Several previous in vitro co-culture systems have been developed to study interaction and selective uptake of substances such as nanoparticles with various cell types. However, these systems make it relatively difficult to incorporate more than two cell types, and additional labeling techniques must be employed to distinguish various cell types. Thus, there is a need in the art for improved systems and methods for studying selective uptake of substances by cell cultures.
Various implementations of competitive assay platforms can be used to study selective uptake of substances (e.g., nanoparticles, drugs, heavy metals, chemicals) in three dimensional (3D) cultures. In some implementations, the platform includes a partitioning device that divides a volume of a well into multiple compartments for receiving different 3D cultures. In certain implementations, the partitioning device is separately formed from and fits into a well of a standard cell culture well plate or other type of well structure. In other implementations, the partitioning device is integrally formed with the well surfaces (e.g., a bottom surface and side surface(s) of the well are integrally formed in one molding process with the partitioning device). In some implementations, the partitioning device is made of biocompatible polymers (e.g., poly(lactic acid) (PLA)). And, in some implementations, the partitioning device may be made using additive manufacturing. A substance, such as nanoparticles, may be introduced into the well to evaluate selective uptake of the substance by the 3D cultures. Because of its broad utility, this platform can be easily adapted with standard culture substrates in a range of tissue-like environments and, thus, can be readily utilized by laboratories studying nanoparticle-cellular interactions.
In addition, this technology could be broadly applied for fundamental studies of preferential cellular decisions in physiologically relevant 3D environments.
Various implementations include a partitioning device for creating at least three separate three-dimensional cultures for studying selective uptake of a substance in the cultures. The partitioning device is disposable in a well that is defined by a bottom surface through which a central axis of the well extends and at least one side surface that extends axially from the bottom surface. The partitioning device includes a first wall, a second wall, and a third wall.
The first wall portion has an upper edge, a lower edge, a first side edge, a second side edge, and first and second divider surfaces. The upper and lower edges are opposite and spaced apart from each other, the first and second side edges are opposite and spaced apart from each other, and the first and second divider surfaces are opposite and spaced apart from each other and extend between the upper and lower edges and the first and second side surfaces.
The second wall portion has an upper edge, a lower edge, a first side edge, a second side edge, and first and second divider surfaces. The upper and lower edges of the second wall portion are opposite and spaced apart from each other, the first and second side edges of the second wall portion are opposite and spaced apart from each other, and the first and second divider surfaces of the second wall portion are opposite and spaced apart from each other and extend between the upper and lower edges and the first and second side surfaces of the second wall portion.
The third wall portion has an upper edge, a lower edge, a first side edge, a second side edge, and first and second divider surfaces. The upper and lower edges of the third wall portion are opposite and spaced apart from each other, the first and second side edges of the third wall portion are opposite and spaced apart from each other, and the first and second divider surfaces of the third wall portion are opposite and spaced apart from each other and extend between the upper and lower edges and the first and second side surfaces of the third wall portion.
The lower edge of the first, second, and third wall portions are disposable on a bottom surface of a well. The first side edges of the first, second, and third wall portions are disposable against at least one side surface of the well. The first and second divider surfaces of the first, second, and third wall portions at least partially define first, second, and third compartments.
In some implementations, the second side edges of the first, second, and third wall portions intersect each other.
In some implementations, the first side edges of the first, second, and third wall portions are coupled to each other by a coupling wall, the coupling wall being disposable against at least one side surface of the well.
In some implementations, the partitioning device further includes a center wall having a perimeter forming a closed shape, and the center wall is sealingly disposable between the second side edges of the first, second, and third wall portions.
In some implementations, each of the first wall portion, the second wall portion, and the third wall portion are planar.
In some implementations, the first wall portion, the second wall portion, and/or the third wall portion are integrally formed.
In some implementations, the partitioning device further includes a fourth wall portion. The fourth wall portion has an upper edge, a lower edge, a first side edge, a second side edge, and first and second divider surfaces. The upper and lower edges of the fourth wall portion are opposite and spaced apart from each other, the first and second side edges of the fourth wall portion are opposite and spaced apart from each other, and the first and second divider surfaces of the fourth wall portion are opposite and spaced apart from each other and extend between the upper and lower edges and the first and second side surfaces of the fourth wall portion. The first side edge of the fourth wall portion is disposable against at least one side surface of the well, and first and second divider surfaces of the first, second, third, and fourth wall portions at least partially define the first, second, and third compartments and a fourth compartment.
In some implementations, the partitioning device comprises a biocompatible material. In some implementations, the biocompatible material comprises a polymer. In some implementations, the biocompatible material comprises polylactic acid. In some implementations, the biocompatible material comprises polycaprolactone.
In some implementations, the partitioning device comprises a non-biocompatible material.
In some implementations, the compartments have equal volumes.
In some implementations, the wall portions of the partitioning device are solid.
In some implementations, the wall portions of the partitioning device prevent flow of a pourable culture substrate between the compartments. In some implementations, the wall portions of the partitioning device comprise one or more openings through which uptake materials flow between the compartments. In some implementations, the wall portions of the partitioning device comprise a membrane through which uptake materials flow between the first and second compartments.
In some implementations, the partitioning device is created using additive manufacturing.
In some implementations, the partitioning device further includes at least one well. The at least one well is defined by a bottom surface through which a central axis extends and at least one side surface extending axially from the bottom surface. The first, second, and third wall portions are disposed within the well. In some implementations, the lower edges of the first, second, and third wall portions are disposed against the bottom surface of the well, and the first side edges of the first, second, and third wall portions are disposed in contact with at least one side surface of the well.
In various other implementations, a competitive assay system includes at least one well and a partitioning device. The at least one well is defined by a bottom surface through which a central axis extends and at least one side surface extending axially from the bottom surface.
The partitioning device is disposed within the at least one well. The partitioning device includes a first wall, a second wall, and a third wall. The first wall portion has an upper edge, a lower edge, a first side edge, a second side edge, and first and second divider surfaces. The upper and lower edges are opposite and spaced apart from each other, the first and second side edges are opposite and spaced apart from each other, and the first and second divider surfaces are opposite and spaced apart from each other and extend between the upper and lower edges and the first and second side surfaces.
The second wall portion has an upper edge, a lower edge, a first side edge, a second side edge, and first and second divider surfaces. The upper and lower edges of the second wall portion are opposite and spaced apart from each other, the first and second side edges of the second wall portion are opposite and spaced apart from each other, and the first and second divider surfaces of the second wall portion are opposite and spaced apart from each other and extend between the upper and lower edges and the first and second side surfaces of the second wall portion.
The third wall portion has an upper edge, a lower edge, a first side edge, a second side edge, and first and second divider surfaces. The upper and lower edges of the third wall portion are opposite and spaced apart from each other, the first and second side edges of the third wall portion are opposite and spaced apart from each other, and the first and second divider surfaces of the third wall portion are opposite and spaced apart from each other and extend between the upper and lower edges and the first and second side surfaces of the third wall portion.
The lower edge of the first, second, and third wall portions are disposed against the bottom surface of a well. The first side edges of the first, second, and third wall portions are disposed in contact with at least one side surface of the well. The first and second divider surfaces of the first, second, and third wall portions at least partially define first, second, and third compartments.
In some implementations, the second side edges of the first, second, and third wall portions intersect each other.
In some implementations, the first side edges of the first, second, and third wall portions are coupled to each other by a coupling wall, the coupling wall being disposable against at least one side surface of the well.
In some implementations, the partitioning device further includes a center wall having a perimeter forming a closed shape, and the center wall is sealingly disposable between the second side edges of the first, second, and third wall portions.
In some implementations, the partitioning device is separately formed from the side surface and bottom surface of the well such that the partitioning device is removably disposable within the well.
In some implementations, each of the first, second, and third wall portions of the partitioning device are planar.
In some implementations, the partitioning device further includes a fourth wall portion. The fourth wall portion has a lower edge and an upper edge, first and second side edges, and first and second divider surfaces that are opposite and spaced apart from each other. The first side edge of the fourth wall portion is disposed in contact with at least one side surface of the well, and the divider surfaces of the wall portions define the first, second, and third compartments and a fourth compartment.
In some implementations, the partitioning device comprises a biocompatible material. In some implementations, the biocompatible material comprises a polymer. In some implementations, the biocompatible material comprises polylactic acid. In some implementations, the biocompatible material comprises polycaprolactone.
In some implementations, the partitioning device comprises a non-biocompatible material.
In some implementations, the compartments have equal volume.
In some implementations, the wall portions of the partitioning device are solid.
In some implementations, the partitioning device is integrally formed with at least one side surface and/or bottom surface of the well.
In some implementations, the wall portions of the partitioning device prevent flow of a pourable culture substrate between the compartments. In some implementations, the wall portions of the partitioning device comprise one or more openings that allow for the flow therethrough of an uptake substance between the compartments. In some implementations, the wall portions of the partitioning device comprise a membrane that allow for the flow therethrough of an uptake substance between the compartments.
In some implementations, the partitioning device is created using additive manufacturing.
Various other implementations include a method for creating a competitive assay system. The method includes (1) inserting a partitioning device into a well in a culture well plate. The well is defined by a bottom surface through which a central axis extends and at least one side surface extending axially from the bottom surface.
The partitioning device includes a first wall, a second wall, and a third wall. The first wall portion has an upper edge, a lower edge, a first side edge, a second side edge, and first and second divider surfaces. The upper and lower edges are opposite and spaced apart from each other, the first and second side edges are opposite and spaced apart from each other, and the first and second divider surfaces are opposite and spaced apart from each other and extend between the upper and lower edges and the first and second side surfaces.
The second wall portion has an upper edge, a lower edge, a first side edge, a second side edge, and first and second divider surfaces. The upper and lower edges of the second wall portion are opposite and spaced apart from each other, the first and second side edges of the second wall portion are opposite and spaced apart from each other, and the first and second divider surfaces of the second wall portion are opposite and spaced apart from each other and extend between the upper and lower edges and the first and second side surfaces of the second wall portion.
The third wall portion has an upper edge, a lower edge, a first side edge, a second side edge, and first and second divider surfaces. The upper and lower edges of the third wall portion are opposite and spaced apart from each other, the first and second side edges of the third wall portion are opposite and spaced apart from each other, and the first and second divider surfaces of the third wall portion are opposite and spaced apart from each other and extend between the upper and lower edges and the first and second side surfaces of the third wall portion.
The lower edge of the first, second, and third wall portions are disposed against the bottom surface of the well. The first side edges of the first, second, and third wall portions are disposed in contact with at least one side surface of the well. The first and second divider surfaces of the first, second, and third wall portions define first, second, and third compartments in the well.
The method further includes (2) inserting a first pourable culture substrate including a first culture within the first compartment, (3) inserting a second pourable culture substrate including a second culture within the second compartment, wherein the first culture is different than the second cell culture, (4) inserting a third pourable culture substrate comprising a third culture within the third compartment, wherein the first and second cultures are different than the third culture, (5) removing the partitioning device from the well after the pourable culture substrates have solidified, and (6) introducing an uptake substance inside the well such that the uptake substance contacts each of the solidified culture substrate.
In some implementations, the second side edges of the first, second, and third wall portions intersect each other.
In some implementations, the first side edges of the first, second, and third wall portions are coupled to each other by a coupling wall, and the coupling wall is disposable against at least one side surface of the well.
In some implementations, the partitioning device further includes a center wall having a perimeter forming a closed shape, wherein the center wall is sealingly disposable between the second side edges of the first, second, and third wall portions.
In some implementations, the partitioning device is created using additive manufacturing.
In some implementations, the first, second, and third cultures comprise cell cultures. In some implementations, the first, second, and third cultures comprise bacterial cultures.
In some implementations, the first, second, and third pourable culture substrates comprise hydrogels.
Various other implementations include a method for creating a competitive assay system. The method includes (1) providing a partitioning device in a well in a culture well plate. The well is defined by a bottom surface through which a central axis extends and at least one side surface extending axially from the bottom surface.
The partitioning device includes a first wall, a second wall, and a third wall. The first wall portion has an upper edge, a lower edge, a first side edge, a second side edge, and first and second divider surfaces. The upper and lower edges are opposite and spaced apart from each other, the first and second side edges are opposite and spaced apart from each other, and the first and second divider surfaces are opposite and spaced apart from each other and extend between the upper and lower edges and the first and second side surfaces.
The second wall portion has an upper edge, a lower edge, a first side edge, a second side edge, and first and second divider surfaces. The upper and lower edges of the second wall portion are opposite and spaced apart from each other, the first and second side edges of the second wall portion are opposite and spaced apart from each other, and the first and second divider surfaces of the second wall portion are opposite and spaced apart from each other and extend between the upper and lower edges and the first and second side surfaces of the second wall portion.
The third wall portion has an upper edge, a lower edge, a first side edge, a second side edge, and first and second divider surfaces. The upper and lower edges of the third wall portion are opposite and spaced apart from each other, the first and second side edges of the third wall portion are opposite and spaced apart from each other, and the first and second divider surfaces of the third wall portion are opposite and spaced apart from each other and extend between the upper and lower edges and the first and second side surfaces of the third wall portion.
The lower edge of the first, second, and third wall portions are disposed against the bottom surface of the well, and the first side edges of the first, second, and third wall portions are disposed in contact with at least one side surface of the well. The first and second divider surfaces of the first, second, and third wall portions define first, second, and third compartments in the well.
The method further includes (2) inserting a first pourable culture substrate comprising a first culture within the first compartment, (3) inserting a second pourable culture substrate comprising a second culture within the second compartment, wherein the first culture is different than the second culture, (4) inserting a third pourable culture substrate comprising a third culture within the third compartment, wherein the first and second cultures are different than the third culture, and (5) introducing an uptake substance inside the well such that the uptake substance flows through the partitioning device and contacts each of the solidified culture substrates.
In some implementations, the second side edges of the first, second, and third wall portions intersect each other.
In some implementations, the first side edges of the first, second, and third wall portions are coupled to each other by a coupling wall, and the coupling wall is disposable against at least one side surface of the well.
In some implementations, the partitioning device further includes a center wall having a perimeter forming a closed shape, and the center wall is sealingly disposable between the second side edges of the first, second, and third wall portions.
In some implementations, the partitioning device is created using additive manufacturing.
In some implementations, the first, second, and third cultures comprise cell cultures. In some implementations, the first, second, and third cultures comprise bacterial cultures.
In some implementations, the first, second, and third pourable culture substrates comprise hydrogels.
Example features and implementations are disclosed in the accompanying drawings. However, the present disclosure is not limited to the precise arrangements and instrumentalities shown.
The following is a description of various implementations of a competitive assay platform to evaluate selective uptake of substances in three dimensional cultures, such as cell cultures, bacterial cultures, etc.
Certain terminology is used herein for convenience only and is not to be taken as a limitation on the present claims. In the drawings, the same reference numbers are employed for designating the same elements throughout the several figures. A number of examples are provided, nevertheless, it will be understood that various modifications can be made without departing from the spirit and scope of the disclosure herein. As used in the specification, and in the appended claims, the singular forms “a,” “an,” “the” include plural referents unless the context clearly dictates otherwise. The term “comprising” and variations thereof as used herein is used synonymously with the term “including” and variations thereof and are open, non-limiting terms. Although the terms “comprising” and “including” have been used herein to describe various implementations, the terms “consisting essentially of” and “consisting of” can be used in place of “comprising” and “including” to provide for more specific implementations and are also disclosed.
The partitioning device 120 includes a first wall portion 130, a second wall portion 140, and a third wall portion 150. Each of the first 130, second 140, and third wall portions 150 has an upper edge 132, 142, 152, a lower edge 133, 143, 153, a first side edge 134, 144, 154, a second side edge 135, 145, 155, a first divider surface 136, 146, 156, and a second divider surface 137, 147, 157, respectively. The upper 132, 142, 152 and lower edges 133, 143, 153, respectively, are opposite and spaced apart from each other, the first 134, 144, 154 and second side edges 135, 145, 155, respectively, are opposite and spaced apart from each other, and the first 136, 146, 156 and second divider surfaces 137, 147, 157, respectively, are opposite and spaced apart from each other and extend between the upper 132, 142, 152, the lower edges 133, 143, 153, and the first 134, 144, 154 and second side edges 135, 145, 155, respectively. The second side edges 135, 145, 155 of each of the first 130, second 140, and third wall portions 150, respectively, intersect each other.
The partitioning device 120 of
The wall portions 130, 140, 150 of the partitioning device 120 can be made from a biocompatible material such as a polymer (e.g., polylactic acid, polycaprolactone). However, the wall portions 130, 140, 150 can also be made from any non-biocompatible material.
The partitioning device 120 can be created using additive manufacturing, or any other means known in the art. The partitioning device 120 of
The partitioning device 120 shown in
In step 320, different pourable culture substrates capable of setting as solids are inserted into each compartment, respectively, with each culture substrate and respective compartment containing a different culture. Pourable culture substrates can include any substance that can take a liquid form and subsequently solidify or partially solidify, for example, hydrogels, slurries, suspensions, solutions, etc. The culture substrates can contain various types of cultures, including cell cultures, bacterial cultures, etc.
Once the culture substrates have solidified, the partitioning device is removed from the well such that the culture substrates remain in place in the well, which is shown as step 330. In step 340, an uptake substance is introduced inside the well and is in contact with each of the solidified culture substrates.
Because each compartment has an equal volume and because equal volumes of culture substrates are inserted into each compartment, the culture substrates have equal surface areas for uptake of the uptake substance.
As mentioned above, in some implementations, the wall portions of the partitioning device can define holes or define a membrane, and the holes or membrane may be sized and/or selected such that the culture substrates inserted within each compartment are prevented from flowing outside each respective compartment, but an uptake material inserted in the compartments can flow freely between each of the compartments. In these implementations, the step of removing the partitioning device from the well can be eliminated and the partitioning device can be left in the well during the introduction of the uptake substance inside the well.
Although the coupling wall 490 shown in
The competitive assay platform 400 shown in
In use, culture substrates are inserted into each of the first, second, and third compartments 470, 472, 474, as described above with respect to
A partitioning device, like the partitioning device 220 shown in
Four different cell types—(1) HepG2 liver cells, and breast cancer cells, (2) MDA-MB-231BR (a brain metastasizing variant of the triple negative breast cancer cell line MDA-MB-231), (3) MDA-MB-231, and (4) SKBr3—were seeded at 7,500 cells per gel compartment using Collagen-I hydrogels (5 mg/mL) in a single well of a 12 well plate. The cell-gel constructs were then incubated with 75 μg/mL of quinic acid-coated ultrasmall iron-oxide nanoparticles for three days followed by Prussian blue staining to evaluate cellular uptake.
The results of the uptake testing were as expected. Significant uptake of these nanoparticles was noted for HepG2 liver cells, followed by MDA-MB-231BR, and MDA-MB-231. No significant uptake was noted for SKBr3 cells. These results demonstrate the feasibility of the partitioning device disclosed herein.
A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the claims. Accordingly, other implementations are within the scope of the following claims.
Disclosed are materials, systems, devices, methods, compositions, and components that can be used for, can be used in conjunction with, can be used in preparation for, or are products of the disclosed methods, systems, and devices. These and other components are disclosed herein, and it is understood that when combinations, subsets, interactions, groups, etc. of these components are disclosed that while specific reference of each various individual and collective combinations and permutations of these components may not be explicitly disclosed, each is specifically contemplated and described herein. For example, if a device is disclosed and discussed each and every combination and permutation of the device, and the modifications that are possible are specifically contemplated unless specifically indicated to the contrary. Likewise, any subset or combination of these is also specifically contemplated and disclosed. This concept applies to all aspects of this disclosure including, but not limited to, steps in methods using the disclosed systems or devices. Thus, if there are a variety of additional steps that can be performed, it is understood that each of these additional steps can be performed with any specific method steps or combination of method steps of the disclosed methods, and that each such combination or subset of combinations is specifically contemplated and should be considered disclosed.
This application claims the benefit of U.S. Provisional Patent Application No. 62/599,890, filed Dec. 18, 2017, the content of which is incorporated herein by reference in its entirety.
This invention was made with government support under Grant No. DMR1149931 awarded by the National Science Foundation. The government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
62599890 | Dec 2017 | US |