Spacecraft, aircraft, and other vehicles often experience substantial vibrations, noise, and fatigue in fairings and in particularly wing-to-body fairings which are attached between the wings and body of the spacecraft, aircraft, or vehicle. Some of the previous prior art devices may have involved heavy, complex, excessive part, and/or expensive noise and vibration dampening devices in an effort to attempt to reduce vibrations, noise, and fatigue. However, many of these prior art devices do not sufficiently reduce noise, vibration, and/or fatigue, and/or may lead to increased weight, increased complexity, an increased number of parts, an increased cost, and/or experience other types of issues.
A wing-to-body fairing, and a method of use thereof, is needed to decrease one or more problems associated with one or more of the existing wing-to-body fairings and/or methods of use thereof.
In one aspect of the disclosure, a fairing for reducing noise due to fairing vibrations in at least one of an aircraft and a spacecraft may comprise a honeycomb center comprising a cavity which is at least partially filled with particle material, and a plurality of layers surrounding the honeycomb center. The fairing may comprise a wing-to-body fairing, sometimes also called wing to fuselage or fillet panels.
In another aspect of the disclosure, a method of reducing fairing vibrations in at least one of an aircraft and a spacecraft may be provided. In one step, a wing-to-body fairing may be provided comprising a honeycomb center having a cavity. In another step, the cavity may be at least partially filled with particle material. In an additional step, the honeycomb center may be surrounded with a plurality of layers. In yet another step, the wing-to-body fairing may be attached to a wing and a body of at least one of an aircraft and a spacecraft.
These and other features, aspects and advantages of the disclosure will become better understood with reference to the following drawings, description and claims.
The following detailed description is of the best currently contemplated modes of carrying out the disclosure. The description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of the disclosure, since the scope of the disclosure is best defined by the appended claims.
As shown in
The honeycomb center 18 may be in the shape of the wing-to-body fairing 10. The plurality of layers 20 surrounding the honeycomb center 18 may be made of Fiberglass or other materials. Cylindrical bushing inserts 23 may extend between the plurality of layers 20 to provide additional support. Four layers 20A, 20B, 20C, and 20D may surround a curved and/or angled portion 32 of the honeycomb center 18 to form a curved and/or angled portion 34 of the wing-to-body fairing 10. Two layers 20A and 20B may surround a linear portion 36 of the honeycomb center 18 to form a linear portion 38 of the wing-to-body fairing 10. In other embodiments, between two to five layers 20 may surround various portions of the honeycomb center 18. In still other embodiments, any number of layers 20 may surround differing portions of the honeycomb center 18. The honeycomb center 18 may be attached to the plurality of layers 20 utilizing glue 39, another type of adhesive, or other attachment mechanism.
The wing-to-body fairing 10 which is at least partially filled with particle material 26 may be used to reduce cabin noise due to vibrations between the body 12 and wing 14 of the aircraft 16 by providing a fairing 10 which is more resistant to vibration and noise. The wing-to-body fairing 10 which is at least partially filled with particle material 26 may reduce noise/vibrations effectively in the frequency range below 400 Hz. The wing-to-body fairing 10 which is at least partially filled with particle material 26 may further reduce fatigue by providing a fairing 10 which is more fatigue resilient. In other embodiments, the wing-to-body fairing 10 which is at least partially filled with particle material 26 may be used to reduce noise, to reduce vibration, and/or to reduce fatigue in another type of vehicle such as a spacecraft. Embodiments may be used in the fabrication of fairings other than the wing-to-fuselage fairing, such as in other areas where noise, fatigue, and vibration may be reduced.
In another step 144, the cavity 22 may be at least partially filled with particle material 26. Step 144 may comprise spraying particle material 26 into the cavity 22. The particle material 26 may comprise at least one of Volcanic Ash, Plastic, Perlite, Sodium-Potassium, and Aluminum-Silicate. In other embodiments, the particle material 26 may be made of varying materials. The particle material 26 may comprise a plurality of particles, wherein each particle has a size in a range of 1 to 300 micro meter. In one embodiment, step 144 may comprise filling 60 to 90 percent of the cavity 22 with particle material 26. In another embodiment, step 144 may comprise filling 70 to 80 percent of the cavity 22 with particle material 26. In other embodiments, step 144 may comprise filling varying amounts of the cavity 22 with particle material 26.
In still another step 146, the honeycomb center 18 may be enclosed/surrounded within at least one layer 20, also called face sheets. In an additional step 148, the honeycomb center 18 may be attached to the at least one layer 20 or ply utilizing glue; adhesive, or other attachment mechanisms. The layers 20 or plies may be arranged in varying ply orientations. For instance, 0, 30, 60, 90 and/or 0, 45, 90 and the at least one layer 20 may be made from material suitable for conveying the energy from a lightening strike from the fairing 10 to the surrounding structure. In yet another step 150, the wing-to-body fairing 10, also known as a wing to fuselage fairing, may be attached to a wing 14 and a body 12 of at least one of an aircraft and a spacecraft 16 utilizing adhesive, fastening, or another attachment mechanism.
In still another step 152, wing-to-body vibrations in the at least one aircraft and spacecraft 16 may be reduced due to the attached wing-to-body fairing 10 which is at least partially filled with particle material 26. Step 152 may comprise moving the particle material 26 within the cavity 22 to transform kinetic energy into heat to reduce wing-to-body vibrations in the at least one aircraft and spacecraft 16. The wing-to-body vibrations which are reduced may have a frequency of less than 400 Hz. In other embodiments, the wing-to-body vibrations which are reduced may have varying frequencies. In yet another step 154, fatigue and noise in the at least one aircraft and spacecraft 16 may be reduced due to the attached wing-to-body fairing which is at least partially filled with particle material 26. Step 154 may comprise moving the particle material 26 within the cavity 22 to transform kinetic energy into heat to reduce fatigue and noise in said at least one aircraft and spacecraft 16.
One or more embodiments of the disclosure may reduce and/or eliminate one or more problems of one or more of the existing fairings, and in particular the wing-to-body fairing, and/or methods of use. For instance, one or more embodiments of the disclosure may reduce wing-to-body fairing vibrations, noise, and/or fatigue as a result of using the at least partially particle material 26 filled honeycomb center 18.
Referring more particularly to the drawings, embodiments of the disclosure may be described in the context of an aircraft manufacturing and service method 260 as shown in
Each of the processes of method 260 may be performed or carried out by a system integrator, a third party, and/or an operator (e.g., a customer). For the purposes of this description, a system integrator may include without limitation any number of aircraft manufacturers and major-system subcontractors; a third party may include without limitation any number of venders, subcontractors, and suppliers; and an operator may be an airline, leasing company, military entity, service organization, and so on.
As shown in
Apparatus and methods embodied herein may be employed during any one or more of the stages of the production and service method 260. For example, components or subassemblies corresponding to production process 268 may be fabricated or manufactured in a manner similar to components or subassemblies produced while the aircraft 262 is in service. Also, one or more apparatus embodiments, method embodiments, or a combination thereof may be utilized during the production stages 268 and 270, for example, by substantially expediting assembly of or reducing the cost of an aircraft 262. Similarly, one or more apparatus embodiments, method embodiments, or a combination thereof may be utilized while the aircraft 262 is in service, for example and without limitation, to maintenance and service 286.
It should be understood, of course, that the foregoing relates to exemplary embodiments of the disclosure and that modifications may be made without departing from the spirit and scope of the disclosure as set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3976269 | Gupta | Aug 1976 | A |
4557961 | Gorges | Dec 1985 | A |
4635882 | SenGupta et al. | Jan 1987 | A |
4674712 | Whitener et al. | Jun 1987 | A |
4687691 | Kay | Aug 1987 | A |
4828202 | Jacobs et al. | May 1989 | A |
5542626 | Beuck et al. | Aug 1996 | A |
5851626 | McCorry et al. | Dec 1998 | A |
5876023 | Hain et al. | Mar 1999 | A |
5895013 | Towfiq | Apr 1999 | A |
6065717 | Boock | May 2000 | A |
6179086 | Bansemir et al. | Jan 2001 | B1 |
6237602 | Nickels et al. | May 2001 | B1 |
6267838 | Saugnac et al. | Jul 2001 | B1 |
6547049 | Tomlinson | Apr 2003 | B1 |
6595509 | Sesek | Jul 2003 | B2 |
6609592 | Wilson | Aug 2003 | B2 |
6736423 | Simonian et al. | May 2004 | B2 |
6851515 | Dussac et al. | Feb 2005 | B2 |
6920958 | Harrison | Jul 2005 | B2 |
6983821 | Putt et al. | Jan 2006 | B2 |
7407135 | Rouyre | Aug 2008 | B2 |
7419031 | Liguore et al. | Sep 2008 | B2 |
20020166721 | Monson et al. | Nov 2002 | A1 |
20050194210 | Panossian | Sep 2005 | A1 |
20060065784 | Rouyre | Mar 2006 | A1 |
20080277057 | Montgomery et al. | Nov 2008 | A1 |
Number | Date | Country |
---|---|---|
11044015 | Feb 1997 | JP |
Number | Date | Country | |
---|---|---|---|
20090184206 A1 | Jul 2009 | US |