The present invention relates to internal combustion engines and, more particularly, to the prediction of service life of a particulate filter used with engines of this type.
For the last several decades, there have been increasingly stringent emission standards applied to internal combustion engines of all types. Concurrent with the move towards stricter limits on emissions was the adoption of particulate filters. Such adoption was first made in the field of compression ignition, or diesel, engines operating under such load and rpm conditions that soot is generated in the exhaust and is required to be filtered. With advances in the fuel efficiency for other types of engines, for example, spark ignition engines with direct fuel injection, the need for a particulate filter may also be indicated.
Whatever the type of engine, the particulate filter has evolved to a very high efficiency, trapping above 90% of soot with a wall flow filter. When sufficient soot has been deposited on the walls, the pressure drop increases across the particulate filter and an even higher soot trapping efficiency is achieved. It is common to measure pressure drop across a particulate filter through the use of a delta pressure sensor, used to predict soot loading. Typically, these predictions are made with models such as those disclosed by Konstandopoulos, et al. (SAE paper 2002-01-1015). The delta pressure reading is converted to a normalized pressure differential using equations set forth in the above referenced SAE paper and these are used to determine when the particulate filter trap needs to be regenerated in order to remove the soot in the trap.
The particulate filter, having a high efficiency, also traps ash, which comes from high ash lubricating oil, excessive oil consumption, and the use of high ash fuels, such as biodiesel. As ash gradually accumulates in the particulate filter, the delta pressure signal at a given soot load will be higher. This consequence is a result of ash occupying space in the inlet channels of the particulate filter, leaving less surface or volume for soot distribution providing an obstruction to gas flow that increases the pressure drop across the particulate filter.
Overall, ash accumulation is generally a slow process. Total exhaust system back pressure due to ash starts to become noticeable in the regeneration intervals generally above 2,500 hours of engine operation for engines having a power output of greater than 130 kilowatts (174 HP). For engines having lower than 130 kilowatts output, the ash effect can occur above 1,500 hours. In addition to the indication of more frequent regeneration of the particulate filter, the accumulation of ash affects the engine performance overall due to increasing back pressure. Without any compensation for ash loading, the time interval between regeneration starts to decrease, since the system typically determines whether regeneration should occur based on delta pressure. In addition to the ash loading having an effect on regeneration intervals, it also can affect the service life of the particulate filter, that is the point at which the filter needs to have accumulated ash removed therefrom.
What is needed in the art, therefore, is a method for reliably predicting the service life of a particulate filter in an internal combustion engine system.
The present invention provides a method for determining the service life of a particulate filter receiving products of combustion from and filtering particles from an air breathing, fuel consuming combustion engine including the steps of determining the normalized current pressure differential across the particulate filter, determining the normalized pressure differential across the particulate filter for clean conditions, and subtracting the clean pressure differential across the particulate filter from the current pressure differential across the particulate filter and dividing by the time between regeneration to determine a current factor. A maximum factor is predetermined and compared to the current factor to determine service life of the particulate filter.
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of an embodiment of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate one embodiment of the invention and such exemplification is not to be construed as limiting the scope of the invention in any manner.
Referring now to the drawings, and more particularly to
The combustion events cause power to be applied to the output shaft 14 and the products of combustion are discharged through an exhaust manifold 26 and exhaust line 28, typically through a turbine 30 of a turbocharger 32. From the turbine 30, the exhaust gasses pass to a particulate filter 36 and, from there, through appropriate exhaust line 38 to the ambient. Turbine 30 is connected to a shaft 44, which drives a compressor 42 that pressurizes air received from ambient air intake line 40 for discharge through line 46 and through an after cooler 48. After cooler 48 may take a number of forms, including air-to-air or liquid-to-air but the object of both is to cool the pressurized air to increase its density and, therefore, increase available power in the cylinders 16 of engine 12. The air output from after cooler 48 connects with a line 24 extending to intake manifold 18 for combustion air.
Engine 12 has a fuel system diagrammatically illustrated at 58 which supplies fuel in measured quantities and controlled times to the cylinders 16 of engine 12 for combustion. For a diesel form of engine 12, fuel system has a series of injectors that inject measured quantities of fuel into cylinders 16 at precise timing to cause combustion due to the heat of compression of the inlet air. Fuel system 58 receives sensor inputs from a number of engine operating parameters and is controlled via line or lines 60 from an electronic control unit 62 to control the fuel quantity and timing as appropriate for the duty cycle of engine 12.
In order to meet emission requirements, a line 50 is fluidly connected to the exhaust manifold 26, or other portion of the exhaust system, and leads preferably to an EGR cooler 52 and, from there, to an EGR valve 54, which controls discharge of a portion of the exhaust gasses via line 56 to intake line 24. In typical fashion, the EGR valve 54 is controlled by line 64 extending to ECU 62. The use of EGR enables the engine 12 to meet NOx emissions limits but it typically generates other emissions and, among those, are particulates, which are filtered by the particulate filter 36. Particulate filter 36 accumulates particulates and it thus becomes necessary to periodically regenerate the filter by manipulating engine variables to increase the temperature in line 34 leading to particulate filter 36 or to add additional heat in the form of heaters or hydrocarbon fuels to raise the temperature of the particulate filter sufficiently such that particles are burned off. Such triggering is provided by a delta pressure sensor 80, having a line 82 connected to line 34 upstream of the particulate filter and a line 84 connected to line 38 downstream of the particulate filter. The signal thus generated is fed via line 86 to ECU 62 in order to signal engine operating conditions are to be changed to begin a regeneration process.
As engine 12 operates over its service life, it reaches a point where ash accumulates within the filter and begins to affect the delta pressure reading to indicate a higher than expected pressure differential which, in turn, causes regeneration to occur more frequently and which ultimately could lead in harm to the particulate filter 36. In accordance with the present invention, the method described in
Referring to
In step 112, the particulate filter regeneration occurs and, in step 114, if regeneration is finished, step 116 provides a current normalized clean particulate filter delta pressure value and a factor Ψ=(γ−δ)/τ. In step 118, it is determined whether the factor ΨAVG is preset/equal to a nominal value. If it is not, then, in step 120, the average factor ΨAVG is set to be equal to Ψ and step 122 proceeds to calculate the average between Ψ and ΨAVG. If the factor ΨAVG is preset/equal to the nominal value, then, in step 122, the average factor ΨAVG is equal to (ΨAVG+Ψ)/2 to average the two. In step 124, it is determined whether ΨAVG is equal to the Ψ limit, which is provided empirically in step 126. If Ψ is less than Ψ limit, then the time interval τ in step 128 is reset to zero. If the factor Ψ exceeds Ψ limit from step 126, then, in step 130, the particulate filter 36 is replaced or serviced and the factor ΨAVG is reset to the nominal value.
In the method shown in
In step 228, the factor is compared to the limit set in 230. If the factor Ψ is less than Ψ limit, then the time interval in step 232 is set to zero. If the factor ΨAVG is greater than or equal to the Ψ limit in step 228, the particulate filter is replaced or serviced and the factor ΨAVG is reset to a nominal value. The time interval τ is also reset to zero.
The advantage of the above methods is to take into account the accumulation of ash in the particulate filter 36 so as to make replacement or servicing of the particulate filter 36 at a time that prevents harm to the particulate filter 36 due to overly frequent regeneration.
While this invention has been described with respect to at least one embodiment, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5858044 | Nepsund et al. | Jan 1999 | A |
5968371 | Verdegan et al. | Oct 1999 | A |
6193883 | Kroner et al. | Feb 2001 | B1 |
6334950 | Bogacki et al. | Jan 2002 | B1 |
6622480 | Tashiro et al. | Sep 2003 | B2 |
6928809 | Inoue et al. | Aug 2005 | B2 |
7157919 | Walton | Jan 2007 | B1 |
7243489 | Johnson et al. | Jul 2007 | B2 |
7552799 | Sherrington | Jun 2009 | B2 |
8214135 | Nevin et al. | Jul 2012 | B2 |
20050150214 | Crawley et al. | Jul 2005 | A1 |
20070006577 | Yokoyama et al. | Jan 2007 | A1 |
20070056270 | Liimatta et al. | Mar 2007 | A1 |
20070056272 | Dollmeyer et al. | Mar 2007 | A1 |
20070209333 | Kondou | Sep 2007 | A1 |
20070251214 | Nishino et al. | Nov 2007 | A1 |
20100126145 | He et al. | May 2010 | A1 |
Entry |
---|
European Search Report dated Sep. 25, 2012 for related European Application No. 11183346. |
Number | Date | Country | |
---|---|---|---|
20120084018 A1 | Apr 2012 | US |