of the turn becomes substantially parallel to the hard shoulder of the parking space E as shown in
When a predetermined time of, for example, three to five seconds has elapsed after the vehicle 30 is brought to a stop, the ECU 10 determines that guidance of the vehicle 30 is complete. The ECU 10 then issues, through the speaker 22, an audible message such as one that says “Parking support is complete”, and discontinues parking support.
As described above, out of the left and right vehicle width extension lines e1, only the vehicle width extension line e1 on the outside of the turn is superimposedly displayed, and the indicator that needs to be referenced is thereby made clearer to the driver. As a result, it becomes possible to support the parking operation in an effective manner.
In the fifth step described above, a description was given for an example in which only the vehicle width extension line e1 on the outside of the turn is superimposed. However, in addition to the vehicle width extension line e1 on the outside of the turn, the rear projection line g may also be superimposed as shown in
In the first embodiment, a description was given for an example of a parking support device for performing parking support for parallel parking. However, the present invention can be applied to a parking support device for performing parking support for perpendicular parking. A perpendicular parking procedure guided by the parking support device according to the present embodiment will now be described.
[First Step]
a) is a process diagram showing a first step, and
In the present embodiment, the calculation portion 1 visually identifies a parking area line W to detect the parking space E and set the parking target position P4. The parking target position P4 can be finely adjusted by the driver. An indicator c representing a parking area line is superimposed, in linkage with the parking target position P4, on the monitor 20. The driver may move the parking area line c using the touch panel 23 or another method to thereby perform fine adjustment. In the present embodiment, an arrow H for adjustment is superimposedly displayed on the screen on the display portion 21. The arrow H moves coordinatedly with the touch panel 23, and the position of the parking area line c can be adjusted based on an operating instruction issued by the driver. The driver operates the touch panel 23 or another method to establish a parking target position (i.e., position of the parking area line c). When the parking target position is established, the driver follows an audible message issued by the speaker 22 and shifts the shift lever 25 to reverse.
[Second Step]
When the shift lever 25 is shifted to reverse, the first step is discontinued and the flow proceeds to the second step.
c) is a process diagram showing a state upon completion of the second step, and
The flow proceeds from the second step to the third step based on a relative angle between the vehicle 30 and the parking area line W. For example, the ECU 10 may perform image recognition to continually calculate the relative angle between the vehicle 30 and the parking area line W, and cause the flow to proceed from the second step to the third step when the vehicle 30 is aligned to the parking area line W. Alternatively, a change in the relative angle between the vehicle 30 and the parking area line W as a result of the vehicle 30 reversing may be continually calculated in relation to a target parking position set by a user in advance before the reversal, wherein the flow proceeds from the second step to the third step when the vehicle 30 is aligned to the parking area line W. In other words, the flow proceeds from the second step to the third step when the vehicle 30 is aligned with the parking area line W, the flow being capable of proceeding from the second step to the third step regardless of the steering state of the steering device 24. According to such a configuration, the flow proceeds to the third step during the turn in the second step, and the monitor display simultaneously switches to that shown in
d) is a diagram showing a process diagram for the third step, and
When a predetermined time of, for example, three to five seconds has elapsed after the vehicle 30 is brought to a stop, the ECU 10 determines that guidance of the vehicle 30 is complete. The ECU 10 then issues, through the speaker 22, an audible message such as one that says “Parking support is complete”, and discontinues parking support.
As described above, according to the parking support device, in the third step, only the rear projection line g is superimposedly displayed out of the rear projection line g and the vehicle rear line e. Meanwhile, out of the rear projection line g and the vehicle rear line e, only the vehicle rear line e is superimposedly displayed in the third step. In other words, in the second step, it is necessary to reverse the vehicle 30 while adjusting the steering angle and align the vehicle to the parking area line W, the driver must identify the relationship between the steering angle and a path of the vehicle, and the rear projection line g is the indicator that needs to be referenced. In contrast, in the third step, it is necessary to reverse the vehicle 30 while ensuring that the vehicle 30 is contained within the parking area line W, and the vehicle rear line e is the indicator that needs to be referenced. Therefore, only the rear projection line g is superimposedly displayed out of the rear projection line g and the vehicle rear line e in the second step, and only the vehicle rear line e is superimposedly displayed out of the rear projection line g and the vehicle rear line e in the third step, as in the present configuration; the indicator that needs to be referenced is thereby made clearer to the driver. As a result, it becomes possible to support the parking operation in an effective manner.
In the example described above, a description was given for an example in which a process of removing the rear projection line g and a process of displaying the vehicle rear line e are performed simultaneously. However, the process of removing the rear projection line g may be performed after the vehicle rear line e is displayed.
The present invention can be used for a parking support device for supporting a driving operation by a driver when parking a vehicle.
Number | Date | Country | Kind |
---|---|---|---|
2008-146096 | Jun 2008 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2009/058688 | 5/8/2009 | WO | 00 | 12/10/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/147920 | 12/10/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6487481 | Tanaka et al. | Nov 2002 | B2 |
6567726 | Sakiyama et al. | May 2003 | B2 |
6825880 | Asahi et al. | Nov 2004 | B2 |
6940423 | Takagi et al. | Sep 2005 | B2 |
6999002 | Mizusawa et al. | Feb 2006 | B2 |
7012549 | Mizusawa et al. | Mar 2006 | B2 |
7706943 | Shimazaki | Apr 2010 | B2 |
7812741 | Sakakibara | Oct 2010 | B2 |
7825828 | Watanabe et al. | Nov 2010 | B2 |
20010030688 | Asahi et al. | Oct 2001 | A1 |
20030030724 | Okamoto | Feb 2003 | A1 |
20030080877 | Takagi et al. | May 2003 | A1 |
20040130464 | Schindler et al. | Jul 2004 | A1 |
20070112490 | Mizusawa | May 2007 | A1 |
20080158011 | Yamanaka | Jul 2008 | A1 |
Number | Date | Country |
---|---|---|
1 253 065 | Oct 2002 | EP |
1 308 346 | May 2003 | EP |
2001-180405 | Jul 2001 | JP |
2001-191877 | Jul 2001 | JP |
2001-334899 | Dec 2001 | JP |
2003-11762 | Jan 2003 | JP |
2003-54340 | Feb 2003 | JP |
2003-137051 | May 2003 | JP |
2003-291759 | Oct 2003 | JP |
2004-123057 | Apr 2004 | JP |
2004-203365 | Jul 2004 | JP |
2004-243835 | Sep 2004 | JP |
2005-306335 | Nov 2005 | JP |
2007-98979 | Apr 2007 | JP |
2007-137171 | Jun 2007 | JP |
2008-120293 | May 2008 | JP |
2008-132881 | Jun 2008 | JP |
1020040038880 | May 2004 | KR |
2005108171 | Nov 2005 | WO |
Entry |
---|
Korean Office Action dated Jul. 17, 2012 issued in Korean Patent Application No. 1020107021231. |
International Preliminary Report on Patentability issued in PCT/JP2009/058688 dated Jan. 20, 2011 (8 pages). |
European Search Report issued in European Application No. 09758187.0 dated Jun. 17, 2011. |
International Search Report dated Jun. 2, 2009 (with translation) (4 pages). |
Japanese Office Action issued in Japanese Application No. 2008-146096 dated Dec. 20, 2012. |
Number | Date | Country | |
---|---|---|---|
20110102196 A1 | May 2011 | US |