Particulate detection for industrial facilities, and associated systems and methods

Information

  • Patent Grant
  • 11071935
  • Patent Number
    11,071,935
  • Date Filed
    Friday, December 27, 2019
    4 years ago
  • Date Issued
    Tuesday, July 27, 2021
    2 years ago
Abstract
Systems and methods for particle leak detection generally include a separation or collection device configured to filter particulate from a stream and a detection device downstream of the separation or collection device. The detection device can be positioned to detect particulate that passes the separation or collection device and can include a probe configured to detect the solid particles. The particle leak detection systems can be configured to be disposed on moveable systems, such as moveable systems in coke oven operations.
Description
TECHNICAL FIELD

The present disclosure is generally related to particulate detection for industrial facilities, and associated systems and methods. In particular embodiments, the present disclosure is generally related to collection and/or separation device leak detection for coke manufacturing facilities.


BACKGROUND

Coke is a solid carbon fuel and carbon source used to melt and reduce iron ore in the production of steel. In one process, known as the “Thompson Coking Process,” coke is produced by batch feeding pulverized coal to an oven that is sealed and heated to very high temperatures for approximately forty-eight hours under closely-controlled atmospheric conditions. Coking ovens have been used for many years to convert coal into metallurgical coke. During the coking process, finely crushed coal is heated under controlled temperature conditions to devolatilize the coal and form a fused mass of coke having a predetermined porosity and strength. Because the production of coke is a batch process, multiple coke ovens are operated simultaneously.


Much of the coke manufacturing process is automated due to the extreme temperatures involved, and a pusher charger machine (PCM) is typically used on the coal side of the oven for a number of different operations. FIG. 1 is an illustration of such a PCM 100 used in a coke manufacturing facility. A common PCM operation sequence begins as the PCM 100 is moved along a set of rails 110 that run in front of an oven battery to an assigned oven and align a coal charging system of the PCM 100 with the oven. The pusher side oven door is removed from the oven using a door extractor 120 from the coal charging system. The PCM 100 is then moved to align a pusher ram 130 of the PCM 100 to the center of the oven. The pusher ram 130 is energized to push coke from the oven interior. The PCM 100 is again moved away from the oven center to align the coal charging system with the oven center. Coal is then delivered to the coal charging system of the PCM 100 by a tripper conveyor 140, which delivers coal to a coal hopper 150. The coal charging system then charges the coal into the oven interior via a charging ram 160. In some systems, particulate matter entrained in hot gas emissions that escape from the oven face are captured by the PCM during the step of charging the coal. In such systems, the particulate matter is drawn into an emissions hood through the baghouse of a dust collector 170. State and/or federal regulations require preventive maintenance to be conducted on the dust collector to maintain compliance. The preventive maintenance often requires using trained “Method 9” personnel and leak detection powder, each of which can make the preventive maintenance difficult. Accordingly, a need exists for improved methods and equipment for monitoring leak detection for preventive maintenance and so that systems such as the dust collector 170 can stay in compliance with emissions regulations.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an illustration of a pusher charger machine (PCM) used in an industrial facility.



FIG. 2A illustrates a schematic representation of a filter system including a particulate detection device, in accordance with embodiments of the present technology.



FIG. 2B illustrates a partially-schematic representation of the particulate detection device shown in FIG. 2A.



FIG. 3 illustrates a schematic representation of a filter system, in accordance with embodiments of the present technology.



FIG. 4 illustrates a block diagram of a method for detecting particulate in a dust collection system, in accordance with embodiments of the present technology.





DETAILED DESCRIPTION

The present technology relates to a particulate detection system for determining if and when potentially undesirable particulate is present in a given area or region. In some embodiments, the particulate detection system described herein can be used as a leak detection system. For example, when used proximate a separation or collection device, such as a dust collector, the particulate detection system can detect when a leak has occurred. The particulate detection system can provide an indication to plant personnel to remedy an identified issue, such as a leak in a separation or collection device. As explained in more detail below, some embodiments of the present technology include a separation or collection device (e.g., a filter), and a detection device downstream of the separation or collection device and configured to detect particulate released from the separation or collection device (such as via a leak). In some embodiments, the particulate detection system is configured such that released particulate can cause a change in current associated with the detection device, thereby causing the detection device to generate an action, such as the indication to plant personnel.


Specific details of several embodiments of the technology are described below with reference to the Figures. Other details describing well-known structures and systems with which the particulate detection system can be used (e.g., pusher systems, charging systems, and coke ovens) have not been set forth in the following disclosure to avoid unnecessarily obscuring the description of the various embodiments of the technology. Many of the details, dimensions, angles, spatial orientation and other features shown in the Figures are merely illustrative of particular embodiments of the technology. Accordingly, other embodiments can have other details, dimensions, angles, spatial orientation and features without departing from the spirit or scope of the present technology. A person of ordinary skill in the art, therefore, will accordingly understand that the technology may have other embodiments with additional elements, or the technology may have other embodiments without several of the features shown and described below with reference to the Figures.


As noted above, the particulate detection system described herein can be used in conjunction with separation or collection devices to aid in, for example, leak detection in such devices. The particulate detection system described herein can be used with any type of separation or collection device. However, for sake of simplicity, this Detailed Description will describe the disclosed technology as used with a filter and filter system for the purpose of detecting leaks. However, this should not be interpreted as limiting the use of the particulate detection system to filters and for the purpose of detecting leaks. Those of ordinary skill in the art will appreciate that any discussion of a filter or filter described herein can also apply to other separation and collection devices. Similarly, the particulate detection device described herein can be used for a variety of purposes, including leak detection, but also for general particulate detection not specifically linked to a leak.


The technology described herein is applicable to any industry in which leak detection is desired. In some embodiments, the technology described herein is employed in conventional byproduct coke oven batteries for charging, pushing and transporting coke. The technology described herein can be used in, for example, both heat recovery and non-recovery coke oven systems. However, the technology described herein should not interpreted as being limited to these systems.



FIG. 2A illustrates a schematic representation of a filter system 200, in accordance with embodiments of the present technology. As shown in the illustrated embodiment, the filter system 200 includes the dust collector 170 of a PCM (such as PCM 100 shown in FIG. 1), a filter 205, a particulate detection device 220 downstream of the filter 205, and an operating system 230 in electrical communication with the detection device 220. The filter 205 can include a baghouse, a multiclone, a flat car dust removal system, or other device/system known in the art for collecting particulate matter in an industrial facility or separating particulate from a stream. The filter 205 is configured to receive and filter an inlet stream (F1) comprising particulate (e.g., coal dust, coke dust, general dust, aerosol, steam particulate, etc.) to produce a filtered, outlet stream (F2).



FIG. 2B illustrates a partially-schematic representation of the particulate detection device 220 shown in FIG. 2A. As shown in the illustrated embodiment, the detection device 220 includes a housing portion 222 containing electronics of the detection device 200, and a probe portion 224 attached to the housing portion 222. The probe portion 224 includes a sensor 226 (e.g., an elongate sensing portion) configured to extend through a vessel/duct wall and be in proximity to particulate traveling through the filter system 200. In some embodiments, the detection device 220 can be the Flo-Guard™ Broken Bag Detector device manufactured by Genuine Bindicator® of Spartanburg, S.C.


Referring back to FIG. 2A, the operating system 230 can include a monitoring or control system. In some embodiments, the operating system 230 is in communication with other equipment that can be moved, adjusted, initiated, etc., in response to communication from the operating system 230. In some embodiments where the technology described herein is used in conjunction with a coke manufacturing facility, the operating system 230 can be in communication with the charging ram 160 (FIG. 1) and used to control movement of the charging ram 160 into and out of the coke ovens. The operating system 230 can also be used to control and is in communication with the conveyer system 140 (FIG. 1). In these embodiments, the operating system 230 allows operators to control aspects of the PCM from a remote location.


Many embodiments of the operating system 230 may take the form of computer-executable instructions, including routines executed by a programmable computer. The operating system 230 may, for example, also include a combination of supervisory control and data acquisition (SCADA) systems, distributed control systems (DCS), programmable logic controllers (PLC), control devices, and processors configured to process computer-executable instructions. Those skilled in the relevant art will appreciate that the technology can be practiced on computer systems other than those described herein. The technology can be embodied in a special-purpose computer or data processor that is specifically programmed, configured or constructed to perform one or more of the computer-executable instructions described below. Accordingly, the terms “operating system” and “computer” as generally used herein refer to any data processor. Information handled by these computers can be presented at any suitable display medium, including a CRT display or LCD. The technology can also be practiced in distributed environments, where tasks or modules are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules or subroutines may be located in local and remote memory storage devices. Aspects of the technology described below may be stored or distributed on computer-readable media, including magnetic or optically readable or removable computer disks, as well as distributed electronically over networks. Data structures and transmissions of data particular to aspects of the technology are also encompassed within the scope of particular embodiments of the disclosed technology.


Referring again to FIG. 2A, the detection device 220 and operating system 230 in operation are configured to detect a leak in the filter 205, and notify plant personnel of the leak. As described in more detail below with reference to FIG. 5, when a leak occurs in the filter 205, particulate will be released into the outlet stream (F2) and detected by the detection device 220. In some embodiments, and as described in greater detail below, the released particulate will cause a change in current experienced by the detection device 220, which in some embodiments will cause it to generate an action (e.g., an indication or alarm). While FIG. 2A illustrates a single detection device 220, it should be appreciated that multiple detection devices can also be provided downstream of the filter 205, each of which can be connected to a common operating system 230, each of which may have its own dedicated operating system, or a plurality of which can be connected to a first common operating system 230 while a plurality of other detection devices 220 not connected to the first common operating system 230 can be connected to a second common operating system 230.



FIG. 3 illustrates a schematic representation of a filter system 300, in accordance with embodiments of the present technology. The filter system 300 includes many features generally similar to those shown and described with reference to filter system 200 (FIG. 2A). The filter system 300 includes a plurality of filters 305a, 305b, 305c, 305d, and 305e (collectively referred to as “filters 305”), and a plurality of detection devices 330a, 330b, 330c, 330d, and 330e. The individual filters 305a-e can correspond to distinct filters or distinct cells within a common filter. Each of the individual detection devices 330a-e are positioned over one of the individual filters 305a-e and in electrical communication with the operating system 230. Accordingly, each of the individual detection devices 330a-e is configured to detect a leak from only the corresponding filter it is positioned over. As such, the filter system 300 is configured to detect when a leak occurs, and indicate which of the plurality of filters 305a-e likely is responsible for the leak.


In operation, detected particulates by the detection device indicates a leak in one or more of the filters. The leak may be caused by a hole or opening in one of the filters, but can also be caused by other factors, such as an incorrect installation of the one of more filters. If the detection device detects particulate immediately after one or more of the filters is put online, the leak may be an indication to the plant personnel that the one or more filters was not installed correctly. In such case, plant personnel may inject colored dust particles toward the one or more filters to determine whether the filters have an opening or are installed incorrectly.


While the particulate detection device has been described herein with respect to positioning the particulate detection device within existing equipment, such as within a filter system, the particulate detection device can also be used in other environments. For example, the particulate detection device described herein can be used in an outside environment, such as proximate but outside of equipment requiring monitoring. Such a configuration allows the detection device to, for example, detect particulate that has escaped from nearby equipment into an outside environment.


The particulate detection device described herein can also be used in a stationary environment (i.e., where the particulate detection device is stationed in a single location and does not move), or in a moving environment, such as on top of moving equipment, machinery, or on vehicles. In examples specific to the coke manufacturing facility, the particulate detection device can be mounted on moving equipment such as a door machine, a quench car, a PCM (pusher charge machine), FPHC (flat push hot car), or it can be mounted on any type of machine, vehicle or truck that navigates around a facility. FIG. 4 discussed below describes a method in which the detection device is mounted on a moveable machine.



FIG. 4 illustrates a block diagram of a method 400 for detecting undesired particulate downstream of a dust collection system, in accordance with embodiments of the present technology. As shown in the illustrated embodiment, the method 400 includes positioning a detection device downstream of a separation or collection device on a movable machine (process portion 402), and detecting particulate via a probe of the detection device (process portion 404). The movable machine can be, for example, a PCM, as previously described with reference to FIG. 1. Detecting the particulate via the probe of the detection device can include detecting a flow of the particulate contacting or in proximity to the sensing portion of the probe. For example, in some embodiments, detecting the flow of particulate can be based on contact between one or more of the particulate and the sensing portion of the probe, which causes a current (e.g., a direct current or an induced current) associated with the probe to exceed a predetermined threshold. In some embodiments, detecting the flow of particulate can be based on particulate being merely proximate to the sensing portion of the probe (e.g., without contacting the probe) such that the sensing portion can detect, e.g., a collective charge of the proximate particulate. In such embodiments, the collective charge causes a current (e.g., a direct current or an induced current) associated with the probe to exceed a predetermined threshold. Other means of detecting particulate can also be used, such as by optical means. For example, the detection device can detect changes in opacity caused by the presence or absence of particulate. As with previous embodiments, detected changes in opacity can cause a current associated with the probe to exceed a predetermined threshold.


The method 400 further comprises generating an action based on a current associated with the detected particulate being above a predetermined threshold (process portion 406). The generated action can comprise activating an indication, such as an audible alarm or illuminated display. The alarm or display can indicate to plant personnel that a potential leak exists and further investigation is needed. In some embodiments, the indication may be, e.g., in an operator's cab of the PCM. In some embodiments, generating the action can be caused by de-energizing or energizing an output relay of the detection device. Other actions that can be generated upon detection of particulate can include an automated maintenance system that automatically engages to correct an identified issue when particulate is identified. Rather than being automatically engaged, detection of particulate can result in a message being sent to an operator requesting that a maintenance system be engaged so that there is human verification and/or authorization prior to initiation.


One advantage of embodiments of the present technology is the ability to detect the presence or flow of particulate on a moveable machine/system. In conventional technologies, detection devices could not be mounted to a moveable machine because the detection devices were sensitive to even minor vibrations, and thus any movement of the detection system or structure to which the detection system was mounted, would result in inaccurate measurements or faulty signals. Accordingly, unlike the present technology, conventional detection devices could not be mounted to moving or moving machines. The present technology overcomes this deficiency of conventional technologies in part because the detection device includes a probe for sensing and does not include wires.


Another advantage of embodiments of the present technology is the ability to provide relatively instantaneous feedback to plant personnel in the event of a leak. Unlike conventional technologies, which required manually checking the filters as a preventive maintenance step, embodiments of the present technology can automatically detect a leak and potentially provide an opportunity to remedy a leak or take appropriate action(s) before a regulatory permit limit is exceeded.


The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. Other examples and implementations are within the scope of the disclosure and appended claims. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.


As used herein, including in the claims, “or” as used in a list of items (for example, a list of items prefaced by a phrase such as “at least one of” or “one or more of”) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C). Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an exemplary step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on.”


As used herein, the terms “vertical,” “horizontal,” “lateral,” “upper,” “lower,” “above,” and “below” can refer to relative directions or positions of features in the semiconductor devices in view of the orientation shown in the Figures. For example, “upper” or “uppermost” can refer to a feature positioned closer to the top of a page than another feature. These terms, however, should be construed broadly to include semiconductor devices having other orientations, such as inverted or inclined orientations where top/bottom, over/under, above/below, up/down, and left/right can be interchanged depending on the orientation.


From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the scope of the invention. For example, Rather, in the foregoing description, numerous specific details are discussed to provide a thorough and enabling description for embodiments of the present technology. One skilled in the relevant art, however, will recognize that the disclosure can be practiced without one or more of the specific details. In other instances, well-known structures or operations often associated with memory systems and devices are not shown, or are not described in detail, to avoid obscuring other aspects of the technology. In general, it should be understood that various other devices, systems, and methods in addition to those specific embodiments disclosed herein may be within the scope of the present technology.

Claims
  • 1. A particulate detection system for use in an industrial facility, comprising: a separation or collection device including a baghouse configured to filter particulate from an industrial gas stream including at least one of coal dust or coke dust;a detection device downstream of the separation or collection device, wherein the detection device is positioned to detect particulate of the industrial gas stream that passes the separation or collection device, the detection device including a probe configured to detect the particulate,wherein the detection device is configured to generate an action when a current associated with the detection device is outside a predetermined range, andwherein the separation or collection device and the detection device are positioned on a moveable system, the movable system being a pusher charger machine (PCM) configured to charge a coke oven.
  • 2. The system of claim 1 wherein the current is a direct current, and wherein the probe includes a wireless end portion configured to detect contact with the particulate, thereby causing a change in the direct current.
  • 3. The system of claim 1 wherein the current is a direct current, and wherein the probe includes a wireless end portion configured to detect a collective charge associated with the particulate, thereby causing a change in the direct current.
  • 4. The system of claim 1 wherein the current is an induced current, and wherein the probe includes a wireless end portion configured to detect a collective charge associated with the particulate, thereby causing a change in the induced current.
  • 5. The system of claim 1 wherein the probe is configured to detect flow of the particulate.
  • 6. The system of claim 1, further comprising an operating system operably coupled to the detection device and configured to activate an indication.
  • 7. The system of claim 1 wherein the separation or collection device includes at least one of a baghouse, a multiclone, or a dust collector.
  • 8. The system of claim 1 wherein the detection device is one of a plurality of detection devices, wherein each of the detection devices is mounted to the PCM.
  • 9. The system of claim 1 wherein the separation or collection device is a plurality of filters and the detection device is one of multiple detection devices, wherein each of the filters is positioned upstream of a corresponding one of the multiple detection devices.
  • 10. A method for detecting particulate in an industrial gas facility, comprising: positioning a detection device downstream of a separation or collection device configured to filter coal dust or coke dust from an industrial gas stream, wherein the separation or collection device and the detection device are positioned on a moveable pusher charger machine (PCM);detecting particulate via a wireless probe of the detection device, the particulate including coal dust, coke dust, or a combination thereof; andgenerating an action based on a current associated with the detected particulate being above a predetermined threshold.
  • 11. The method of claim 10 wherein the wireless probe includes a sensing portion, and wherein detecting the particulate includes detecting a flow of the particulate via the sensing portion of the wireless probe.
  • 12. The method of claim 11 wherein detecting the flow of particulate includes detecting contact between particulate and the sensing portion of the wireless probe, thereby causing a direct current associated with the wireless probe to exceed the predetermined threshold.
  • 13. The method of claim 11 wherein the particulate has a collective charge, and wherein detecting the flow of particulate includes detecting at the sensing portion of the wireless probe the collective charge of the particulate, thereby causing a direct current associated with the wireless probe to exceed the predetermined threshold.
  • 14. The method of claim 11 wherein detecting the flow or presence of particulate includes detecting at the sensing portion of the wireless probe a charge associated with the particulate, thereby causing an induced current associated with the probe to exceed the predetermined threshold.
  • 15. The method of claim 10 wherein generating the action comprises activating an indication.
  • 16. The method of claim 15 wherein the indication includes an audible alarm or an illuminated display.
  • 17. A method for detecting particulate in an industrial gas facility, comprising: positioning a detection device downstream of a separation or collection device configured to filter coal dust or coke dust from an industrial gas stream;detecting particulate via a wireless probe of the detection device; andgenerating an action based on a current associated with the detected particulate being above a predetermined threshold, wherein generating the action based on the current associated with the detected particulate includes de-energizing an output relay of the detection device to generate an indication.
  • 18. The method of claim 17 wherein the wireless probe includes a sensing portion, and wherein detecting the particulate includes detecting a flow of the particulate via the sensing portion of the wireless probe.
  • 19. The method of claim 18 wherein detecting the flow of particulate includes detecting contact between particulate and the sensing portion of the wireless probe, thereby causing a direct current associated with the wireless probe to exceed the predetermined threshold.
  • 20. The method of claim 18 wherein the particulate has a collective charge, and wherein detecting the flow of particulate includes detecting at the sensing portion of the wireless probe the collective charge of the particulate, thereby causing a direct current associated with the wireless probe to exceed the predetermined threshold.
CROSS-REFERENCE TO RELATED APPLICATION(S)

This non-provisional patent application claims the benefit of priority to U.S. Provisional Patent Application No. 62/786,284, titled “FILTER LEAK DETECTION FOR INDUSTRIAL FACILITIES. AND ASSOCIATED SYSTEMS AND METHODS” and filed Dec. 28, 2018, which is incorporated by reference herein in its entirety by reference thereto

US Referenced Citations (396)
Number Name Date Kind
425797 Hunt Apr 1890 A
469868 Osbourn Mar 1892 A
845719 Schniewind Feb 1907 A
976580 Krause Jul 1909 A
1140798 Carpenter May 1915 A
1424777 Schondeling Aug 1922 A
1430027 Plantinga Sep 1922 A
1486401 Van Ackeren Mar 1924 A
1530995 Geiger Mar 1925 A
1572391 Klaiber Feb 1926 A
1677973 Marquard Jul 1928 A
1705039 Thornhill Mar 1929 A
1721813 Geipert Jul 1929 A
1757682 Palm May 1930 A
1818370 Wine Aug 1931 A
1818994 Kreisinger Aug 1931 A
1830951 Lovett Nov 1931 A
1848818 Becker Mar 1932 A
1947499 Schrader et al. Feb 1934 A
1955962 Jones Apr 1934 A
2075337 Burnaugh Mar 1937 A
2141035 Daniels Dec 1938 A
2195466 Otto Apr 1940 A
2235970 Wilputte Mar 1941 A
2340981 Otto Feb 1944 A
2394173 Harris et al. Feb 1946 A
2424012 Bangham et al. Jul 1947 A
2641575 Otto Jun 1953 A
2649978 Such Aug 1953 A
2667185 Beavers Jan 1954 A
2723725 Keiffer Nov 1955 A
2756842 Chamberlin et al. Jul 1956 A
2813708 Frey Nov 1957 A
2827424 Homan Mar 1958 A
2873816 Emil et al. Feb 1959 A
2902991 Whitman Sep 1959 A
2907698 Schulz Oct 1959 A
3015893 McCreary Jan 1962 A
3033764 Hannes May 1962 A
3224805 Clyatt Dec 1965 A
3448012 Allred Jun 1969 A
3462345 Kernan Aug 1969 A
3511030 Brown et al. May 1970 A
3542650 Kulakov Nov 1970 A
3545470 Paton Dec 1970 A
3592742 Thompson Jul 1971 A
3616408 Hickam Oct 1971 A
3623511 Levin Nov 1971 A
3630852 Nashan et al. Dec 1971 A
3652403 Knappstein et al. Mar 1972 A
3676305 Cremer Jul 1972 A
3709794 Kinzler et al. Jan 1973 A
3710551 Sved Jan 1973 A
3746626 Morrison, Jr. Jul 1973 A
3748235 Pries Jul 1973 A
3784034 Thompson Jan 1974 A
3806032 Pries Apr 1974 A
3811572 Tatterson May 1974 A
3836161 Pries Oct 1974 A
3839156 Jakobie et al. Oct 1974 A
3844900 Schulte Oct 1974 A
3857758 Mole Dec 1974 A
3875016 Schmidt-Balve Apr 1975 A
3876143 Rossow et al. Apr 1975 A
3876506 Dix et al. Apr 1975 A
3878053 Hyde Apr 1975 A
3894302 Lasater Jul 1975 A
3897312 Armour et al. Jul 1975 A
3906992 Leach Sep 1975 A
3912091 Thompson Oct 1975 A
3912597 MacDonald Oct 1975 A
3917458 Polak Nov 1975 A
3928144 Jakimowicz Dec 1975 A
3930961 Sustarsic et al. Jan 1976 A
3933443 Lohrmann Jan 1976 A
3957591 Riecker May 1976 A
3959084 Price May 1976 A
3963582 Helm et al. Jun 1976 A
3969191 Bollenbach Jul 1976 A
3975148 Fukuda et al. Aug 1976 A
3984289 Sustarsic et al. Oct 1976 A
4004702 Szendroi Jan 1977 A
4004983 Pries Jan 1977 A
4025395 Ekholm et al. May 1977 A
4040910 Knappstein et al. Aug 1977 A
4045056 Kandakov et al. Aug 1977 A
4045299 McDonald Aug 1977 A
4059885 Oldengott Nov 1977 A
4067462 Thompson Jan 1978 A
4083753 Rogers et al. Apr 1978 A
4086231 Ikio Apr 1978 A
4093245 Connor Jun 1978 A
4100033 Holter Jul 1978 A
4100491 Newman, Jr. Jul 1978 A
4111757 Carimboli Sep 1978 A
4124450 MacDonald Nov 1978 A
4135948 Mertens et al. Jan 1979 A
4141796 Clark et al. Feb 1979 A
4145195 Knappstein et al. Mar 1979 A
4147230 Ormond et al. Apr 1979 A
4162546 Shortell et al. Jul 1979 A
4181459 Price Jan 1980 A
4189272 Gregor et al. Feb 1980 A
4194951 Pries Mar 1980 A
4196053 Grohmann Apr 1980 A
4211608 Kwasnoski et al. Jul 1980 A
4211611 Bocsanczy Jul 1980 A
4213489 Cain Jul 1980 A
4213828 Calderon Jul 1980 A
4222748 Argo et al. Sep 1980 A
4222824 Flockenhaus et al. Sep 1980 A
4224109 Flockenhaus et al. Sep 1980 A
4225393 Gregor et al. Sep 1980 A
4235830 Bennett et al. Nov 1980 A
4239602 La Bate Dec 1980 A
4248671 Belding Feb 1981 A
4249997 Schmitz Feb 1981 A
4263099 Porter Apr 1981 A
4268360 Tsuzuki et al. May 1981 A
4271814 Lister Jun 1981 A
4284478 Brommel Aug 1981 A
4285772 Kress Aug 1981 A
4287024 Thompson Sep 1981 A
4289479 Johnson Sep 1981 A
4289584 Chuss et al. Sep 1981 A
4289585 Wagener et al. Sep 1981 A
4296938 Offermann et al. Oct 1981 A
4299666 Ostmann Nov 1981 A
4302935 Cousimano Dec 1981 A
4303615 Jarmell et al. Dec 1981 A
4307673 Caughey Dec 1981 A
4314787 Kwasnik et al. Feb 1982 A
4324568 Wilcox Apr 1982 A
4330372 Cairns et al. May 1982 A
4334963 Stog Jun 1982 A
4336843 Petty Jun 1982 A
4340445 Kucher et al. Jul 1982 A
4342195 Lo Aug 1982 A
4344820 Thompson Aug 1982 A
4344822 Schwartz et al. Aug 1982 A
4353189 Thiersch et al. Oct 1982 A
4366029 Bixby et al. Dec 1982 A
4373244 Mertens et al. Feb 1983 A
4375388 Hara et al. Mar 1983 A
4391674 Velmin et al. Jul 1983 A
4392824 Struck et al. Jul 1983 A
4394217 Holz et al. Jul 1983 A
4395269 Schuler Jul 1983 A
4396394 Li et al. Aug 1983 A
4396461 Neubaum et al. Aug 1983 A
4407237 Merritt Oct 1983 A
4421070 Sullivan Dec 1983 A
4431484 Weber et al. Feb 1984 A
4439277 Dix Mar 1984 A
4440098 Adams Apr 1984 A
4445977 Husher May 1984 A
4446018 Cerwick May 1984 A
4448541 Lucas May 1984 A
4452749 Kolvek et al. Jun 1984 A
4459103 Gieskieng Jul 1984 A
4469446 Goodboy Sep 1984 A
4474344 Bennett Oct 1984 A
4487137 Horvat et al. Dec 1984 A
4498786 Ruscheweyh Feb 1985 A
4506025 Kleeb et al. Mar 1985 A
4508539 Nakai Apr 1985 A
4527488 Lindgren Jul 1985 A
4564420 Spindeler et al. Jan 1986 A
4568426 Orlando Feb 1986 A
4570670 Johnson Feb 1986 A
4614567 Stahlherm et al. Sep 1986 A
4643327 Campbell Feb 1987 A
4645513 Kubota et al. Feb 1987 A
4655193 Blacket Apr 1987 A
4655804 Kercheval et al. Apr 1987 A
4666675 Parker et al. May 1987 A
4680167 Orlando Jul 1987 A
4690689 Malcosky et al. Sep 1987 A
4704195 Janicka et al. Nov 1987 A
4720262 Durr et al. Jan 1988 A
4724976 Lee Feb 1988 A
4726465 Kwasnik et al. Feb 1988 A
4732652 Durselen et al. Mar 1988 A
4793981 Doyle et al. Dec 1988 A
4824614 Jones et al. Apr 1989 A
4889698 Moller et al. Dec 1989 A
4919170 Kallinich et al. Apr 1990 A
4929179 Breidenbach et al. May 1990 A
4941824 Holter et al. Jul 1990 A
5052922 Stokman et al. Oct 1991 A
5062925 Durselen et al. Nov 1991 A
5078822 Hodges et al. Jan 1992 A
5087328 Wegerer et al. Feb 1992 A
5114542 Childress et al. May 1992 A
5213138 Presz May 1993 A
5227106 Kolvek Jul 1993 A
5228955 Westbrook, III Jul 1993 A
5234601 Janke et al. Aug 1993 A
5318671 Pruitt Jun 1994 A
5370218 Johnson et al. Dec 1994 A
5423152 Kolvek Jun 1995 A
5447606 Pruitt Sep 1995 A
5480594 Wilkerson et al. Jan 1996 A
5542650 Abel et al. Aug 1996 A
5622280 Mays et al. Apr 1997 A
5659110 Herden et al. Aug 1997 A
5670025 Baird Sep 1997 A
5687768 Albrecht et al. Nov 1997 A
5715962 McDonnell Feb 1998 A
5752548 Matsumoto et al. May 1998 A
5787821 Bhat et al. Aug 1998 A
5810032 Hong et al. Sep 1998 A
5816210 Yamaguchi Oct 1998 A
5857308 Dismore et al. Jan 1999 A
5913448 Mann et al. Jun 1999 A
5928476 Daniels Jul 1999 A
5966886 Di Loreto Oct 1999 A
5968320 Sprague Oct 1999 A
6017214 Sturgulewski Jan 2000 A
6059932 Sturgulewski May 2000 A
6139692 Tamura et al. Oct 2000 A
6152668 Knoch Nov 2000 A
6187148 Sturgulewski Feb 2001 B1
6189819 Racine Feb 2001 B1
6290494 Barkdoll Sep 2001 B1
6412221 Emsbo Jul 2002 B1
6596128 Westbrook Jul 2003 B2
6626984 Taylor Sep 2003 B1
6699035 Brooker Mar 2004 B2
6758875 Reid et al. Jul 2004 B2
6907895 Johnson et al. Jun 2005 B2
6946011 Snyder Sep 2005 B2
6964236 Schucker Nov 2005 B2
7056390 Fratello Jun 2006 B2
7077892 Lee Jul 2006 B2
7314060 Chen et al. Jan 2008 B2
7331298 Barkdoll et al. Feb 2008 B2
7433743 Pistikopoulos et al. Oct 2008 B2
7497930 Barkdoll et al. Mar 2009 B2
7611609 Valia et al. Nov 2009 B1
7644711 Creel Jan 2010 B2
7722843 Srinivasachar May 2010 B1
7727307 Winkler Jun 2010 B2
7785447 Eatough et al. Aug 2010 B2
7803627 Hodges et al. Sep 2010 B2
7823401 Takeuchi et al. Nov 2010 B2
7827689 Crane Nov 2010 B2
7998316 Barkdoll Aug 2011 B2
8071060 Ukai et al. Dec 2011 B2
8079751 Kapila et al. Dec 2011 B2
8080088 Srinivasachar Dec 2011 B1
8146376 Williams Apr 2012 B1
8152970 Barkdoll et al. Apr 2012 B2
8236142 Westbrook Aug 2012 B2
8266853 Bloom et al. Sep 2012 B2
8398935 Howell et al. Mar 2013 B2
8409405 Kim et al. Apr 2013 B2
8500881 Orita et al. Aug 2013 B2
8515508 Kawamura Aug 2013 B2
8647476 Kim et al. Feb 2014 B2
8800795 Hwang Aug 2014 B2
8956995 Masatsugu et al. Feb 2015 B2
8980063 Kim et al. Mar 2015 B2
9039869 Kim et al. May 2015 B2
9057023 Reichelt et al. Jun 2015 B2
9103234 Gu et al. Aug 2015 B2
9193915 West et al. Nov 2015 B2
9238778 Quanci et al. Jan 2016 B2
9243186 Quanci et al. Jan 2016 B2
9249357 Quanci et al. Feb 2016 B2
9273249 Quanci et al. Mar 2016 B2
9359554 Quanci et al. Jun 2016 B2
9404043 Kim Aug 2016 B2
9498786 Pearson Nov 2016 B2
9580656 Quanci et al. Feb 2017 B2
9672499 Quanci et al. Jun 2017 B2
9708542 Quanci et al. Jul 2017 B2
9862888 Quanci et al. Jan 2018 B2
9976089 Quanci et al. May 2018 B2
10016714 Quanci et al. Jul 2018 B2
10041002 Quanci et al. Aug 2018 B2
10047295 Chun et al. Aug 2018 B2
10047296 Chun et al. Aug 2018 B2
10053627 Sarpen et al. Aug 2018 B2
10233392 Quanci et al. Mar 2019 B2
10308876 Quanci et al. Jun 2019 B2
10323192 Quanci et al. Jun 2019 B2
10526541 West et al. Jan 2020 B2
10578521 Dinakaran Mar 2020 B1
10732621 Cella Aug 2020 B2
20020170605 Shiraishi et al. Nov 2002 A1
20030014954 Ronning et al. Jan 2003 A1
20030015809 Carson Jan 2003 A1
20030057083 Eatough et al. Mar 2003 A1
20050087767 Fitzgerald et al. Apr 2005 A1
20060102420 Huber et al. May 2006 A1
20060149407 Markham et al. Jul 2006 A1
20070087946 Quest et al. Apr 2007 A1
20070116619 Taylor et al. May 2007 A1
20070251198 Witter Nov 2007 A1
20080028935 Andersson Feb 2008 A1
20080179165 Chen et al. Jul 2008 A1
20080257236 Green Oct 2008 A1
20080271985 Yamasaki Nov 2008 A1
20080289305 Girondi Nov 2008 A1
20090007785 Kimura et al. Jan 2009 A1
20090032385 Engle Feb 2009 A1
20090152092 Kim et al. Jun 2009 A1
20090162269 Barger et al. Jun 2009 A1
20090217576 Kim et al. Sep 2009 A1
20090257932 Canari et al. Oct 2009 A1
20090283395 Hippe Nov 2009 A1
20100095521 Kartal et al. Apr 2010 A1
20100106310 Grohman Apr 2010 A1
20100113266 Abe et al. May 2010 A1
20100115912 Worley May 2010 A1
20100119425 Palmer May 2010 A1
20100181297 Whysail Jul 2010 A1
20100196597 Di Loreto Aug 2010 A1
20100276269 Schuecker et al. Nov 2010 A1
20100287871 Bloom et al. Nov 2010 A1
20100300867 Kim et al. Dec 2010 A1
20100314234 Knoch et al. Dec 2010 A1
20110000284 Kumar et al. Jan 2011 A1
20110014406 Coleman et al. Jan 2011 A1
20110048917 Kim et al. Mar 2011 A1
20110088600 McRae Apr 2011 A1
20110120852 Kim May 2011 A1
20110144406 Masatsugu et al. Jun 2011 A1
20110168482 Merchant et al. Jul 2011 A1
20110174301 Haydock et al. Jul 2011 A1
20110192395 Kim Aug 2011 A1
20110198206 Kim et al. Aug 2011 A1
20110223088 Chang et al. Sep 2011 A1
20110253521 Kim Oct 2011 A1
20110291827 Baldocchi et al. Dec 2011 A1
20110313218 Dana Dec 2011 A1
20110315538 Kim et al. Dec 2011 A1
20120024688 Barkdoll Feb 2012 A1
20120030998 Barkdoll et al. Feb 2012 A1
20120031076 Frank Feb 2012 A1
20120125709 Merchant et al. May 2012 A1
20120152720 Reichelt et al. Jun 2012 A1
20120177541 Mutsuda et al. Jul 2012 A1
20120180133 Ai-Harbi et al. Jul 2012 A1
20120228115 Westbrook Sep 2012 A1
20120247939 Kim et al. Oct 2012 A1
20120305380 Wang et al. Dec 2012 A1
20120312019 Rechtman Dec 2012 A1
20130020781 Kishikawa Jan 2013 A1
20130045149 Miller Feb 2013 A1
20130216717 Rago et al. Aug 2013 A1
20130220373 Kim Aug 2013 A1
20130306462 Kim et al. Nov 2013 A1
20140033917 Rodgers et al. Feb 2014 A1
20140039833 Sharpe, Jr. et al. Feb 2014 A1
20140061018 Sarpen et al. Mar 2014 A1
20140083836 Quanci et al. Mar 2014 A1
20140182195 Quanci et al. Jul 2014 A1
20140182683 Quanci et al. Jul 2014 A1
20140183023 Quanci et al. Jul 2014 A1
20140208997 Alferyev et al. Jul 2014 A1
20140224123 Walters Aug 2014 A1
20140262139 Choi et al. Sep 2014 A1
20140262726 West et al. Sep 2014 A1
20150122629 Freimuth et al. May 2015 A1
20150175433 Micka et al. Jun 2015 A1
20150219530 Li et al. Aug 2015 A1
20150247092 Quanci et al. Sep 2015 A1
20150361346 West et al. Dec 2015 A1
20150361347 Ball et al. Dec 2015 A1
20160026193 Rhodes et al. Jan 2016 A1
20160048139 Samples et al. Feb 2016 A1
20160149944 Obermeirer et al. May 2016 A1
20160154171 Kato Jun 2016 A1
20160186063 Quanci et al. Jun 2016 A1
20160186064 Quanci et al. Jun 2016 A1
20160186065 Quanci et al. Jun 2016 A1
20160222297 Choi et al. Aug 2016 A1
20160319197 Quanci et al. Nov 2016 A1
20160319198 Quanci et al. Nov 2016 A1
20170015908 Quanci et al. Jan 2017 A1
20170182447 Sappok Jun 2017 A1
20170183569 Quanci et al. Jun 2017 A1
20170253803 West et al. Sep 2017 A1
20170261417 Zhang Sep 2017 A1
20170352243 Quanci et al. Dec 2017 A1
20180340122 Crum et al. Nov 2018 A1
20190099708 Quanci Apr 2019 A1
20190161682 Quanci et al. May 2019 A1
20190169503 Chun et al. Jun 2019 A1
20190317167 Laborde Oct 2019 A1
20190352568 Quanci et al. Nov 2019 A1
20200071190 Wiederin Mar 2020 A1
20200139273 Badiei May 2020 A1
20200173679 O'Reilly Jun 2020 A1
Foreign Referenced Citations (195)
Number Date Country
1172895 Aug 1984 CA
2775992 May 2011 CA
2822841 Jul 2012 CA
2822857 Jul 2012 CA
87212113 Jun 1988 CN
87107195 Jul 1988 CN
2064363 Oct 1990 CN
2139121 Jul 1993 CN
1092457 Sep 1994 CN
1255528 Jun 2000 CN
1270983 Oct 2000 CN
2528771 Feb 2002 CN
1358822 Jul 2002 CN
2521473 Nov 2002 CN
1468364 Jan 2004 CN
1527872 Sep 2004 CN
2668641 Jan 2005 CN
1957204 May 2007 CN
101037603 Sep 2007 CN
101058731 Oct 2007 CN
101157874 Apr 2008 CN
201121178 Sep 2008 CN
101395248 Mar 2009 CN
100510004 Jul 2009 CN
101486017 Jul 2009 CN
201264981 Jul 2009 CN
101497835 Aug 2009 CN
101509427 Aug 2009 CN
101886466 Nov 2010 CN
102155300 Aug 2011 CN
2509188 Nov 2011 CN
202226816 May 2012 CN
202265541 Jun 2012 CN
102584294 Jul 2012 CN
202415446 Sep 2012 CN
103468289 Dec 2013 CN
203425686 Feb 2014 CN
203954884 Nov 2014 CN
203981700 Dec 2014 CN
105189704 Dec 2015 CN
205650033 Oct 2016 CN
106661456 May 2017 CN
107445633 Dec 2017 CN
208049704 Nov 2018 CN
100500619 Jun 2020 CN
201729 Sep 1908 DE
212176 Jul 1909 DE
1212037 Mar 1966 DE
3231697 Jan 1984 DE
3328702 Feb 1984 DE
3315738 Mar 1984 DE
3329367 Nov 1984 DE
3407487 Jun 1985 DE
19545736 Jun 1997 DE
19803455 Aug 1999 DE
10122531 Nov 2002 DE
10154785 May 2003 DE
102005015301 Oct 2006 DE
102006004669 Aug 2007 DE
102006026521 Dec 2007 DE
102009031436 Jan 2011 DE
102011052785 Dec 2012 DE
0126399 Nov 1984 EP
0208490 Jan 1987 EP
0903393 Mar 1999 EP
1538503 Jun 2005 EP
2295129 Mar 2011 EP
2468837 Jun 2012 EP
2339664 Aug 1977 FR
364236 Jan 1932 GB
368649 Mar 1932 GB
441784 Jan 1936 GB
606340 Aug 1948 GB
611524 Nov 1948 GB
725865 Mar 1955 GB
871094 Jun 1961 GB
923205 May 1963 GB
S50148405 Dec 1975 JP
S5319301 Feb 1978 JP
54054101 Apr 1979 JP
S5453103 Apr 1979 JP
57051786 Mar 1982 JP
57051787 Mar 1982 JP
57083585 May 1982 JP
57090092 Jun 1982 JP
S57172978 Oct 1982 JP
58091788 May 1983 JP
59051978 Mar 1984 JP
59053589 Mar 1984 JP
59071388 Apr 1984 JP
59108083 Jun 1984 JP
59145281 Aug 1984 JP
60004588 Jan 1985 JP
61106690 May 1986 JP
62011794 Jan 1987 JP
62285980 Dec 1987 JP
01103694 Apr 1989 JP
01249886 Oct 1989 JP
H0319127 Mar 1991 JP
03197588 Aug 1991 JP
04159392 Jun 1992 JP
H04178494 Jun 1992 JP
H05230466 Sep 1993 JP
H0649450 Feb 1994 JP
H0654753 Jul 1994 JP
H06264062 Sep 1994 JP
H06299156 Oct 1994 JP
07188668 Jul 1995 JP
07216357 Aug 1995 JP
H07204432 Aug 1995 JP
H08104875 Apr 1996 JP
08127778 May 1996 JP
H10273672 Oct 1998 JP
H11-131074 May 1999 JP
2000204373 Jul 2000 JP
2000219883 Aug 2000 JP
2001055576 Feb 2001 JP
2001200258 Jul 2001 JP
2002097472 Apr 2002 JP
2002106941 Apr 2002 JP
2003041258 Feb 2003 JP
2003071313 Mar 2003 JP
2003292968 Oct 2003 JP
2003342581 Dec 2003 JP
2005503448 Feb 2005 JP
2005154597 Jun 2005 JP
2005263983 Sep 2005 JP
2005344085 Dec 2005 JP
2006188608 Jul 2006 JP
2007063420 Mar 2007 JP
4101226 Jun 2008 JP
2008231278 Oct 2008 JP
2009019106 Jan 2009 JP
2009073864 Apr 2009 JP
2009073865 Apr 2009 JP
2009144121 Jul 2009 JP
2010229239 Oct 2010 JP
2010248389 Nov 2010 JP
2011504947 Feb 2011 JP
2011068733 Apr 2011 JP
2011102351 May 2011 JP
2012102302 May 2012 JP
2013006957 Jan 2013 JP
2013510910 Mar 2013 JP
2013189322 Sep 2013 JP
2014040502 Mar 2014 JP
2015094091 May 2015 JP
2016169897 Sep 2016 JP
1019960008754 Oct 1996 KR
19990017156 May 1999 KR
1019990054426 Jul 1999 KR
20000042375 Jul 2000 KR
100296700 Oct 2001 KR
20030012458 Feb 2003 KR
1020050053861 Jun 2005 KR
20060132336 Dec 2006 KR
100737393 Jul 2007 KR
100797852 Jan 2008 KR
20080069170 Jul 2008 KR
20110010452 Feb 2011 KR
101314288 Apr 2011 KR
20120033091 Apr 2012 KR
20130050807 May 2013 KR
101318388 Oct 2013 KR
20140042526 Apr 2014 KR
20150011084 Jan 2015 KR
20170038102 Apr 2017 KR
20170058808 May 2017 KR
101862491 May 2018 KR
2083532 Jul 1997 RU
2441898 Feb 2012 RU
2493233 Sep 2013 RU
1535880 Jan 1990 SU
201241166 Oct 2012 TW
201245431 Nov 2012 TW
50580 Oct 2002 UA
WO9012074 Oct 1990 WO
WO9945083 Sep 1999 WO
WO02062922 Aug 2002 WO
WO2005023649 Mar 2005 WO
WO2005115583 Dec 2005 WO
WO2007103649 Sep 2007 WO
WO2008034424 Mar 2008 WO
WO2011000447 Jan 2011 WO
WO2011126043 Oct 2011 WO
WO2012029979 Mar 2012 WO
WO2012031726 Mar 2012 WO
WO2013023872 Feb 2013 WO
WO2010107513 Sep 2013 WO
WO2014021909 Feb 2014 WO
WO2014043667 Mar 2014 WO
WO2014105064 Jul 2014 WO
WO2014153050 Sep 2014 WO
WO2016004106 Jan 2016 WO
WO2016033511 Mar 2016 WO
Non-Patent Literature Citations (49)
Entry
U.S. Appl. No. 16/428,014, filed May 31, 2019, Quanci et al.
U.S. Appl. No. 16/704,689, filed Dec. 5, 2019, West et al.
U.S. Appl. No. 16/729,036, filed Dec. 27, 2019, Quanci et al.
U.S. Appl. No. 16/729,053, filed Dec. 27, 2019, Quanci et at.
U.S. Appl. No. 16/729,057, filed Dec. 27, 2019, Quanci et at.
U.S. Appl. No. 16/729,068, filed Dec. 27, 2019, Quanci et al.
U.S. Appl. No. 16/729,122, filed Dec. 27, 2019, Quanci et al.
U.S. Appl. No. 16/729,129, filed Dec. 27, 2019, Quanci et al.
U.S. Appl. No. 16/729 170, filed Dec. 27, 2019, Quanci et at.
U.S. Appl. No. 16/729,201, filed Dec. 27, 2019, Quanci et al.
U.S. Appl. No. 16/729,212, filed Dec. 27, 2019, Quanci et at.
U.S. Appl. No. 16/729,219, filed Dec. 27, 2019, Quanci et at.
U.S. Appl. No. 16/735,103, filed Jan. 6, 2020, Quanci et al.
ASTM D5341-99(2010)e1, Standard Test Method for Measuring Coke Reactivity Index (CRI) and Coke Strength After Reaction (CSR), ASTM International, West Conshohocken, PA, 2010.
Astrom, et al., “Feedback Systems: An Introduction for Scientists and Engineers,” Sep. 16, 2006, available on line at http://people/duke.edu/-hpgavin/SystemID/References/Astrom-Feedback-2006.pdf ; 404 pages.
Basset et al., “Calculation of steady flow pressure loss coefficients for pipe junctions,” Proc Instn Mech Engrs., vol. 215, Part C, p. 861-881 IMechIE 2001.
Beckman et al., “Possibilities and limits of cutting back coking plant output,” Stahl Und Eisen, Verlag Stahleisen, Dusseldorf, DE, vol. 130, No. 8, Aug. 16, 2010, pp. 57-67.
Bloom, et al., “Modular cast block—The future of coke oven repairs,” Iron & Steel Technol, AIST, Warrendale, PA, vol. 4, No. 3, Mar. 1, 2007, pp. 61-64.
Boyes, Walt. (2003), Instrumentation Reference Book (3rd Edition)—34.7.4.6 Infrared and Thermal Cameras, Elsevier. Online version available at: https://app.knovel.com/hotlink/pdf/id:kt004QMGV6/instrumentation-reference-2/ditigal-video.
Clean coke process: process development studies by USS Engineers and Consultants, Inc., Wisconsin Tech Search, request date Oct. 5, 2011, 17 pages.
“Conveyor Chain Designer Guild”, Mar. 27, 2014 (date obtained from wayback machine), Renold.com, Section 4, available online at: http://www.renold/com/upload/renoldswitzerland/conveyor_chain_-_designer_guide.pdf.
Costa, et al., “Edge Effects on the Flow Characteristics in a 90 deg Tee Junction,” Transactions of the ASME, Nov. 2006, vol. 128, pp. 1204-1217.
Crelling, et al., “Effects of Weathered Coal on Coking Properties and Coke Quality”, Fuel, 1979, vol. 58, Issue 7, pp. 542-546.
Database WPI, Week 199115, Thomson Scientific, Lond, GB; AN 1991-107552.
Diez, et al., “Coal for Metallurgical Coke Production: Predictions of Coke Quality and Future Requirements for Cokemaking”, International Journal of Coal Geology, 2002, vol. 50, Issue 1-4, pp. 389-412.
Industrial Furnace Design Handbook, Editor-in-Chief: First Design Institute of First Ministry of Machinery Industry, Beijing: Mechanical Industry Press, pp. 180-183, Oct. 1981.
Joseph, B., “A tutorial on inferential control and its applications,” Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), San Diego, CA, 1999, pp. 3106-3118 vol. 5.
JP 03-197588, Inoue Keizo et al., Method and Equipment for Boring Degassing Hole in Coal Charge in Coke Oven, Japanese Patent (Abstract Only) Aug. 28, 1991.
JP 04-159392, Inoue Keizo et al., Method and Equipment for Opening Hole for Degassing of Coal Charge in Coke Oven, Japanese Patent (Abstract Only) Jun. 2, 1992.
Kerlin, Thomas (1999), Practical Thermocouple Thermometry—1.1 The Thermocouple. ISA. Online version available at https:app.knovel.com/pdf/id:kt007XPTM3/practical-thermocouple/the-thermocouple.
Kochanski et al., “Overview of Uhde Heat Recovery Cokemaking Technology,” AISTech Iron and Steel Technology Conference Proceedings, Association for Iron and Steel Technology, U.S., vol. 1, Jan. 1, 2005, pp. 25-32.
Knoerzer et al. “Jewell-Thompson Non-Recovery Cokemaking”, Steel Times, Fuel & Metallurgical Journals Ltd. London, GB, vol. 221, No. 4, Apr. 1, 1993, pp. 172-173,184.
Madias, et al., “A review on stamped charging of coals” (2013). Available at https://www.researchgate.net/publication/263887759_A_review_on_stamped_charging_of_coals.
Metallurgical Coke MSDS, ArcelorMittal, May 30, 2011, available online at http://dofasco.arcelormittal.com/-/media/Files/A/Arcelormittal-Canada/material-safety/metallurgical-coke.pdf.
“Middletown Coke Company HRSG Maintenance BACT Analysis Option 1—Individual Spray Quenches Sun Heat Recovery Coke Facility Process Flow Diagram Middletown Coke Company 100 Oven Case #1-24.5 VM”, (Sep. 1, 2009), URL: http://web.archive.org/web/20090901042738/http://epa.ohio.gov/portals/27/transfer/ptiApplication/mcc/new/262504.pdf, (Feb. 12, 2016), XP055249803 [X] 1-13 * p. 7 * * pp. 8-11 *.
Practical Technical Manual of Refractories, Baoyu Hu, etc., Beijing: Metallurgical Industry Press, Chapter 6; 2004, 6-30.
Refractories for Ironmaking and Steelmaking: A History of Battles over High Temperatures; Kyoshi Sugita (Japan, Shaolin Zhang), 1995, p. 160, 2004, 2-29.
“Resources and Utilization of Coking Coal in China,” Mingxin Shen ed., Chemical Industry Press, first edition, Jan. 2007, pp. 242-243, 247.
Rose, Harold J., “The Selection of Coals for the Manufacture of Coke,” American Institute of Mining and Metallurgical Engineers, Feb. 1926, 8 pages.
Waddell, et al., “Heat-Recovery Cokemaking Presentation,” Jan. 1999, pp. 1-25.
Walker, et al., “Sun Coke Company's heat recovery cokemaking technology high coke quality and low environmental impact”, Revue De Metallurgie—Cahiers D'Informations Techniques, Revue De Metallurgie. Paris, FR, (Mar. 1, 2003), vol. 100, No. 3, ISSN 0035-1563, p. 23.
Westbrook, “Heat-Recovery Cokemaking at Sun Coke,” AISE Steel Technology, Pittsburg, PA, vol. 76, No. 1, Jan. 1999, pp. 25-28.
“What is dead-band control,” forum post by user “wireaddict” on AllAboutCircuits.com message board, Feb. 8, 2007, accessed Oct. 24, 2018 at https:/forum.allaboutcircuits.com/threads/what-is-dead-band-control.4728/; 8 pages.
Yu et al., “Coke Oven Production Technology,” Lianoning Science and Technology Press, first edition, Apr. 2014, pp. 356-358.
U.S. Appl. No. 16/828,448, filed Mar. 24, 2020, Quanci et al.
U.S. Appl. No. 16/845,530, filed Apr. 10, 2020, Quanci et l.
U.S. Appl. No. 16/897,957, filed Jun. 10, 2020, Ball et al.
U.S. Appl. No. 17/076,563, filed Oct. 21, 2020, Crum et al.
International Search Report and Written Opinion for PCT/US2019/068822; dated Apr. 29, 2020; 9 pages.
Related Publications (1)
Number Date Country
20200206669 A1 Jul 2020 US
Provisional Applications (1)
Number Date Country
62786284 Dec 2018 US