The present invention relates to a partial control system for a pneumatic waste compressor of the kind mentioned in the introductory part of claim 1.
In the known waste compressors the waste is compressed by means of compressed air. The compressed waste is subjected to a constant state of compression, and this pressure is maintained, even when the waste becomes exposed to further compression. In 80-90% of the compression cycles required for the compression of a bale, when the piston is in its bottom position, before the resistance of the compressed waste exerts a counter pressure corresponding to the pressure, which the piston can exert at an air pressure of 8 bars. When the piston is in its bottom position the compressor continues to work, until the pressure in the cylinder is 8 bars, at which the compressor stops. The pressure in the cylinder remains at 8 bars, until a new portion o waste is to be compressed. When a filling door opens, a fast air-escape valve opens, which causes the compression cylinder to be emptied of air, and the piston which is spring-loaded—moves upwards to its top position, whereby a pressing plate coupled to the piston also moves upwards and thereby makes room for a new portion of waste on top of the already compressed material. Consequently, the known waste compressors are very energy consuming.
It is a purpose of the invention to describe a partial control system by means of which the consumption of energy can be considerably reduced.
This is achieved by the control system described in the characterising part of claim 1. This arrangement stops the air supply to the compressor, when the piston is in its bottom position.
The compressor according to the invention operates from 1 to a maximum of 8 bars in the cycles, where the bottom position of the piston is reached, before the quantity of waste is sufficiently compressed to be able to exert a counter force corresponding to the compression power of the cylinder.
The noise level will be reduced, because it is proportional to the air pressure and the volume of air.
Because the air consumption is lower, it is possible that the compressor can work faster, and it is possible to employ a compressor with a lower capacity. This also means lower maintenance costs and a longer life of the compressor.
Claim 2 describes a preferred embodiment and location of a closing valve for a partial control system according to the invention.
Claim 3 describes another embodiment and location of a closing valve for a partial control system according to the invention, and
Claim 4 describes a third embodiment and location of a closing valve for a partial control system according to the invention.
The invention is explained in detail below with reference to the drawing, in which
As shown in
The waste compressor is operated and functions in the following way.
The compressor is typically used in the way that the operator opens the door 6 and throws the waste into the compressor, after which he closes the door and leaves. The compressor is now left to build up a pressure in the cylinder 1 to 8 bars. When more waste arrives, the door 6 is opened, the air in the cylinder 1 is let out through the quick air-escape valve 10, and the compressor plate 3 will return to its top position, and the new waste is filled into the compressor, and so on and so forth.
This causes a heavy energy consumption, as the piston reaches its bottom position in 80-90% of the times, before the resistance from the compression is higher than the pressure which the piston 2 exerts at 8 bars.
According to the invention the control system of the waste compressor is incorporated with a partial control system comprising a non-return valve 17, which closes for compressed air to the cylinder 1, and a closing valve 18 whose admission side is coupled to the wire 11 in front of the non-return valve 17 by means of a wire 19, and whose discharge side is coupled to the wire 11 after the non-return valve 17 at the wire 20. There are means to activate the closing valve 18 to close, when the piston 2 is in its lowest bottom position in the cylinder 2, whereby the air supply to the compressor stops, and to open it again, when the piston 2 is raised when new waste is to be filled into the compressor.
Hereby the pressure in the cylinder 1 will at most reach 1 max. 8 bars in the preparatory compression cycles, until the quantity of waste is large enough to build up a counter pressure of 8 bars and until the compaction is finished.
As shown in
As shown in
As shown in
Number | Date | Country | Kind |
---|---|---|---|
PA 2007 00396 | Mar 2007 | DK | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DK08/00098 | 3/12/2008 | WO | 00 | 10/20/2009 |