1. Field
The present disclosure relates generally to a heatsink for a light-emitting diode (LED) bulb, and more specifically to a partitioned heatsink for improved cooling of different components of an LED bulb.
2. Description of Related Art
Traditionally, lighting has been generated using fluorescent and incandescent light bulbs. While both types of light bulbs have been reliably used, each suffers from certain drawbacks. For instance, incandescent bulbs tend to be inefficient, using only 2-3% of their power to produce light, while the remaining 97-98% of their power is lost as heat. Fluorescent bulbs, while more efficient than incandescent bulbs, do not produce the same warm light as that generated by incandescent bulbs. Additionally, there are health and environmental concerns regarding the mercury contained in fluorescent bulbs.
Thus, an alternative light source is desired. One such alternative is a bulb utilizing an LED. An LED comprises a semiconductor junction that emits light due to an electrical current flowing through the junction. Compared to a traditional incandescent bulb, an LED bulb is capable of producing more light using the same amount of power. Additionally, the operational life of an LED bulb is orders of magnitude longer than that of an incandescent bulb, for example, 10,000-100,000 hours as opposed to 1,000-2,000 hours.
The lifetime and performance of an LED bulb depends, in part, on its operating temperature. The lifetime of the LED bulb driver circuit may limit the overall lifetime of the LED bulb if the driver circuit operates at high temperature for long periods of time. Similarly, the lifetime of the LEDs that produce the light may be reduced by excessive heat. Additionally, high operating temperatures can reduce the light output of the LEDs.
While both the driver circuit and LEDs are sensitive to high operating temperatures, these components are also responsible for generating heat. LEDs are about 80% efficient, meaning that 20% of power supplied to LEDs is lost as heat. Similarly, the driver circuit that supplies current to the LED is about 90% efficient, meaning that 10% of the power supplied to it is lost as heat.
The operating temperature of an LED bulb depends on many factors. For example, each individual LED produces heat. Therefore, the number and type of LEDs present in the bulb may affect the amount of heat the LED bulb produces. Additionally, driver circuitry may also produce significant amounts of heat.
Other factors may determine the rate at which generated heat is dissipated. For example, the nature of the enclosure into which the LED bulb is installed may dictate the orientation of the LED bulb, the insulating properties surrounding the LED bulb, and the direction of the convective air stream flowing over the LED bulb. Each of these factors may have a dramatic effect on the buildup of heat in and around the LED bulb.
Accordingly, LED bulbs may require cooling systems that account for the different sources of heat, the ability of components to withstand elevated temperatures, and the variables associated with the dissipation of heat.
One embodiment of an LED bulb has a shell. An LED is within the shell. The LED is electrically connected to a driver circuit, which is electrically connected to a base of the LED bulb. The LED bulb also has a heatsink between the shell and base. A thermal break partitions the heatsink into an upper partition adjacent the shell and a lower partition adjacent the base.
The following description is presented to enable a person of ordinary skill in the art to make and use the various embodiments. Descriptions of specific devices, techniques, and applications are provided only as examples. Various modifications to the examples described herein will be readily apparent to those of ordinary skill in the art, and the general principles defined herein may be applied to other examples and applications without departing from the spirit and scope of the various embodiments. Thus, the various embodiments are not intended to be limited to the examples described herein and shown, but are to be accorded the scope consistent with the claims.
Heatsink 102 may be made of any materials that exhibit suitable thermal conductivity. For example, metals such as aluminum or copper are often used for heatsink applications. In this exemplary embodiment, a plurality of fins 120 increases the surface area of the heatsink and helps dissipate heat generated by LED bulb 100 into the surrounding environment. Heatsink 102 may be shaped to make LED bulb 100 resemble a common A19 bulb form factor.
Thermal break 104 may be made by cutting or otherwise removing a portion of heatsink 102 to create a void. Alternatively, heatsink 102 may be fabricated, using metal casting or other suitable manufacturing processes, with thermal break 104 in place.
Thermal break 104 may be maintained with a thermally insulting material that completely or partially fills thermal break 104. For example, as depicted in
Referring back to
Driver circuit 110, which is located substantially within bulb base 112, controls the drive current delivered to LEDs 114 that are mounted on LED mounts 116, which are disposed within shell 118. LED mounts 116 may help transfer heat from LEDs 114 to heatsink 102. LED mounts 116 may be formed as part of heatsink 102. Alternatively, LED mounts 116 may be formed separate from heatsink 102, but are still thermally coupled to heatsink 102. As another alternative, LED mounts 116 may be omitted, and the LEDs 114 may be mounted to heatsink 102 to thermally couple LEDs 114 to upper partition 106.
Thermal vias or a metal core printed circuit board (PCB) may facilitate heat transfer from drive circuit 110 to heatsink 102 at position 122. For example, in this exemplary embodiment, driver circuit 110 may produce less heat than LEDs 114, but driver circuit 110 may also be more sensitive to high temperatures. Specifically, driver circuit 110 may be able to operate in temperatures up to 90° C. without damage, but LEDs 114 may be able to operate in temperatures up to 120° C. without damage. Additionally, LEDs 114 may be able to dissipate some heat out of shell 118, especially if shell 118 is filled with a thermally conductive liquid. Therefore, in this exemplary embodiment, thermal break 104 is placed to allocate the majority of heatsink 102 in the form of lower heatsink partition 108 to cooling driver circuit 110. The rest of heatsink 102 is allocated to cooling LEDs 114 in the form of upper heatsink partition 106.
In addition to allocating partitions of heatsink 102 to driver circuit 110 and LEDs 114, thermal break 104 may also prevent heat from LEDs 114 from affecting driver circuit 110. Without thermal break 104, heat from LEDs 114 may degrade or damage driver circuit 110 because LEDs 114 typically produce more heat than driver circuit 110, and driver circuit 110 is typically more sensitive to heat than LEDs 114.
As compared to heatsink 102 (
Although a feature may appear to be described in connection with a particular embodiment, one skilled in the art would recognize that various features of the described embodiments may be combined. Moreover, aspects described in connection with an embodiment may stand alone.
Number | Date | Country | |
---|---|---|---|
Parent | 13068867 | Jul 2011 | US |
Child | 13543713 | US |