The present disclosure relates generally to a partial flow filter, and more particularly, to a partial flow exhaust filter.
Internal combustion engines exhaust a complex mixture of chemical species as a byproduct of the combustion process. In diesel engines, the condensed phase chemical species are composed of three main fractions, namely, elemental carbon and inorganic ash (solid), soluble organic fraction (SOF and liquid), and sulphate particulates (liquid). Due to heightened environmental concerns, exhaust emission standards have become increasingly stringent over the years. As part of these emission standards, regulations prescribe the amount of chemical species that can be emitted from an engine depending on the type, size, and/or class of the engine. One method used by engine manufacturers to comply with these regulations is to remove the offending chemical species from the exhaust flow of the engine. Different techniques are typically used to remove solid phase and gaseous phase chemical species from the exhaust flow. One common method used to remove solid phase (and to some extent, liquid phase) particulate matter contained in the exhaust is to capture and oxidize these particulate matter using diesel particulate filters (DPF).
DPF's are typically located along the path of the exhaust flow and they operate by forcing the exhaust flow through a filter media of the DPF. There are many types of filter media that have been used in DPF's. Ceramic wall-flow monoliths are by far the most common type of filter elements used in DPF's. A ceramic wall-flow filter element has parallel channels (called “honeycomb” structure) alternately plugged at each end in order to force the exhaust gases through the porous ceramic walls. That is, channels that are exposed at the inlet end (called “inlet channels”) are plugged at the outlet end, and channels that are plugged at the inlet end (called “outlet channels”) are exposed at the outlet end. Therefore, exhaust gases that enter the inlet channels at the inlet end are forced to percolate through the walls of the filter element to the outlet channels in order to exit the filter element. Thus, the walls of the filter media act as a filter. These filter elements are commonly made of ceramic materials, such as cordierite (a synthetic ceramic composition having the formula 2MgO-2Al2O3-5SiO2), that are characterized by good porosity, high temperature resistance and good mechanical strength. The ceramic walls of the filter media block some or all of the particulate matter in the exhaust while allowing the exhaust gases to flow through. Over time, the particulate matter may clog the filter media, impeding the flow of gas through it, resulting in increased pressure drop across the filter (engine back pressure) and reduced engine efficiency. Filter regeneration is one way to remove the particulate build up within the filter media. Regeneration is the process of increasing the temperature of the filter media until the organic components of the particulate matter such as the soot and the soluble organic fraction (SOF) that accumulates in the filter media oxidize. The regeneration process exposes the filter media to large temperature cycles that negatively impact the durability of the filter media.
U.S. Pat. No. 4,417,908 (the '908 patent) to Pitcher, Jr. describes a honeycomb filter element that decreases the back pressure generated by the filter without sacrificing filtration efficiency. The filter media of the '908 patent reduces backpressure by increasing the number of inlet channels as opposed to the outlet channels. The increased number of inlet channels increases the surface area of the inlet channel walls through which the exhaust gases can percolate into the outlet channels. The increased surface area delays clogging of filter media and hence, pressure build up.
While the filter media of the '908 patent may delay back pressure buildup, the accumulating soot in the filter media may eventually increase back pressure and require regeneration to maintain engine efficiency. By increasing the surface area available for soot accumulation, the filter element of the '908 patent may increase the quantity of soot that has to be burned off during regeneration. This increased quantity of soot burned during regeneration may increase the high temperature exposure and the temperature gradients in the filter element, thereby negatively impacting its durability. The present disclosure is directed to solving one or more of the problems set forth above.
In one aspect, a filter media is disclosed. The filter media includes a plurality of channels separated by porous sidewalls extending longitudinally from a first end to a second end. The plurality of channels includes a plurality of first channels and a plurality of second channels. The first channels are open at both the first end and the second end and have a first width. The second channels are closed at the first end and open at the second end and have a second width greater than the first width.
In another aspect, a particulate filter is disclosed. The particulate filter includes a housing and a filter media with a first end and a second end positioned within the housing. The filter media includes a plurality of first channels extending from the first end to the second end. Each first channel has substantially rectangular cross-sectional shape and is open at both the first end and the second end. The filter media also includes a plurality of second channels extending from the first end to the second end. Each second channel of the plurality of second channels is closed at the first end and open at the second end, and adjacent to a first channel of the plurality of first channels. Each second channel also has a substantially octagonal cross-sectional shape.
In yet another aspect, a method of filtering exhaust gas of an internal combustion engine is disclosed. The method includes directing the exhaust gas into a first channel extending from an inlet end to an outlet end. The first channel has a first cross-sectional area and is open at both the inlet end and the outlet end. The method also includes passing a first portion of the exhaust gas into a second channel. The second channel is adjacent to the first channel and has an inlet end and an outlet end. The second channel is closed at the inlet end and open at the outlet end and has a second cross-sectional area greater than the first cross-sectional area. The method further includes directing the first portion of the exhaust gas out of the outlet end of the second channel, and directing a portion of the exhaust gas out of the outlet end of the first channel.
Induction system 14 may be configured to introduce compressed air into a combustion chamber (not shown) of power source 10. Induction system 14 may include components configured to introduce compressed air and fuel into the power source. These components may include any components known in the art such as, valves, air coolers, air cleaners, control system, etc.
Exhaust system 12 may be configured to direct hot exhaust gas 25 from power source 10 to the atmosphere. Exhaust system 12 may include components that are configured to extract power from exhaust gas 25. These components may include a turbocharger 18. Turbocharger 18 may consist of a turbine 18A connected to a compressor 18B by a shaft. The turbine 18A may receive exhaust gas 25 from the power source 10 causing a turbine wheel to rotate. This rotation may drive the compressor 18B, compressing air in induction system 14.
Exhaust gas 25 may also contain solid particulate matter and various chemicals in liquid or gaseous form. The solid particulate matter may include combustible organic constituents (such as elemental carbon) and incombustible inorganic constituents (such as ash). Some of the exhaust gas constituents may be regulated by regulatory agencies, and hence may need to be removed/reduced before exhaust gas 25 is released to the atmosphere. Exhaust system 12 may include components that may be configured to separate these regulated constituents from exhaust gas 25. These components may include, among others, one or more filters. These filters may include a diesel particulate filter (DPF) 30, and a catalytic converter 16.
Catalytic converter 16 may be a device configured to chemically convert some of the constituents of exhaust gas into less harmful constituents. For example, catalytic converter 16 may reduce oxides of nitrogen in exhaust gas 25 to nitrogen and oxygen, oxidize carbon monoxide in exhaust gas 25 to less harmful carbon dioxide, and oxidize un-burnt hydrocarbons in exhaust gas 25 to carbon dioxide and water. Catalytic converter may include a substrate through which exhaust gas 25 may be flown through. The substrate may include a catalyst deposited thereon, to facilitate the oxidation and reduction reactions. Although
DPF 30 may separate some of the solid and liquid particulate matter (“particulate matter”) from exhaust gas 25.
Filter media 40 may have a porous structure. In some embodiments, filter media 40 may be made of a porous material such as cordierite or silicon carbide, while in other embodiments, filter media 40 may be made of a metallic mesh or a metallic foam. The porous nature of filter media 40 may filter some of the particulate matter from the exhaust gas 25 passing through it. Due to this filtering of particulate matter, the particulate matter content of exhaust gas 25 exiting filter media 40 at outlet end 42 may be less than particulate matter content of exhaust gas 25 entering filter media 40 at inlet end 44.
Exhaust gas 25 enters inlet channels 46a of filter media 40 at the inlet end 44. Some exhaust gas 25 may also enter outlet channel 46b through porous walls of plugged inlet end 44 of outlet channel 46b. A portion of exhaust gas 25 in the inlet channels 46a may percolate into the outlet channels 46b through the porous side walls 50 of inlet channel 46a. Orifice 52 at the outlet end 42 of inlet channel 46a may restrict the free flow of exhaust gas 25 through inlet channel 46a. This restriction to the flow may also force an additional portion of exhaust gas 25 through the porous side walls 50 into outlet channels 46b. The remaining portion of exhaust gas 25 may exit inlet channels 46a through orifice 52. Decreasing thickness 54 of side wall 50 may increase the portion of exhaust gas 25 that percolates into outlet channels 46b. Increasing size of orifice 52 may also decrease the portion of exhaust gas 25 that is forced through side walls 50.
A portion of particulate matter 48 present in exhaust gas 25 may, thus, be filtered while percolating through side walls 50 of filter media 40. The remaining portion of particulate matter 48 may pass through DPF 30 along with the portion of exhaust gas 25 exiting filter media 40 through orifice 52. A ratio of the amount of particulate matter 48 filtered by filter media 40 to the total amount of particulate matter 48 present in exhaust gas 25 may be a measure of filtration efficiency of DPF 30. The portion of particulate matter 48 escaping with exhaust gas 25 passing through orifice 52 may contribute to a reduction in filtration efficiency of DPF 30. The amount of exhaust gas 25 flowing through orifice 52, and the amount of escaping particulate matter 48 may increase with size of orifice 52. Therefore, filtration efficiency may decrease with orifice size.
As particulate matter 48 accumulates in filter media 40, the resistance to exhaust flow through DPF 30 may increase. This resistance to exhaust flow may, in turn, increase the pressure of exhaust gas 25 in filter media 40 (“back pressure”). The increase in back pressure may adversely affect the performance of power source 10. Continued accumulation of particulate matter 48 may eventually clog the pores of side walls 50 thereby preventing further percolation of exhaust gas 25 through side walls 50. The increase in back pressure associated with clogging may in some instances cause catastrophic failure of exhaust system 12. The ability of exhaust gas 25 to exit filter media 40 through orifice 52, may however, prevent catastrophic failure of exhaust system 12.
When the back pressure, resulting from particulate matter 48 build up in DPF 30, affects engine performance, DPF 30 may be regenerated. Regeneration is the process of oxidizing (that is, burning) a part of the particulate matter 48 accumulated in the filter media 40. During regeneration, the combustible portion of the accumulated particulate matter 48 may be oxidized to carbon dioxide or carbon monoxide. Oxidation of the combustible part of particulate matter 48 may occur at a regeneration temperature between about 550° C. and 650° C. or by the oxidation of carbon by NO2 at a temperature above about 225° C. In some embodiments, this regeneration temperature may be decreased using a catalyst. The accumulated particulate matter may be heated to the regeneration temperature using a variety of ways. In some embodiments, a heater embedded in DPF 30 or filter media 40 may be used to raise the temperature of accumulated particulate matter 48. In some embodiments, the temperature of the exhaust gas 25 may be increased when a regeneration event is triggered. The temperature of exhaust gas 25 may be increased in a number of ways. For instance, a regeneration assist system (not shown) located upstream of DPF 30 may be used to heat exhaust gas 25.
A regeneration event may be triggered depending upon the amount of accumulated particulate matter 48 in DPF 30. In some embodiments, the amount of accumulated particulate matter 48 may be directly measured (for instance, by using a RF measuring device), while in other embodiments, a threshold value of back pressure may trigger regeneration. During uncontrolled regeneration, the combustible portion of accumulated particulate matter 48 burns, resulting in a rapid increase in temperature, sometimes exceeding 650° C. Due to non-uniform deposition of particulate matter 48 on filter media 40, the temperature of some regions of filter media 40 may be significantly higher than other regions causing a large temperature gradient in filter media 40 during regeneration. These high temperatures and temperature gradients may result in filter media 40 damage. In some applications, filter media 40 may be cooled during regeneration by the stream of exhaust gas 25. Increasing amounts of accumulated particulate matter 48 in filter media 40 may increase the temperature and duration of regeneration. The ability of exhaust gas 25 to cool filter media 40 during regeneration may also be compromised by increasing particulate matter 48 build up. The portion of particulate matter 48 exiting filter media 40 may decrease the accumulation of particulate matter 48 in filter media 40, thereby decreasing the possibility of filter damage during regeneration and decreasing the frequency at which regeneration may be required.
Regeneration clears accumulated particulate matter 48 from filter media 40 by converting them into gaseous compounds. The incombustible portion of particulate matter 48 (for example, ash), however, does not get removed by regeneration. This portion of particulate matter 48 gets removed from filter media 40 along with the portion of exhaust gas 25 passing through orifice 52. Increasing size of orifice 52 allows this incombustible particulate matter 48 to be removed from filter media 40 easily.
Therefore, increasing filtration efficiency (that is, reducing the amount of particulate matter released from DPF 30) may favor a small orifice 52. While lower back pressure, lower regeneration temperature and duration, lower frequency of regeneration, and lower ash buildup in the DPF 30 may favor a larger orifice 52 size. The choice of orifice size in an application may, thus, involve a tradeoff between these and other factors. In general, orifice size may vary from a smallest size that may be reliably produced in filter media 40 to the size of inlet channel 46a.
In general, decreased side wall thickness 54 may increase filtration efficiency. However, the strength of the filter media 40 may be adversely affected. Decreasing side wall thickness may also increase cost and complexity of fabrication. In general, any side wall thickness 54 may be used in an application. Side wall thickness 54 selected for an application may depend on performance, strength, cost, and other factors.
The size of inlet channel 46a, outlet channel 46b, and side wall thickness 54 may also depend on the application. In some embodiments, inlet channels 46a and outlet channels 46b may be substantially equally sized. The size of these channels may also be designed to achieve the required filtration efficiency while reducing back pressure and regeneration temperature. In some embodiments, inlet channel 46a and/or outlet channel 46b may be tapered. That is, the width of these channels may vary along a length of the channel.
As shown in
The disclosed embodiments relate to a partial flow filter to separate particulate matter from engine exhaust. The filter includes a porous filter media with multiple parallel channels running from an inlet end to an outlet end. Alternate adjacent channels of the filter media are plugged at the inlet end of the filter. These plugged channels may be open at the outlet end of the filter media. Some or all of the channels which are not plugged at the inlet end may include an orifice at the outlet end. The size of the orifice may be small or may be as large as the size of the channel. The size of the channels may also vary. Exhaust from an engine may be passed through the filter. These exhaust may enter the channels of the filter media that are open at the inlet end (inlet channels). Due to the pressure of exhaust gas in the inlet channel, some of the exhaust gas may percolate into the adjacent channels through the porous walls of the channel. During percolation through these porous walls, particulate matter contained in the exhaust may be filtered. The decreasing size of the inlet channels and/or decreasing size of the orifice may increase the amount of particulate matter filtered by the filter media and improve filter efficiency. However, small orifices and small inlet channels may increase the back pressure of filter and negatively affect engine efficiency. Therefore, the selection of orifice size and channel size in an application may involve application specific factors. To illustrate an application of the disclosed partial flow filter, an exemplary embodiment will now be described.
A diesel engine exhaust may be directed to a DPF 30. The DPF 30 may contain a cylindrical filter media 40. Filter media 40 may be made of a cordierite ceramic having a porosity of 38% and a micron hole size of 11. Filter media 40 have a diameter 80 of about 7.5 inches and a length 82 of about 8 inches. Filter media 40 may include multiple parallel channels 46 running from an inlet end 44 to an outlet end 42. Each channel 46 may be separated from adjacent channels by a wall having thickness 54 of about 0.012 inches. Alternate adjacent channels of filter media 40 may be plugged at inlet end 44 to create a checker board pattern of channels (as seen in
Parametric CFD simulations were carried out on filter media 40 to determine the impact of orifice size on filter performance parameters. Keeping all variables of filter media 40 constant, orifice diameter was varied in each simulation. The ratio of the amount of exhaust flow percolating through side walls 50 to the total exhaust flow into DPF (“flow fraction filtered”), and the pressure drop across filter media 40, were recorded in each case. Increasing values of flow fraction filtered may indicate increased particulate matter 48 filtration, and therefore, increased filtration efficiency. While increasing values of pressure drop across filter media 40 may indicate increasing back pressure, and therefore, decreasing engine performance.
In between these two extreme cases (that is, the case were orifice size is “0,” and the case where the outlet end of inlet channel is open),
In some engine applications, complete removal of particulate matter from exhaust flow may not be required. The disclosed filter embodiments may enable the tradeoff of filter efficiency to decrease exhaust back pressure. The disclosed filter elements may be designed to achieve a desired filtration efficiency at a lower value of exhaust back pressure. Since all the exhaust gas flowing through the DPF may not be filtered, the amount of particulate matter accumulation in the filter media may also be lower. This lower particulate matter accumulation may decrease the temperature, temperature gradient, and time of exposure of the filter media to high temperature during regeneration. Lower particulate matter accumulation in the filter media may also decrease the frequency of regeneration, thereby decreasing the number of times the filter media is exposed to regeneration temperature. Since the outlet end of the inlet channels may also include an opening, incombustible particulate matter (ash) may be blown out of the filter media along with the exhaust flow, thereby reducing ash buildup in the filter media. This reduction in ash buildup may delay (or even eliminate) filter service needed to remove the accumulated ash, and thereby prolong filter life.
It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed partial flow filter. Other embodiments will be apparent to those skilled in the art from consideration of the specification and practice of the disclosed partial flow filter. It is intended that the specification and examples be considered as exemplary only, with a true scope being indicated by the following claims and their equivalents.