The present invention relates generally to particle blast systems apparatus, and is particularly directed to a device with a synchronized feeder and particle generator. The invention will be disclosed in connection with, but not limited to, a carbon dioxide blasting system having a shaver which is synchronized by a drive belt to the feeder.
Particle blasting systems have been around for several decades. Typically, particles, also known as blast media, are fed by a feeder into a transport gas flow and are transported as entrained particles to a blast nozzle, from which the particles exit, being directed toward a workpiece or other target. Particles may be stored in a hopper or generated by the blasting system and directed to the feeder for introduction into the transport gas. One apparatus for generating carbon dioxide particles is known as a shaver, such as disclosed in U.S. Pat. No. 5,520,572 which is incorporated herein by reference, in which a working edge, such as a knife edge, is urged against and moved across a block of carbon dioxide. Particles, also referred to as granules, are thus generated and fed to the inlet of a feeder. One such feeder is disclosed in U.S. patent application Ser. No. 10/123,974, filed on Apr. 17, 2002 for Feeder Assembly For Particle Blast System, which is incorporated herein by reference.
Although the present invention will be described herein in connection with a particle feeder for use with carbon dioxide blasting, it will be understood that the present invention is not limited in use or application to carbon dioxide blasting. The teachings of the present invention may be used in particle blast apparatus in which particles are generated and directed to a feeder.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, and, together with the general description of the invention given above, and the detailed description of the embodiments given below, serve to explain the principles of the present invention.
Reference will now be made in detail to the present preferred embodiment of the invention, an example of which is illustrated in the accompanying drawings.
In the following description, like reference characters designate like or corresponding parts throughout the several views. Also, in the following description, it is to be understood that terms such as front, back, inside, outside, and the like are words of convenience and are not to be construed as limiting terms. Terminology used in this patent is not meant to be limiting insofar as devices described herein, or portions thereof, may be attached or utilized in other orientations. Referring in more detail to the drawings, the invention will now be described.
Referring to
As seen in
Carrier 15 is supported and driven by shaft 32 which is rotatably supported by housing 12. Drive pulley 34 is fixed to shaft 32, with key 36 preventing rotation therebetween. Any suitable construction may be used to connect drive pulley 34 non-rotatably to shaft 32, such as splines. Drive pulley 34 is connected to end 38 of rotor 20 by drive belt 40. Drive pulley 34 includes a plurality of teeth 42 which engage complementarily shaped teeth formed on the inside of drive belt 40. End 38 also includes a plurality of complementarily shaped teeth 44 which engage the inside of drive belt 40. An idler 46 may also be used.
Rotor 20, driven by motor 22, thus drives carrier 15 and therefore working edges 16 at a fixed ratio. This synchronizes the generation of particles by particle generator 6 relative to the feed rate of the particles through feeder 8. By synchronizing the rate of production of particles with the rate at which particles are delivered to and from the feeder, the particles are transported immediately into the transport gas, thereby preferably moving continuously, avoiding being in a static state and avoiding agglomerating.
In the embodiment depicted, the ratio is approximately 10:1, with the feed rate of particles being about one pound per minute introduced to a transport gas of 25 to 50 standard cubic feet per minute. Different ratios may be used, depending on the desired feed rate, such as might be necessary when higher flow rate nozzles are utilized.
Any suitable drive mechanism may be used, such as a chain and sprocket. A variable transmission may be provided, allowing easy use of different flow rate nozzles and transport gas flows. Motor 22 may be interposed between shaft 32 and rotor 20, with the appropriate drive mechanisms between shaft 32 and motor 22 and rotor 20 and motor 22. Any suitable source of rotary motion and power may be used.
The foregoing description of a preferred embodiment of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Obvious modifications or variations are possible in light of the above teachings. The embodiment was chosen and described in order to best illustrate the principles of the invention and its practical application to thereby enable one of ordinary skill in the art to best utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims submitted herewith.
This application is a continuation of and claims priority from Patent Cooperation Treaty International Application Number PCT/US2006/009017, having an International Filing Date of Mar. 13, 2006, titled Particle Blast System With Synchronized Feeder And Particle Generator, and which claims priority from U.S. Provisional Patent Application Ser. No. 60/660,697, filed Mar. 11, 2005, titled Particle Blast System With Synchronized Feeder And Particle.
Number | Date | Country | |
---|---|---|---|
60660697 | Mar 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2006/009017 | Mar 2006 | US |
Child | 11853194 | US |