1. The Field of the Invention
This invention relates to systems, methods and apparatus for partitioning spaces with tiles, or otherwise treating existing structures with tiles.
2. Background and Relevant Art
The fields related to architectural design typically involve creative application of materials and structures in a given space with both aesthetic and functional considerations. In this regard, one particular area of interest in architectural design relates to partitioning spaces, such as materials and apparatus for use as one or more wall, ceiling, or floor structures, and/or treatments regarding the same. Often, the considerations made in partitioning or decorating a given space depend on the available materials, and associated costs. For example, conventional building materials used in structural partitions or treatments include drywall, fabrics, metals, wood, glass, and/or various masonry.
Recent developments in architectural design, however, now include the use of resin materials as building materials. Some common resin materials used as building materials now include materials such as acrylonitrile butadiene styrene or “ABS”, polyvinyl chloride or “PVC”; polyacrylate materials such as poly(methyl methacrylate) or “PMMA” (also known as acrylic); polyester or copolyester based materials such as poly(ethylene terephthalate), “PET,” either modified or unmodified with 1 to 99 mole percent of a diol or combination of diols, such as ethylene glycol, neopentyl glycol or cyclohexanedimethanol, or “PETG” and “PCTG”; as well as polycarbonate resin based materials, acrylic, and any combinations thereof.
In general, resin materials can provide a number of advantages over conventional building materials such as drywall, glass, etc. in terms of cost (e.g., compared with glass) as well as formability and reuse. At the outset, for example, resin materials tend to be far less expensive in most applications than materials such as glass or the like, where certain structural, optical, and aesthetic characteristics are desired. In addition, resin materials tend to be far more flexible in terms of manufacture and assembly, since resin materials can also be bent, molded, colored, shaped, cut and modified many different ways, and still reused in place of conventional materials at a later point much more easily than conventional counterparts.
Notwithstanding such advantages, however, designers have in the past tended to use resin materials primarily as decorative replacements for conventional structures such as doors, panels, or windows. For example, rather than using a metal or wooden door, the designer might implement a resin panel door in place thereof, or might even implement a resin treatment to the door. In other cases, the designer might replace a given window with a resin panel that includes one or more decorative objects. In cases where a rigid structure may be less useful, however, such as with a curtain or accordion-style partition, resin materials have not typically been used as replacement materials. This may be because resin materials in the architectural design fields tend to be manufactured and implemented primarily as large, rigid panels, which may not be readily suited for such flexible partitioning.
Nevertheless, flexible partitioning such as this is becoming more important, particularly in many newer designs where space considerations are a premium. (In some such spaces, even slidable panels may be too inflexible and space consuming, whether for receiving the given panels from one area to the next, or potentially due to the room taken up by the ceiling and/or floor track hardware.) Despite this increased importance, there has been little change in design of such collapsible/variable partitions, as well as change in materials using such partitions. Rather, collapsible or variable partitions tend to rely on conventional curtains or accordion-style partitions, which, in turn, rely on textile-based materials, or materials/structures that have not heretofore lent themselves to using decorative resin-based materials.
In addition, such collapsible/variable structures tend to provide an all or nothing approach in terms of partitioning a space for light and sound. There are other types of variable partitions that might variably allow some pass through of light and/or sound without having to be removed, such as hanging blinds that are rotated in one direction or another, or even hanging materials such as beads. Structures such as these, however, tend to be either too freely rotatable along a vertical line of components/materials, or constrained so that each line of component/material rotates in precisely the same alignment as all of the other vertical lines of component/material in the partition. Thus, such structures tend to be either too variable, or not variable enough for a wide range of decorative and/or structural applications.
Accordingly, there are a number of disadvantages in present partitions that can be addressed, particularly where the needs for both variability and uniformity in presentation and function may be desired at the same time as dealing with a constrained space.
Implementations of the present invention provide systems, methods, and apparatus configured to partition a space, or otherwise provide a treatment to a structure, such as a window, ceiling, floor, or wall structure. In one implementation, a tile partition, also referred to as a tile curtain, comprises sets of tiles joined vertically in a staggered row formation, with half-tiles positioned at extreme horizontal edges of every other row. In one implementation, such a configuration allows tiles in the tile partition to be positioned with a flat interface, or angled and/or compressed in a uniform manner, simply by aligning one of the tiles in the partition.
For example, a decorative partition with variable tiles in accordance with an implementation of the present invention can include a plurality of tiles aligned in a plurality of different tile rows, where each tile in each row of tiles is connected by a plurality of tile connectors to one or more tiles in a next adjacent tile row above or below. In this partition, the tiles in each tile row of the plurality of tile rows are generally configured to rotate in the same direction upon rotation of any particular tile in the tile row. In addition, the tiles in the next adjacent tile row above or below are generally configured to rotate in an opposing direction upon rotation of the particular tile in the tile row that is above or below.
In addition, another decorative partition with variable-angle tiles in accordance with an implementation of the present invention can include a row of decorative tiles of one or more shapes. The partition can also include an adjacent row of decorative tiles of one or more shapes, where the adjacent row of decorative tiles are connected to the row of decorative tiles with a set of rotatable tile connectors. In addition, the partition can include a next row of decorative tiles of one or more shapes, where the next row of decorative tiles are connected to the adjacent row of decorative tiles with a set of rotatable tile connectors. In this partition, each tile is connected either directly or indirectly to each other tile in the partition, so that rotation of any tile in the partition causes at least some of the tiles to rotate in one direction, and the remainder of the tiles to rotate in an opposing direction.
Furthermore, a method of providing a variable barrier or partition to an interior space with variable light or sound diffusion characteristics can include aligning a plurality of tiles in a tile row. The method can also include vertically connecting a plurality of tiles in a next row to the tile row with at least two tile connectors per tile on one of a facing or rearward side. In addition, the method can include vertically connecting a plurality of tiles in a further row to the next row with at least two tile connectors per tile on the other of the facing or rearward sides. Furthermore, the method can include aligning one of the plurality of tiles in any of the tile rows by an amount in a direction, where at least some of the tiles in the partition automatically change direction in the direction, while the rest of the tiles rotate in an opposing direction proportional to the amount.
Additional features and advantages of exemplary implementations of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by the practice of such exemplary implementations. The features and advantages of such implementations may be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims. These and other features will become more fully apparent from the following description and appended claims, or may be learned by the practice of such exemplary implementations as set forth hereinafter.
In order to describe the manner in which the above-recited and other advantages and features of the invention can be obtained, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
FIG. 2C1-2 illustrate alternating facing and side views of an upper connector element used in either the left or right-handed connector of
FIG. 2D1-2 illustrate alternating facing and side views of a lower connector element used in either the left or right-handed connector of
The present invention extends to systems, methods, and apparatus configured to partition a space, or otherwise provide a treatment to a structure, such as a window, ceiling, floor, or wall structure. In one implementation, a tile partition, also referred to as a tile curtain, comprises sets of tiles joined vertically in a staggered row formation, with half-tiles positioned at extreme horizontal edges of every other row. In one implementation, such a configuration allows tiles in the tile partition to be positioned with a flat interface, or angled and/or compressed in a uniform manner, simply by aligning one of the tiles in the partition.
Accordingly, and as will be understood more fully herein, implementations of the present invention provide a number of benefits for decorative architectural partitions at least in terms of materials, designs, and uses thereof. For example, implementations of the present invention provide a unique partition structure that can highlight the decorative capabilities of certain materials, such as resin materials. In addition, implementations of the present invention provide the ability to variably partition a given space with rigid materials that are uniformly aligned, and that can be sensitive to various space constraints. In particular, the structure can be moved or collapsed without necessarily requiring the partition to be slid/moved along a track from one end to the next. Furthermore, implementations of the present invention provide structures that can be readily altered for various optical and/or sound effects in a given space or set of spaces.
In particular, each exemplary partition can comprise a set of interconnected tiles (e.g., 3, 7), which, in turn, comprise virtually any number or combination of glass, wood, drywall, metal, granite, ceramic materials, and/or resin material. For the purposes of this invention, however, resin materials will be used more commonly, such as resin-based tiles comprising one or more of acrylonitrile butadiene styrene or “ABS”, polyvinyl chloride or “PVC”; polyacrylate materials such as poly(methyl methacrylate) or “PMMA” (also known as acrylic); polyester or copolyester based materials such as poly(ethylene terephthalate), “PET,” either modified or unmodified with 1 to 99 mole percent of a diol or combination of diols, such as ethylene glycol, neopentyl glycol or cyclohexanedimethanol, or “PETG” and “PCTG”; as well as polycarbonate resin based materials, acrylic, and any combinations thereof.
In addition to the various types of materials used, virtually any shape and configuration of tile 3, 7 can be used within a given partition as long as given tile can fit and rotate within a particular profile (e.g., consistent with the generalized profile of other tiles in the partition). For example, FIGS. 1 and 3A-3B illustrate a partition 5a that incorporates essentially rectangular tiles 3, 7, while
In addition,
In any case,
In any event,
Along these lines,
To join the two elements 30, 35 together,
FIGS. 2C1, 2C2, 2D1, and 2D2 illustrate still additional details of the upper and lower elements 30, 35. For example, and as previously mentioned, FIG. 2C1 shows that the upper element 30 comprises a frame 31 having a slot 33 formed therein for interlocking the upper element 30 with the lower element 35. FIGS. 2C1 and 2C2 further show that the upper element 30 comprises a lower lip extension 34, which comprises a planar portion that is essentially parallel with the general plane of the main frame 31. Similarly, FIG. 2D1 shows that the lower element 35 comprises a main frame 37 as well as an essentially perpendicular extension 39. In a facing view (FIG. 2D1), the main frame 37 of lower element 35 comprises an essentially U-shaped perforation/hollow portion, which is open-ended at a point in which extension 39 deviates outwardly (e.g., FIG. 2D2) from the predominate plane/axis of the main frame 37.
In combination, therefore, one will appreciate that the lower lip extension 34 of upper element 30, and the extension 39 of lower element 35, form a complementary, rotatable attachment interface that provides the lower and/or upper elements 30, 35 with significant rotational freedom. For example, holding lower element 35 fixed in connector 20a, a user can rotate upper element 30 from left to right (and vice versa) about 180°. Similarly, holding lower element 35 fixed in connector 20b, the user can rotate upper element 30 from right to left (and vice versa) about 180°.
Along these lines,
One will appreciate that this rotational freedom of the attachment interface can, therefore, be exploited in conjunction with the alternating configuration of tile connector rows 15 to provide the tile partition 5 with a number of benefits. As previously described, such benefits include not only positional variability of tiles, and collapsibility of the partition, but also uniformity in rotation of each tile in a tile row. For example, the above-described rotational freedom of each tile connector 20 generally ensures that each tile in each tile row 10 can be rotated in a highly variable and configurable manner from about 0° to about 180°.
In addition, the above-described alternating attachment scheme ensures that each tile in the entire partition is effectively connected (directly or indirectly) to each other tile. Thus, rotating any given tile in a tile row means that all other tiles in that tile row will rotate in the same direction. Furthermore, rotating the given tile in the tile row means that each set of full-tiles 7 in a vertically adjacent tile row will rotate in an opposing direction by a proportional amount.
More specifically, a user turns the upper left most tile 3, 7 of row 10a, which in turn causes the lower half-tiles 3 in tile row 10b to rotate an effectively proportional amount in the same direction, but otherwise causes the lower full-tiles 7 in tile row 10b to rotate an effectively proportional amount in an opposing direction. This rotation by tiles 3, 7 in row 10b further translates to rotation of the other connected tiles 3, 7 vertically above and below in row 10a and throughout the rest of the tile partition. As a result—and although there will be at least some give from one tile 3, 7 to the next due to rotational freedom in each tile connector 20—
In addition, due at least in part to the rotational freedom of each tile connector 20 in partition 5, a user can angle the tiles 3, 7 so that the partition 5 has anywhere from a full, planar configuration (e.g.,
Of course, one will appreciate that the degree to which any given partition 5 can be made fully planar or fully collapsed, can depend on a number of other factors besides just the rotational capabilities of the tile connectors 20. Such additional factors that can affect partition 5 orientation/conformation can include the number or spacing of rotatable hanging apparatus 13 used to hang or mount the partition 5 on a support structure, as well as the shape of the various tiles 3, 7. For example,
In one implementation, the hanger apparatus 13 (and any other connection described herein) can further comprise one or more rivet structures, including stainless steel blind rivets, such as custom, stainless steel “Cherry Mate” (two part) rivets that join the hanger apparatus 13 to the tiles 3, 7. Of course, one will appreciate that the hanger apparatus 13 can be much more complex, and can include components configured to join or align the tile partition 5 with mechanized alignment means. However configured, the hanger apparatus 13 will generally include means for ensuring that the attached tiles 3, 7 can rotate a desired degree sufficient for the conformation of the overall partition 5, such that the hanger apparatus 13 provides a rotational capability of up to about 180°.
In each case, the manufacturer may implement a relatively small number of rotatable hanger apparatus 13 (i.e., one or fewer hanger apparatus 13 per tile 3, 7) that are spaced widely apart to maximize the ability of the tile partition 5 to contract or expand along the support structure. By contrast, the manufacturer may implement the hanger apparatus 13 with shorter spacing—or even randomized spacing—therebetween for aesthetic or structural effects (and difference in ability to fold/contract) even if only in portions of the partition. As previously mentioned, shorter spacing between hanger apparatus 13 will tend to constrain the ability of the partition to collapse at that point.
For example,
Accordingly,
Along these lines, a user may desire to use the variable tile partition in a setting in which optical properties and/or acoustic/sound properties in a given space may need to be varied. One will appreciate that there are a number of ways in which the tile partition described herein can be used to facilitate such diffusion on a fairly granular basis. With respect primarily to optical diffusion, for example, the tiles 3, 7 in any given partition 5 can be opaque, whereby opening and closing the tiles 3, 7 is at least one way to diffuse light passing through to another side of the partition. (This is also true for diffusing sound, though the opacity of a given tile will typically have no effect on sound blocking.)
Alternatively, at least some of the tiles 3, 7 are translucent to a degree, or otherwise are transparent but include decorative objects inside that at least partially block light. In such cases, both the relative translucence of the tiles, as well as the degree to which the tiles are opened or shut, can have an effect on the light diffusion characteristics. Furthermore, the shape of the given tiles 3, 7 may lend themselves more to blocking or passing light or sound through in various planar or angled configurations.
Accordingly, a user who desires to create variable lighting or sound effects in a given space can create/position the tile partition (and may choose specific tile shapes to enable a particular effect), and then adjust the partition to suit a particular light diffusion value. For example, one method in accordance with an implementation of the present invention includes aligning a plurality of particularly shaped tiles 3, 7 in a tile row 10 (e.g., 10a). The method also includes vertically connecting a plurality of tiles 3, 7 in a next row 10 (e.g., 10b) to the tile row 10 with at least two tile connectors per tile 3, 7 on one of a facing or rearward side.
In addition, this method can include vertically connecting a plurality of tiles 3, 7 in a further row 10 to the next tile row 10 with at least two tile connectors per tile 3, 7 on the other of the facing or rearward sides. Furthermore, the method can include aligning one of the plurality of tiles 3, 7 in any of the tile rows 10 by an amount in a direction. As previously described, this will mean that at least some of the other tiles 3, 7 automatically change orientation in the same direction, and at least some (e.g., the remainder) of the tiles change in an opposing direction proportional to the amount (e.g.,
With respect to the above-mentioned optical characteristics, the method can further include positioning the variable partition on one side of a light or sound/acoustic source, and identifying a desired lighting or sound value on a side (e.g., of the variable partition opposite the light/sound source). The user can then align one of the tiles 3, 7 in accordance with the desired lighting/sound value, whereby the amount of alignment of the one tile 3, 7 causes the entire variable partition 5 to diffuse light/sound projected by the light/sound source, and thereby create the desired lighting/sound value on the opposing side. Of course, light/sound can also be diffused on the same side as the light/sound source.
For example, the partition(s) 5 in accordance with an implementation of the present invention can be particularly suited as treatments to walls or ceilings in an arena (e.g., concert room/hall) where certain acoustic effects are desired. As with the description above, the user can align each partition 5 where appropriate adjacent each wall or ceiling, and then rotate one or more of the tiles 3, 7 by a determined amount that corresponds to a particularly determined acoustic diffusion value. An advantage of the present invention, therefore, is that, if any particular tile 3, 7 adjustment fails to achieve the appropriate diffusion values, a user can easily adjust any one or more of the tiles 3, 7 in the partition 5 until such desired sound/acoustic/optical diffusion properties are met with the entire partition.
Accordingly, the present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
The present invention is a U.S. National Stage Application corresponding to PCT Application No. PCT/US07/87641, filed on Dec. 14, 2007, entitled “PARTITION WITH VARIABLE-ANGLE TILES,” which claims the benefit of U.S. Provisional Patent Application No. 60/869,996, filed on Dec. 14, 2006, entitled “TILE CURTAIN.” The entire contents of each of the aforementioned applications is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2007/087641 | 12/14/2007 | WO | 00 | 1/2/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/076923 | 6/26/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1487794 | Melaun | Mar 1924 | A |
2917188 | Menin | Dec 1959 | A |
2970396 | Worrell | Feb 1961 | A |
2993604 | Sullivan | Jul 1961 | A |
3456711 | Spencer | Jul 1969 | A |
3654982 | Labelle | Apr 1972 | A |
D422797 | Vincent | Apr 2000 | S |
D509573 | Reid et al. | Sep 2005 | S |
Number | Date | Country | |
---|---|---|---|
20100101738 A1 | Apr 2010 | US |
Number | Date | Country | |
---|---|---|---|
60869996 | Dec 2006 | US |