A cerebral aneurysm is an area where a blood vessel in the brain weakens, resulting in a bulging or ballooning out of part of the vessel wall. The disorder may result from congenital defects or from other conditions such as high blood pressure, atherosclerosis or head trauma. Every year, an estimated 30,000 people in the United States experience a ruptured cerebral aneurysm, and up to 6 percent of the population may be living with an unruptured aneurysm. Aneurysms occur in all age groups, but the incidence increases steadily for individuals age 25 and older, is most prevalent in people ages 50 to 60, and about three times more prevalent in women. The outcome for patients treated before a ruptured aneurysm is much better than for those treated after, so the need for adequate treatment of a cerebral aneurysm is very important.
Current treatment options include a surgical operation to “clip” the aneurysm which is performed by doing a craniotomy, and isolating the aneurysm from the bloodstream using one or more clips, which allows it to deflate. Surgical repair of cerebral aneurysms is not possible if they are located in unreachable parts of the brain. Angiography is used to visualize closure of the aneurysm and preserve normal flow of blood in the brain.
A less invasive technique which does not require surgery, called endovascular therapy, uses micro catheters to deliver coils to the site of the enlarged blood vessel that occludes the aneurysm from inside the blood vessel. In some cases, the aneurismal opening or neck is too large to retain these coils. In such cases, a stent may be used to create a bridge across the neck and prevent the coils from encroaching into the vessel lumen. Typically, such a stent comprises a small flexible cylindrical mesh tube that provides a scaffolding to assist in holding the coils in place. An example of such a stent is provided by Neuroform3™ Microdelivery Stent System (Boston Scientific, Inc.). Neuroform3 Stents employ a highly flexible, hybrid cell design for better tracking during access and greater conformability within a variety of vessel morphologies. The Neuroform3 hybrid cell design is also engineered to provide greater scaffolding for coil mass support and sufficient radial force to generate stability within the vessel. However, the Neuroform3 Stents are only used to hold the coils in place and cannot be used independently to treat aneurysms.
Therefore, a stent design is desired that is useable itself for treatment of an aneurysm without the need for filling material, such as coils. Therefore, such a stent may be used to treat aneurysms which are typically unsuitable for filling with material. Such a stent design should provide high flexibility for deliverability through tortuous cerebral anatomy and for conformability within a variety of vessel morphologies while providing sufficient radial strength to hold the stent firmly in place. Such a stent design should also be useable to treat aneurysms located near blood vessel side-branches and bifurcations. At least some of these objectives will be fulfilled by the present invention.
Devices, systems and methods are provided for treating aneurysms, particularly cerebral aneurysms. Such treatment is achieved minimally invasively without the need for conventional filling materials and methods. Such treatments may be used for aneurysms located near blood vessel side-branches and bifurcations.
In a first aspect of the present invention, a stent device is provided for covering an aneurysm in a blood vessel, particularly wherein the blood vessel includes at least one side-branch near the aneurysm. In some embodiments, the stent device comprises a tubular frame having a first end and a second end, and a covering between the first and second ends of the frame. The covering substantially restricts flow of blood through the frame to the aneurysm while the stent device is positioned within the blood vessel so that the covering substantially covers the aneurysm. Also, the tubular frame has a cell geometry which allows sufficient flow of blood through the cell geometry at least between the ends and the covering so as to maintain blood flow through to the at least one side-branch. The frame typically also includes at least one anchoring portion which provides radial anchoring force.
The covering partially occludes, blocks or covers the frame so as to restrict the flow therethrough, i.e. in a lateral direction through the wall of the stent. The covering may cover any suitable portion of the frame, such as approximately 10-90 percent of the frame or more particularly approximately 30-40 percent of the frame. Such percentages may be in length of the frame covered or in area of the frame covered. In some embodiments, the covering is positioned approximately equidistant from the ends. In other embodiments, the covering is positioned at one of the first end or the second end.
The covering may have a variety of shapes, sizes, materials and configurations as will be described in more detail herein. For example, the covering may comprise an expandable polymer material. Or the covering may be woven through the cell geometry of the frame, such as in a spiral configuration. In some embodiments, the covering comprises a tubular sleeve positionable around the frame. In these embodiments in particular, the device may also include at least one security ring configured to assist in holding the covering on the frame.
In another embodiment, the stent device comprises a tubular frame having a first end, a second end, an occlusional cell geometry and an open cell geometry. The occlusional cell geometry is configured to be positioned so as to cover the aneurysm and substantially prevent flow of blood therethrough to the aneurysm while the stent device is positioned within the blood vessel. The open cell geometry is configured to be positioned so as to maintain blood flow through to the at least one side-branch while the stent device is positioned within the blood vessel. Typically, the occlusional cell geometry has smaller cells than the open cell geometry. In some embodiments, the occlusional cell geometry comprises approximately 10-90 percent of the frame, particularly approximately 30-40 percent of the frame.
In some instances, the occlusional cell geometry is disposed approximately equidistant from the ends. The frame may also include at least one anchoring portion which provide radial anchoring force.
In another aspect of the present invention, a method is provided for covering an aneurysm in a blood vessel, particularly wherein the blood vessel includes at least one side-branch near the aneurysm. In one embodiment, the method includes advancing a stent through the blood vessel, wherein the stent comprises a tubular frame having a first end, a second end, an open cell geometry and a covering. The method also includes positioning the stent within the blood vessel so that the covering substantially covers the aneurysm restricting blood flow to the aneurysm and the open cell geometry substantially covers the at least one side-branch allowing blood flow to the at least one side-branch.
When the covering is disposed approximately equidistant from the ends, positioning may comprise positioning the ends on opposite sides of the aneurysm. When the stent includes an anchoring portion near the first end and the covering near the second end and when the blood vessel includes a bifurcation near the aneurysm, positioning may comprise positioning the anchoring portion within the blood vessel so as to anchor the stent while the second end is disposed near the bifurcation.
In addition, positioning the stent typically comprises expanding the stent within the blood vessel. Such methods are often performed when the blood vessel comprises a cerebral blood vessel but are not so limited. Other objects and advantages of the present invention will become apparent from the detailed description to follow, together with the accompanying drawings.
The frame 12 may have a variety of configurations. Example embodiments of frames 12 are provided in U.S. Pat. Nos. 6,371,980; 6,451,050; 6,520,984 and PCT/US2006/031059, each of which are incorporated herein by reference for all purposes. The frame 12 is expandable from a contracted, small-diameter condition to a radially expanded condition under the influence of an expanding force, typically an expandable balloon catheter used in delivering and placing the device in a blood vessel, according to conventional stent placement methods. Alternatively, the stent may be self-expanding. In some embodiments, the frame 12 has a length in the range of approximately 5-30 mm, particularly in the range of approximately 8-20 mm. Likewise, in some embodiments, the frame 12 has an outer diameter in the range of approximately 1-10 mm, particularly in the range of approximately 2.5-6 mm.
An example of such a frame 12 is illustrated in
The frame 12 may be formed from any suitable method. For example, the frame 12 may be comprised of a tube having a desired pattern formed or cut therefrom, such as by laser cutting or chemical etching. Alternatively, the desired pattern may be formed out of a flat sheet, e.g. by laser cutting or chemical etching, and then rolling that flat sheet into a tube and joining the edges, e.g. by welding. Further, the frame 12 may be formed by etching a pattern into a material or mold and depositing stent material in the pattern, such as by chemical vapor deposition or the like. Or the frame 12 may be formed from a weave or braid. Any other suitable manufacturing method known in the art may be employed for manufacturing a frame in accordance with the invention.
The frame 12 may be comprised of plastic, metal or other materials and may exhibit a multitude of configurations. Example plastics include polyurethanes and polycarbonates. Example metals include 316LVM, L605 Cobalt Chromium, stainless steel, titanium, Nitinol, and tantalum among others. The frame 12 may also be treated to improve biocompatibility, such as by electropolishing or polymer coating.
It may be appreciated that the frame 12 may have a variety of other forms, including conventional stents, coils, wireframes, etc.
Typically, the covering 14 has a tubular shape configured to fit over the frame 12. However, the covering 14 may alternatively be disposed under the frame 12 and attached thereto. Thus, the covering 14 is also expandable from a contracted, small-diameter condition to a radially expanded condition. This may be achieved by constructing the covering 14 from a flexible material, such as a polymer. Example materials include expandable polymer material, e.g., a porous or non-porous polytetrafluoroethylene (PTFE) material. Alternatively, this may be achieved by movement of the covering 14 as the frame 12 expands, such as by reducing overlap of the covering 14.
An exemplary covering 14 is described in U.S. Pat. No. 6,371,980, issued Apr. 16, 2002, and in PCT/US2006/031059, each of which are incorporated by reference herein in their entirety. It may be appreciated that the covering 14 may have a variety of other forms, including conventional sleeves, spirals or helixes. Also, the covering 14 may cover a side of the frame 12, rather than extending around the frame 12.
In the present invention, the covering 14 covers only a portion of the frame 12, preferably approximately 10-90% of the frame 12, more preferably approximately 30-40% of the frame 12. The covering 14 may be symmetrically positioned over the frame 12, such as equidistant from the ends 18, 20, as illustrated in
In some embodiments, the stent 10 includes one or more clips or security rings 16 which are used to secure the covering 14 to the frame 12, such as illustrated in
The rings 16 may have a variety of shapes, including sinusoidal-shaped convolutions so that they can be expanded with the frame 12 and covering 14. The security rings 16 can be placed at any location along the covering 14 including partially over the covering 14 and partially over the frame 12 itself. Optionally, the rings 16 may also include at least one radiopaque marker. In addition, spun FEP or polymer may be used to hold the rings 16 in place or create a smooth transition between the rings and the frame or covering.
It may be appreciated that other structures may be employed in the stent 10 for anchoring the covering 14 on the frame 12. For example, the covering 14 could be sewn on the frame 12 or bonded to the frame 12 by polymer welds, urethane, spun fiber or the like.
It may be appreciated that the embodiments of stents 10 illustrated in
In some embodiments, the covering 14 is woven through the frame 12 so that the covering 14 is substantially held in place by such weaving. An example of such an embodiment is illustrated in
It may be appreciated that in some embodiments, a separate covering is not used; rather, portions of the frame 12 itself act as the “covering” so as to block or restrict flow into the aneurysm. Such portions may be considered to have an occlusional cell geometry. An example of such a stent 10 is illustrated in
In any of the above embodiments, the cell geometry of the frame 12 may be altered in desired areas to accommodate particular anatomies. For example, to ensure adequate flow to a side-branch, the frame 12 may be altered in the area of the side-branch to increase flow therethrough. This may be achieved by widening the cell geometry in this area, typically the lower density area or open cell geometry area. To widen a desired cell, an inflatable member or balloon may be passed through the desired cell and expanded to change its dimensions (e.g. cause widening). When the frame 12 is comprised of a weave or braid, the struts move apart according to the weave. When the frame 12 is comprised of a cut tube or sheet, the struts may be deformed upon widening of the cells. Any number of cells may be widened in any location to achieve the desired result. It may be appreciated that widening in some areas may cause constriction or narrowing in other areas which may be utilized for various purposes. For example, widening in an open cell geometry area may cause narrowing in the occlusional cell geometry area which may benefit the overall stent design.
Although the foregoing invention has been described in some detail by way of illustration and example, for purposes of clarity of understanding, it will be obvious that various alternatives, modifications and equivalents may be used and the above description should not be taken as limiting in scope of the invention which is defined by the appended claims.
This application claims priority to U.S. Provisional Patent Application No. 60/730,979 filed Oct. 27, 2005, incorporated herein by reference for all purposes.
Number | Date | Country | |
---|---|---|---|
60730979 | Oct 2005 | US |