This application is the US-national stage of PCT application PCT/EP2008/000755, filed 31 Jan. 2008, published 21 Aug. 2008 as WO2008/098682, and claiming the priority of German patent application 102007007952.6 itself filed 17 Feb. 2007, whose entire disclosures are herewith incorporated by reference.
The invention relates to a particle spreader for strewing (glued) particles on a conveyor belt for making particle mats for the production of wood material boards or during manufacture of wood material boards.
Such a particle spreader is provided with at least one particle supply for the particles to be strewed on the conveyor belt having at least one upper fill opening, an (overhead) chute being connected to the fill opening through which the particles enter the particle supply.
Wood material boards within the scope of the invention refers particularly to fiber boards, e.g. MDF (medium density fiber) boards. Particles refers particularly to fibers, e.g. MDF fibers. Such a particle supply is, for example, horizontally elongated and has a lower belt feeder, as well as a discharge device at the end of the belt feeder, e.g. a discharge roller front with several discharge rollers for discharging particles onto the particle conveyor belt. The conveyor belt is usually located below the particle supply. In the upper section, such a particle supply usually has an upper feeder, e.g. a drag bar feeder that feeds the particle entering the supply first upstream in the particle supply. This is to guarantee that the particle supply works according to the “first-in/first-out principle”. This is particularly significant when processing glued particles, for example, glued MDF fibers, so that the fibers entering the particle supply first are also the first to be removed from it and are strewed on the conveyor belt. The belt feeder on the bottom is also called the floor supply belt. By selecting the speed of the belt feeder, the stream of particles discharged from the particle supply can be set. Filling usually takes place by using a filler that can be provided with one or more cyclones and consequently can be provided with pneumatic feeders. These cyclones are usually provided with a cell wheel at the end or on the bottom. The particles are distributed by this cell wheel and then, by interconnection of various components, are fed into the chute, so that they enter the supply.
Particle spreaders of the type described above are known in practice in various embodiments. In principle, they have proven themselves. It is of particular significance that with the help of such a particle spreader, particle mats of flawless quality and a particularly even distribution of particle can be deposited on the conveyor belt. For this reason it is known to not strew the particles from the particle supply directly onto the particle feeder, but first to a scattering head that can, for example, be designed as a dispersion roller lane and which ensures an even dispersion of the particles. Moreover, it is known in this connection to provide a particle separator between the discharge roller arrangement of the particle supply and the scattering head or the dispersion roller lane, which has two particle-separating rollers for this purpose (compare DE 43 02 850 [U.S. Pat. No. 5,496,570]).
Furthermore, an apparatus for the creation of particle mats is known in which the particles are strewed on the conveyor belt by one or more belts via a fiber distribution or particle separator device. This device for loosening or distributing fibers is located directly above the conveyor belt and has two pairs of rollers that are located above each another and that rotate in the opposite direction of interlocking elements mounted on their outer surfaces (see U.S. Pat. No. 3,252,186).
The object of invention is to create a particle spreader of the type described above and that the creation of flawless particle mats possible using a simple and cost-effective design in a flawless operation.
To attain this object, the invention teaches, for a generic particle spreader of the type described at the beginning, that the chute at the fill opening (in the fiber stream) has at least one brake roller unit that has at least two rotationally driven brake rollers. The brake rollers are preferably spaced from each other by a predetermined spacing and are mounted with is essentially parallel axes, so that they do not interengage. It makes sense in the process that the brake rollers are located at approximately the same level and consequently next to each other.
The invention assumes that the quality of the particle mats made in such particle spreaders depends not only on the design of the operation of the particle supply, its discharge roller front and particularly the scattering head, but also that the way the particle supply is filled has or can have an influence on the distribution of the particles on the conveyor belt located downstream of the particle supply. Thus the invention recognizes that particle mats of high quality can be created when the particle do not enter into the supply via the chute unbraked, but when a brake roller unit with several rotating brake rollers is mounted above the inlet port of the supply and consequently of the chute. This unit not only reduces the speed of the fibers falling through the chute, but beyond that, it also ensures a swirling or distribution of the fibers so that compaction of the particles that can occur when the particle strike the supply can be avoided reliably. In this process, it is not necessary that the brake rollers interlock in a known manner per se in order to loosen potential compacted lumps of particles, but within the scope of the invention, the rollers are preferably set at a spacing from each other. In this manner, a high throughput is ensured. In spite of that, by the combined braking and distribution effect, a surprisingly uncongested and even or homogeneous filling of the supply is created, which in an especially surprising manner can have an effect on the distribution of the particle on the conveyor belt located downstream of the supply.
In a preferred further development, the brake roller device has at least two brake rollers of which one, several, or all are designed as toothed cylinders with a multiplicity of essentially radially extending teeth. The toothed rollers can have is several spike combs that are mounted on a shaft, extend the length of the roller, and are set at a predetermined angle α with respect to each other. Particularly advantageous for manufacturing is a preferred embodiment of the invention in which the combs can be formed by individual toothed sheet metal sheets that are, for example, each made in one piece.
It is within the scope of the invention that one, several, or all of the toothed rollers has two to ten, preferably four to eight, e.g. six individual combs, which then jointly form the toothed roller. The individual combs are then “equiangular” on the shaft or located at the same angle to each other. In an embodiment with, for example, six combs; the angle between two adjacent combs is approximately 60°.
According to a further proposal of the invention, which has particular significance, two adjacent combs are located offset by a predetermined spacing (relating to the teeth) in the longitudinal direction of the shaft. The offset between two adjacent combs can preferably be one half of the spacing of the individual teeth of a comb. This means that two adjacent combs are located quasi “at the gap,” so that overall a particularly reliable braking effect and swirling of the fibers is ensured.
Further, it is advantageous when the individual combs, e.g. the toothed metal sheets, are detachably mounted on the shaft, e.g. are screwed onto the shaft or clipped onto the shaft. This is particularly advantageous for maintenance and/or cleaning purposes.
Further, the invention proposes that each individual brake roller of the brake roller unit has its own cylinder drive, that is, for example, designed as an electric motor, perhaps with a transmission. In this manner, there is in principle the possibility of driving the individual brake rollers of a brake roller unit independent of each other or at different speeds/number of revolutions. In this connection, it is particularly is advantageous when the brake rollers or two adjacent brake rollers rotate in opposite direction. But the invention also comprises embodiments in which several brake rollers or all the brake rollers are driven by a common drive perhaps by interconnecting them with one or several transmissions. In each case, it is within the scope of the invention that the brake rollers are driven at the same speed, for example, synchronously.
Particularly preferred is an embodiment of the invention in which in a chute or above the chute, a particle distribution unit is located upstream of the brake roller unit. This particle distribution unit can, for example, be an oscillating tip chute or the like, with which it is ensured that the particle is distributed by the oscillation of a channel or a pipe or the like over the cross section of the chute. Basically, oscillating tip chutes of this type are known in this context. However, the invention has recognized that by combining a known oscillating tip chute that is known per se with the brake roller unit in accordance with the invention, a particularly good filling of the supply is achieved, which has a particularly positive effect on the quality of the manufactured particle mats.
The steps in accordance with the invention lead to the manufacture of homogeneous particle mats by the even distribution of the particles on the conveyor belt which in turn affects the quality of the wood material boards that are pressed from the particle mats. This is particularly significant in connection with the manufacture of thin wood material boards, e.g. thin MDF boards, because in the manufacture of thin boards the quality of the strewed material mat is particularly important.
In the following, the invention is explained in more detail with reference to a single embodiment that is shown in the drawing. Therein:
A particle spreader for strewing particles on a conveyor belt 1 for making particle mats 2 for the manufacture of wood material boards is shown in parts. The particles can especially be MDF fibers for the creation of MDF boards. This particle spreader has a particle supply 3 for the particles that are to be strewed as the conveyor belt 1. This particle supply 3 has a fill opening 4 on the top through which the (glued) particles are loaded into the supply 3. To this end, on top of the fill opening 4, a chute 5 is connected through which the particles enter the supply 3. In the illustrated embodiment, the particle supply 3 is designed as a horizontal supply with a belt feeder 6 on the bottom which is also called a supply bottom feeder. A discharge device is located at the end of belt feeder 6 that is designed as a discharge roller front 7 with several discharge rollers. In the upper section of the supply 3 an upper feeder is shown that is designed as a drag bar feeder 8. The working direction of the belt feeder 6 on the one hand and of the drag bar feeder 8 on the other are also indicated. It can be seen that the particles enter the area of the drag bar feeder 8 through the chute 5 and from there are first transported upstream in the supply 3. From there they go downstream to the discharge roller front 7 via the belt feeder 6 that discharges the particles from the supply 3 to the conveyor belt 1 located below the supply 3. This way, it is clear that the particles from the supply do not land on the conveyor belt 1 directly, but that via the discharge roller front 7, the particles first of all pass through the scattering head 9 that is designed as a dispersion roller lane with many dispersion rollers in the illustrated embodiment. From there, the particles reach the conveyor belt 1 and form a particle mat 2. Usually, various mat treatment devices are located downstream of the scattering head 9, for example, a leveling unit and/or a prepress before the particle mat 2 enters the hot press.
In addition
In accordance with the invention as shown in
In particular in
At the same time, each one of these combs 15 is designed as a toothed metal sheet in one piece. The individual toothed metal sheets 15 are screwed to the shaft 14 and are consequently detachably mounted on the shaft 14.
Furthermore,
Finally,
The toothed rollers 12 extends approximately over the entire transverse width of the chute 5. This corresponds approximately to the width of the particle supply 3.
A brake roller 12 as shown in the figures can have a length b of, for example, 2.5 to 3 m, and a radius r of, for example, 50 to 80 cm, for example, 60 to 70 cm. Each individual toothed metal sheet 15 has, for example, 20 to 40 teeth, for example, 25 to 35 teeth that can have a center spacing y of 5 to 15 cm, for example, 8 to 10 cm.
Preferred directions of rotation are illustrated by the two arrows in
Number | Date | Country | Kind |
---|---|---|---|
10 2007 007 952 | Feb 2007 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2008/000755 | 1/31/2008 | WO | 00 | 9/2/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/098682 | 8/21/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2951269 | Vajda et al. | Sep 1960 | A |
3252186 | Oja | May 1966 | A |
3340127 | Buerkner | Sep 1967 | A |
4063858 | Axer et al. | Dec 1977 | A |
4494919 | Knudson et al. | Jan 1985 | A |
5202133 | Pesch et al. | Apr 1993 | A |
5496570 | Mauss et al. | Mar 1996 | A |
7627933 | Drapela et al. | Dec 2009 | B2 |
20040013760 | Graf et al. | Jan 2004 | A1 |
Number | Date | Country |
---|---|---|
10930 76 | Nov 1960 | DE |
2165513 | Oct 1972 | DE |
2619253 | Sep 1977 | DE |
Number | Date | Country | |
---|---|---|---|
20100092591 A1 | Apr 2010 | US |