The detailed description will be better understood in conjunction with the accompanying drawings as follows:
The embodiments are detailed below with reference to the listed Figures.
Before explaining the embodiments in detail, it is to be understood that the embodiments are not limited to the particular embodiments and that they can be practiced or carried out in various ways.
The present embodiments use a reforming exchanger in parallel with a partial oxidation (POX) reactor in a new hydrogen plant with improved efficiency and reduced steam export, or in an existing hydrogen plant. In one embodiment, the hydrogen capacity can be increased by as much as 20 to 30 percent with reduced export of steam from the hydrogen plant. The resulting process has very low energy consumption.
The present embodiments provide a process for preparing syngas. The method includes: partially oxidizing a first hydrocarbon portion with oxygen in a partial oxidation reactor to produce a first reactor effluent; cooling the first reactor effluent to a temperature from about 650 degrees C. to about 1000 degrees C.; supplying the first reactor effluent to a reforming exchanger; passing a second hydrocarbon portion with steam through a catalyst zone in the reforming exchanger to form a second reactor effluent; discharging the second reactor effluent from the catalyst zone to form an admixture with the first reactor effluent; passing the admixture across the catalyst zone in indirect heat exchange therewith to cool the admixture and heat the catalyst zone; and collecting the cooled admixture from the reforming exchanger.
The cooling can include introducing water into the first reactor effluent as a quench fluid, indirect heat exchange, or a combination of water quenching and indirect heat exchange. The indirect heat exchange can be used to preheat the second hydrocarbon portion in a cross exchanger. The catalyst zone can include catalyst tubes. The method can include supplying the second hydrocarbon portion to a tube side of the reforming exchanger and passing it through the catalyst tubes, and supplying the cooled first reactor effluent to a shell side inlet of the reforming exchanger. The shell side inlet can be adjacent an outlet end of the catalyst tubes. The method can further include supplying the first and second hydrocarbon portions in a weight ratio of from about 40:60 to about 95:5. More desirable, the first and second hydrocarbon portions can be supplied in a weight ratio of from about 40:60 to about 60:40 (for example, if for more efficient hydrogen production) or from about 80:20 to about 95:5 (for example, if more CO is desired).
The present methods for retrofitting a syngas process entail a partial oxidation reaction step for converting a first hydrocarbon stream to a first reactor effluent, a heat recovery step for cooling the first reactor effluent and producing steam with the recovered heat, and a downstream processing step for receiving the cooled reactor effluent and producing a product syngas of enhanced hydrogen content.
The retrofit can include partially cooling the first reactor effluent to a temperature from about 650 degrees C. to about 1000 degrees C. The partially cooled first reactor effluent is diverted to a reforming exchanger. A second hydrocarbon portion with steam is passed through a catalyst zone in the reforming exchanger to form a second reactor effluent. The refit can further include discharging the second reactor effluent from the catalyst zone to form an admixture with the first reactor effluent, passing the admixture across the catalyst zone in indirect heat exchange therewith to cool the admixture and heat the catalyst zone. The admixture from the reforming exchanger can be supplied to the heat recovery step.
With reference to the figures,
The plant exampled in
A preheated mixture in line 19 of steam and hydrocarbon, which can be the same or different as the hydrocarbon in line 2, is supplied to a tube-side inlet of the reforming exchanger 18. The mixture passes through the catalyst tubes 20 to form additional hydrogen-containing gas. The reformed gas from outlet openings of the catalyst tubes 20 mixes with the POX reformer effluent and the mixture passes across the outside of the catalyst tubes 20 to the shell-side outlet where it is collected in line 22 in a conventional manner. The combined syngas in line 22 is then supplied to conventional downstream processing 24 as exampled in
The heat requirement for the reforming exchanger 18 is met by the quantity and temperature of the POX reactor effluent. Generally, the more feed in line 19 to the reforming exchanger 18, the more heat required from the POX reactor effluent 16 to sustain the generally endothermic reforming reaction in the catalyst tubes 20. The temperature of the reformer catalyst tube effluent gas is desirably as hot as the materials of construction of the reforming exchanger 18 will allow (for example, from about 750 degrees C. to about 1000 degrees C. in a KRES unit). If the temperature is too low, insufficient reforming can occur in the reforming exchanger 18, whereas if the temperature is too high the metallurgical considerations might become problematic.
The proportion of hydrocarbon feed to the POX reactor(s) 8 can range from 40 to 95 percent of the total, whereas the proportion to the reforming exchanger 18 can be from 5 to 60 percent of the total hydrocarbon feed. The feed split between the POX reactor(s) 8 and the reforming exchanger 18 is desirably such that the POX reactor(s) 8 must produce a suitable volume of hot effluent to provide the heat requirements of the reforming exchanger 18. A feed split to the POX reactor(s) 8 of from 0 to 60 percent of the total is beneficial for improved energy efficiency and maximizing the hydrogen production rate, whereas feeding from 80 to 95 percent of the total hydrocarbon feed to the POX reactor(s) 8 is beneficial for making more CO in the syngas.
The present embodiments can be illustrated by way of an example. Preliminary process design parameters for an integrated POX-reforming exchanger unit installed as exampled in
In the base case with a POX reactor only, the syngas produced from the reforming section of the plant will have the composition and flow rate of the POX reactor effluent in line 16. Using the reforming exchanger in parallel with the POX reactor according to this embodiment of the invention, the effluent in line 16 is mixed with the gas exiting the catalyst tubes 20 to obtain a syngas having the composition in line 22. This example shows that an integrated POX-reforming exchanger process can be used to recover waste heat in the reforming exchanger and increase hydrogen production by 20 to 25 percent. Using process heat for the additional hydrogen generation in this manner yields a corresponding reduction in steam export.
While these embodiments have been described with emphasis on the embodiments, it should be understood that within the scope of the appended claims, the embodiments might be practiced other than as specifically described herein.
The current application is a divisional of co-pending U.S. application Ser. No. 10/708,606, filed on Mar. 15, 2004, which claims priority to U.S. Provisional Application No. 60/320,011, filed on Mar. 16, 2003.
Number | Date | Country | |
---|---|---|---|
60320011 | Mar 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10708606 | Mar 2004 | US |
Child | 11526152 | US |