The disclosures of the above mentioned patents are incorporated herein by reference in their entireties.
This application is related to U.S. application Ser. No. 10/368,336 entitled “PLURAL ODD NUMBER BELL-LIKE OPENINGS NOZZLE DEVICE FOR A FLUIDIZED BED JET MILL” filed on the same date herewith, and having at least one common inventor.
Fluid energy, or jet, mills are size reduction machines in which particles to be ground (feed particles) are accelerated in a stream or jet of gas such as compressed air or steam, and ground in a grinding chamber by their impact against each other or against a stationary surface in the grinding chamber. Different types of fluid energy mills can be categorized by their particular mode of operation. Mills may be distinguished by the location of feed particles with respect to incoming air. In the commercially available Majac jet pulverizer, produced by Majac Inc., particles are mixed with the incoming gas before introduction into the grinding chamber. In the Majac mill, two stream or jets of mixed particles and gas are directed against each other within the grinding chamber to cause fracture of the particles. An alternative to the Majac mill configuration is to accelerate within the grinding chamber particles that are introduced from another source. An example of the latter is disclosed in U.S. Pat. No. 3,565,348 to Dickerson, et al., which shows a mill with an annular grinding chamber into which numerous gas jets inject pressurized air tangentially.
During grinding, particles that have reached the desired size must be extracted while the remaining, coarser particles continue to be ground. Therefore, mills can also be distinguished by the method used to classify the particles. This classification process can be accomplished by the circulation of the gas and particle mixture in the grinding chamber. For example, in “pancake” mills, the gas is introduced around the periphery of a cylindrical grinding chamber, short in height relative to its diameter, inducing a vorticular flow within the chamber. Coarser particles tend to the periphery, where they are ground further, while finer particles migrate to the center of the chamber where they are drawn off into a collector outlet located within, or in proximity to, the grinding chamber. Classification can also be accomplished by a separate classifier.
Typically, this classifier is mechanical and features a rotating, vaned, cylindrical rotor. The air flow from the grinding chamber can only force particles below a certain size through the rotor against the centrifugal forces imposed by the rotation of the rotor. The size of the particles passed varies with the speed of the rotor; the faster the rotor, the smaller the particles. These particles become the mill product. Oversized particles are returned to the grinding chamber, typically by gravity.
Yet another type of fluid energy mill is the fluidized bed jet mill in which a plurality of gas jets are mounted at the periphery of the grinding chamber and directed to a single point on the axis of the chamber. This apparatus fluidizes and circulates a bed of feed material that is continually introduced either from the top or bottom of the chamber. A grinding region is formed within the fluidized bed around the intersection of the gas jet flows; the particles impinge against each other and are fragmented within this region. A mechanical classifier is mounted at the top of the grinding chamber between the top of the fluidized bed and the entrance to the collector outlet.
The primary operating cost of jet mills is for the power used to drive the compressors that supply the pressurized gas. The efficiency with which a mill grinds a specified material to a certain size can be expressed in terms of the throughput of the mill in mass of finished material for a fixed amount of power produced by the expanding gas. One mechanism proposed for enhancing grinding efficiency is the projection of particles against a plurality of fixed, planar surfaces, fracturing the particles upon impact with the surfaces.
An example of this approach is disclosed in U.S. Pat. No. 4,059,231 to Neu, in which a plurality of impact bars with rectangular cross sections are disposed in parallel rows within a duct, perpendicular to the direction of flow through the duct. The particles entrained in the air stream or jet passing through the duct are fractured as they strike the impact bars. U.S. Pat. No. 4,089,472 to Siegel, et al. discloses an impact target formed of a plurality of planar impact plates of graduated sizes connected in spaced relation with central apertures through which a particle stream or jet can flow to reach successive plates. The impact target is interposed between two opposing fluid particle stream or jets, such as in the grinding chamber of a Majac mill.
Although fluidized jet mills can be used to grind a variety of particles, they are particularly suited for grinding other materials, such as toners, used in electrostatographic reproducing processes. These toner materials can be used to form either two component developers, typically with a coarser powder of coated magnetic carrier material to provide charging and transport for the toner, or single component developers, in which the toner itself has sufficient magnetic and charging properties that carrier particles are not required.
The toners are typically melt compounded into sheets or pellets and processed in a hammer mill to a mean particle size of between about 400 to 800 microns. They are then ground in the fluid energy mill such as a fluidized bed jet mill or grinder to a mean particle size of between 3 and 30 microns. Such toners have a relatively low density, with a specific gravity of approximately 1.7 for single component and 1.1 for two component toner. They also have a low glass transition temperature, typically less than 70° C. The toner particles will tend to deform and agglomerate if the temperature of the grinding chamber exceeds the glass transition temperature.
In the fluidized bed jet mill or grinder, high velocity fluid, such as air is introduced through 3 to 5 air nozzle devices or nozzles located at the periphery of the grinding chamber and centrally focused. The high velocity air flow from these nozzles accelerates the material towards the center of the mill. Size reduction is accomplished through the ensuing particle to particle collisions. This method of size reduction has been found to be most effective for size reduction of low-melt compounds typically found in current toner formulations.
In such toner production, size reduction is typically the rate limiting unit operation as well as having the highest process contribution to the manufacturing cost. Much effort has been concentrated on studying and understanding the size reduction process in order to increase its efficiency and thus maximize throughput rate at minimum cost.
Two factors, the probability of particle to particle collisions and the kinetic energy of these particles during such collisions are understood to affect the efficiency of the size reduction process.
Unfortunately however, fluidized bed jet mills or grinders which are used for such grinding or size reduction of toner particles, have an extremely low energy utilization efficiency. For example, it has been estimated that only 5% of total energy used up by a size reducing fluidized bed jet mill is actually utilized in particle size reduction. Such a low energy utilization efficiency is an opportunity for mill and/or nozzle designs to increase the energy efficiency of the process, thus resulting in significant operating cost savings.
Conventionally, several approaches, including nozzle redesigns have been tried, and continue to be tested for improving grinding energy utilization efficiency and throughput rate of such fluidized bed jet mills or grinders. Improved nozzle designs are directed towards increasing the probability of particle to particle collisions and towards increasing the kinetic energy of particle impacts.
A first type of conventional nozzle consists of a nozzle device having a single converging-diverging opening or nozzle that discharges a single jet stream or jet of fluid and has a converging-diverging profile. The nozzle profile includes a converging region, a throat region, and a straight diverging flare region from the throat region to the discharge end.
Another type of conventional nozzle design as disclosed for example in U.S. Pat. No. 5,423,490 consists of a nozzle device having 4 small converging-diverging openings or nozzles that each can discharge a small jet of fluid, for a total of four such jets. The four jets together then form a single composite jet downstream or jet from the discharge end of the nozzle device. Thus this nozzle works on the concept of subdividing the main nozzle into 4 smaller focused nozzles that provide the opportunity to entrain more material into the jet. As such, it is claimed that relative to the single converging-diverging opening discharged jet stream or jet nozzle device, this latter design allows for increased entrainment of particles of material being introduced into the individual fluid jets as they are being discharged from the 4 converging-diverging nozzles or openings.
In accordance with the present disclosure, there is provided an eductor-spike nozzle device for mounting through side walls of a fluidized bed jet mill to discharge a composite stream of high velocity fluid for receiving, entraining and delivering particles of material into a grinding chamber of a fluidized bed jet mill for particle to particle collisions. The eductor-spike nozzle device includes (a) a first cylindrical member having a first wall including a cowl lip and defining a first hollow interior, and (b) a second cylindrical member mounted within the first hollow interior and having a second wall (i) externally defining an annular flow path with the first wall for flow of a first stream of fluid, and fluid compressing throat region with the cowl lip for creating a high velocity stream, and (ii) internally defining a second hollow interior for flow of a second stream of fluid so as to form the composite stream of high velocity fluid with the first stream of fluid, thereby increasing a probability of the composite stream receiving and entraining particles introduced into the composite stream.
In the detailed description of the disclosure below, reference is made to the drawings, in which:
While the present invention will be described in connection with a preferred embodiment thereof, it will be understood that it is not intended to limit the invention to this embodiments. On the contrary, it is intended to cover all alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.
Referring in general to all the
Referring specifically now to
The fluidized jet mill 10 includes a source 19 of particles 13 of material to be ground. The particles 13 are introduced from the source 19 into the grinding chamber 12 via a primary feed 15, and via secondary feed conduits 340 into the eductor portion 302 of each of the eductor-spike nozzle devices 200 (
As further illustrated, the fluidized jet mill 10 also includes a particle classifying and discharging device 20 mounted towards the top 17 of the mill. In operation, the mill 10 fluidizes and circulates particles 13 of material that are continually introduced by the feeds 15, 340. The particle breakage or grinding region is located around the intersection of the composite streams 220 where the entrained particles impinge against each other and are fragmented. Larger particles tend to fall back or are rejected by the classifier 20, and are thus returned for entrainment by the composite streams 220. Meanwhile, particles that have been broken to an acceptable small size are pulled in by the classifying device 20 for transfer to a particle collector outlet 23.
Referring now to
Referring now to
Each eductor-spike nozzle device 200 also comprises a second cylindrical member 302 mounted within the first hollow interior 210 and having (i) a first end 301 for receiving a second portion 217 of the low velocity fluid stream (FIG. 6), (ii) a second end 303 for pointing towards the central axis 18 of the grinding chamber 12 when mounted through the side walls 14, and for discharging the second portion 217 of the low velocity fluid as a high velocity stream 219 that together with the high velocity stream 218, form the “aero-spike” 224 and the composite high velocity fluid stream 220 downstream of the second ends 203, 303.
The design of the eductor-spike nozzle device 200 is based on an advanced understanding of compressible flow, and combines the use of a central eductor or second cylindrical member 320 having the second hollow interior 310 and truncation 318 of the otherwise spike portion 312 at the second end 316 of the second cylindrical member 302.
The second cylindrical member 302 further has (iii) a second wall 304 that externally defines (a) an annular flow path 306 with the first wall 204 for flow of the first portion 215 of the low velocity fluid stream, and (b) a radially protruding and roundish portion or second end as shown in
The second wall 304 of the second cylindrical member 302 internally defines the second hollow interior 310 that comprises an additional flow path for the second portion 217 of the low velocity fluid stream 214. The second cylindrical member 302 includes a spike portion 312 towards the second end 303 of such second cylindrical member, and the second hollow interior has a cross-sectional area that is about 52% of the cross-sectional area of the annular flow path 306. As shown in
The high velocity stream 218 then expands radially and in an inward direction 222 toward the nozzle axis 311, thereby forming an “aero-spike” 2249 to be described in detail below). The expansion process as such originates at a point on the outer edge of the annulus represented by the “cowl-lip” 206. From this point of the cowl lip 206, the high velocity stream 218 is exposed to ambient pressure, therefore the flow turning or expansion 222 of the stream 218 is limited by the influence of the external environment. Such external environment influence is believed to increase particle loading or entrainment from outside the stream into the stream 218, since such an outside or external environment to the eductor-spike nozzle device 200 (when used in a fluidized bed jet mill 10) is a particle laden environment.
As illustrated in
It should be noted that in a standard converging-diverging profile nozzle 24 (
Again one advantage of the eductor-spike nozzle device 200 is that the expansion 222 is partially defined by the ambient fluid. This allows the expansion process to compensate when the nozzle is not operated at a designed pressure ratio (i.e. at a ratio of Absolute Fluid Pressure/Absolute Ambient Pressure). Thrust loss is therefore minimal. The result is an “aero-spike” 224, as is well known in jet engine propulsion art, because of the physical truncation of what would otherwise be the decreasing diameter or pointed portion of the spike member 312 at the second end 303 of the second cylindrical member or eductor member 302 (FIG. 5). The truncated spike portion 312 has another advantage of being relatively lighter or less heavy when compared to an untruncated spike nozzle.
In operation in a fluidized bed jet mill 10 (FIG. 1), the separate low velocity fluid such as air 214 is introduced along with additional feed particles as shown in
In other words, in operation, a stream 217 is, for example about 1% of the total low velocity fluid 214 and is injected through the second hollow interior 310 and is discharged as the high velocity stream 219 over the truncated spike portion 312. As pointed out above, the stream 219 is caused to recirculate and forms a pattern that approximates the appropriate shape for a fully expanded nozzle flow that is desirable to produce a high velocity stream. This however allows for a full inward expansion of the fluid composite fluid 220 along the nozzle axis 311, thus maximizing the forward thrust of the stream 220. As also pointed out above, the second embodiment (FIGS. 1 and 7) also has the additional advantage of being able to dynamically compensate for changes in the operating pressure ratio.
This present disclosure thus utilizes a combination of a spike nozzle design, material eduction, and the aero-spike concept for entraining and ejecting particles of material via a central eductor 310 in the eductor-spike nozzle device 200. This eduction system (nozzle device 200) increases the loading of particles of material into the composite high velocity stream 220, thus greatly increasing the probability of particle to particle collisions. The system therefore also ensures that maximum kinetic energy is realized at the collision plane. The overall effect is an increase in the grinding efficiency and throughput rate of the fluidized bed jet mill 10 (FIG. 1).
As also shown, each eductor-spike nozzle device 200 further includes the secondary material feeding conduit 340 including a feed path 342 for feeding particles 13e of material into the second hollow interior 310 of the eductor member or second cylindrical member 320. The particles 13e are fed such that they are blown forwardly by the second inflow stream 217 (
Referring now to
As a basis for the comparison of nozzle performance, the nozzles were initially compared using several numerical metrics, such as input pressure, output pressure, exit diameter, thrust, average velocity at the exit end and at a non-dimensional distance of x/d=20 from the exit end. The results of the comparison show clearly that for equal mass flux, the eductor-spike nozzle device 200 results in a relatively higher thrust and average velocity at the nozzle device discharge end 203, 303 than the conventional flared opening nozzle device 24.
Referring next to
In general,
Specifically
Similarly, the velocity profiles in
Lastly, it can be seen that even though the entrainment ability of the eductor-spike design has been increased, the maximum downstream velocity at X/D=20 is about the same. This feature assures that there is sufficient particle momentum for breakage at the higher entrainment level. Higher downstream momentum for the eductor-spike design is a direct result of the non-linear contour design previously described, wherein fully expanded parallel exit flow results in equivalent or higher downstream momentum even at increased entrainment levels.
Comparing the velocity profile (
Particle tracking simulations were also done for similar comparisons. A particle density of 1200 kg/m^3 was used. Each particle group consisted of 5 diameter sizes: 10, 32.5, 55, 77.5, and 200 micron. The particle groups were released at 5, 10, 15, and 20 microns axial distance from the plane of the exit face of the nozzle. All release points were 30 mm away from the axis to show the entrainment of the particles into the jet stream. The particle tracking results are shown in
As can be seen, there has been provided an eductor-spike nozzle device for mounting through side walls of a fluidized bed jet mill to discharge a composite stream of high velocity fluid for receiving, entraining and delivering particles of material into a grinding chamber of a fluidized bed jet mill for particle to particle collisions. The eductor-spike nozzle device includes (a) a first cylindrical member having a first wall including a cowl lip and defining a first hollow interior, and (b) a second cylindrical member mounted within the first hollow interior and having a second wall (i) externally defining an annular flow path with the first wall for flow of a first stream of fluid, and fluid compressing throat region with the cowl lip for creating a high velocity stream, and (ii) internally defining a second hollow interior for flow of a second stream of fluid so as to form the composite stream of high velocity fluid with the first stream of fluid, thereby increasing a probability of the composite stream receiving and entraining particles introduced into the composite stream.
While the present invention has been described in connection with a preferred embodiment thereof, it is understood that it is not intended to limit the invention to this embodiment. On the contrary, it is intended to cover all alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims:
This application is based on a Provisional Patent Application No. 60/398,354, filed Jul. 23, 2002. Attention is directed to commonly owned and assigned U.S. Pat. No. 5,133,504 issued Jul. 28, 1992, entitled THROUGHPUT EFFICIENCY ENHANCEMENT OF FLUIDIZED BED JET MILL, and U.S. Pat. No. 5,683,039 issued Nov. 4, 1997, entitled LAVAL NOZZLE WITH CENTRAL FEED TUBE AND PARTICLE COOMINUTION PROCESS THEREOF.
Number | Name | Date | Kind |
---|---|---|---|
238044 | Luckenbach | Feb 1881 | A |
3565348 | Dickerson et al. | Feb 1971 | A |
4059231 | Neu | Nov 1977 | A |
4089472 | Siegel et al. | May 1978 | A |
4186772 | Handleman | Feb 1980 | A |
5423490 | Zampini | Jun 1995 | A |
5683039 | Leute et al. | Nov 1997 | A |
5732893 | Nied | Mar 1998 | A |
Number | Date | Country | |
---|---|---|---|
20040016835 A1 | Jan 2004 | US |
Number | Date | Country | |
---|---|---|---|
60398354 | Jul 2002 | US |