Claims
- 1. A particulate material drying system for drying particulates from a source of particulates to be dried, the system comprising:a heat source providing a primary source of heat for other than a particulate drying process and providing a secondary source of heat for use in particulate drying, the heat source having at least one heat supply outlet, the secondary source of heat being delivered in the form of at least one heated fluid from the heat source to the at least one heat supply outlet; a blending chamber comprising at least a first heated fluid inlet coupled to the at least one heat supply outlet such that heated fluid from the at least one heat supply outlet enters the blending chamber, the blending chamber comprising a second air input through which relatively cool air is delivered to the blending chamber, wherein the heated fluid and relatively cool air is blended in the blending chamber, the blending chamber having at least one outlet from which blended fluid which has been blended in the blending chamber is delivered from the blending chamber; a particulate dryer coupled to the blending chamber outlet and to the source of particulates such that blended fluid from the blending chamber at least partially dries the particulates in the dryer, the dryer having a dryer outlet from which at least partially dried particulates are delivered.
- 2. A system according to claim 1 wherein the first heat source comprises a boiler having an exhaust gas outlet, and wherein at least a portion of exhaust gases from the exhaust gas outlet comprises at least one heated fluid delivered to the at least one heat supply outlet.
- 3. A system according to claim 2 wherein the only heat source for drying particulates is heat from exhaust gas of the boiler.
- 4. A system according to claim 2 including at least one heat exchanger supplied with heat from the boiler, wherein at least one heated fluid comprises fluid heated by the at least one heat exchanger provided to the at least one heat supply outlet.
- 5. A system according to claim 4 wherein the only heat source for drying particulates is heated fluid heated by the at least one heat exchanger.
- 6. A system according to claim 1 wherein the heat source has first and second heat supply outlets, the heat source providing a first heated fluid to the first heat supply outlet and a second heated fluid to the second heat supply outlet, the heat source comprises a heat source having an exhaust gas outlet, and wherein at least a portion of exhaust gas from the exhaust gas outlet is delivered to the first heat supply outlet as the first heated fluid, at least one heat exchanger supplied with heat from the heat source, wherein the at least one heat exchanger provides the second heated fluid to the second heat supply outlet, the blending chamber comprising first and second heated fluid inlets coupled respectively to the first and second heat supply outlets, wherein the first heated fluid, the second heated fluid and the relatively cool air is blended in the blending chamber.
- 7. A system according to claim 6 wherein the heat source is a boiler and is the only primary source of heat for the particulate dryer.
- 8. A particulate drying system according to claim 1 comprisingat least one fan positioned in fluid communication with and downstream of the dryer outlet, the at least one fan creating a negative pressure that draws the at least one heated fluid and relatively cool air into and through the blending chamber and draws a blended outlet stream of blended fluid and particulates through the dryer and dryer outlet; and a cyclone separator in fluid communication with and downstream of the fan, the separator receiving the blended outlet stream from the dryer and separating out the at least partially dried particulates.
- 9. A particulate drying subsystem that uses recycled heat energy, comprising:a boiler that produces heat during operation; a blending chamber connected to the boiler, the blending chamber having at least a first fluid input and a second fluid input, the first fluid input being heated by the boiler and the second fluid input being ambient air from adjacent the blending chamber, wherein at least the first and second fluid inputs are blended together into an output flow within the blending chamber and output for drying particulates.
- 10. The subsystem of claim 9, wherein the first fluid input comprises exhaust gas produced from operation of the boiler.
- 11. The subsystem of claim 9, wherein the first fluid input comprises exhaust gas produced from operation of the boiler and warmed by operation of the boiler.
- 12. The subsystem of claim 11, wherein the boiler includes a steam circuit and air is warmed through a heat exchange with the steam in the steam circuit.
- 13. A sawdust drying subsystem that uses heat energy recycled from a boiler, comprising:a boiler steam circuit and an associated exhaust gas outlet through which heated exhaust gas from operating the boiler are released; a radiator positioned in the steam circuit, wherein steam from the boiler circulates through the radiator and releases heat to heat air drawn through the radiator to provide a source of warmed air; and a blending chamber having an exhaust gas input and a warmed air input positioned adjacent the radiator through which the exhaust gas and warmed air, respectively, are drawn into the blending chamber, wherein at least the warmed air and the exhaust gas are blended together within the blending chamber into an output stream for drying sawdust.
- 14. The subsystem of claim 13, wherein the blending chamber further comprises an ambient air input, and wherein ambient air received through the ambient air input is blended into the output stream of the blending chamber together with the warmed air and the exhaust gas.
RELATED APPLICATION
This application is a continuation of U.S. patent application Ser. No. 09/515,341, entitled “Particulate Drying System and Method” and filed on Feb. 29, 2000 now abandoned, which claims the benefit of similarly titled U.S. Provisional Patent Application No. 60/184,720, filed on Feb. 24, 2000.
The present invention relates to a blending chamber, a drying system and associated methods, suitable for drying particulate materials requiring moisture removal, including, but not limited to, sawdust and wood chips.
Byproducts of manufacturing processes can oftentimes be marketed after additional processing. For instance, in the production of lumber from timber, both wood chips and sawdust are byproducts. These materials have market value which is enhanced when a significant amount of moisture has been removed.
“Green” sawdust refers to sawdust from green or uncured wood, and typically has a moisture content range of 30%-50% by weight. Commercially, sawdust is used in applications such as, for example, manufacturing particle board. For this application, sawdust preferably has a moisture content of 7-15% by weight. Thus, to be commercially viable, the moisture content of green sawdust must be reduced, i.e., the green sawdust must be dried, to reduce the moisture content from 30-50% to 7-15% or less.
Conventional sawdust drying systems have a dedicated heat source used to provide the heat to dry the sawdust. In conventional sawdust drying systems, the drying of the sawdust takes place by convective heat transfer with relatively hot fluids as the drying medium (usually gases, such as air). The costs of operating such a dedicated heat source include fuel and maintenance.
It would be desirable to minimize these costs by using energy (typically heat energy) that is available from associated manufacturing processes, i.e., excess or exhausted heat that has been generated for other purposes. By using such recycled heat to make up at least a portion of the drying heat, and most preferably as the primary or sole source of sawdust drying heat, the costs of drying the byproducts is significantly reduced.
Devices for recycling heat energy from a manufacturing process for use in another processing application are known. U.S. Pat. No. 4,392,353 (Shibuya et al.) discloses a method of recovering heat and particulate matter from exhaust gas which is emitted from a boiler in an electrical power generating device that uses combustible material as fuel. The exhaust gas from the electrical power plant is used to both pre-heat the raw material for a sintering device, and to add ash to the raw material. The output of the sintering device is clinkers produced from calcining raw material, such as cement powder. Although the exhaust gas provides energy to pre-heat the raw material prior to sintering, it is not the primary source of heat for sintering, which is supplied by a dedicated boiler.
U.S. Pat. No. 5,588,222 (Thompson) discloses a process for recycling combustion gases in a drying system. Thompson describes a system for drying material using three combustion chambers, each of which is heated with natural gas. The combustion gases from each of the three combustion chambers are recycled after the pass through a dryer, and are then returned to one or more combustion chambers. The primary objectives of recycling exhaust gases, according to Thompson, are (1) to oxidize pollutants, (2) to decrease O2 levels in the dryers to reduce fire hazard, and (3) to limit thermal degradation of dried material.
It would be desirable to provide a drying system and methods suitable for drying sawdust, as well as other particulate materials, that makes use of heat generated for other purposes as a primary source of energy for drying purposes. The provision of improved drying apparatus is also desirable.
US Referenced Citations (21)
Non-Patent Literature Citations (2)
Entry |
Ardrier Farm and Ranch Dehydrator, Heil Co., Bulletin ARD-55400 (1976). |
Duske Rotary Dryer System, Duske Engineering Co., Inc., Bulletin No. 200B (1997). |
Provisional Applications (1)
|
Number |
Date |
Country |
|
60/184720 |
Feb 2000 |
US |
Continuations (1)
|
Number |
Date |
Country |
Parent |
09/515341 |
Feb 2000 |
US |
Child |
09/519128 |
|
US |