Embodiments of the technology relate generally to partitioning high pressure pumps at a well site.
High pressure pumps are commonly used at a well site in connection with the production of hydrocarbons. The high pressure pumps are used to inject a variety of fluids into an oil or gas well during certain well operations. One such operation is hydraulic fracturing, which is a process that involves injecting fluids into a well at high pressure to fracture a formation. The injected fluids include a slurry containing particles that prop open fractures in the formation to improve the flow of hydrocarbons from the formation into the well. Hydraulic fracturing typically uses high pressure pumps to obtain the required high pressures for injecting the fluids into the well. A well site often includes a well pad with multiple wellheads. Numerous high pressure pumps at the well site are used to inject the high pressure fluids into the wells. The high pressure pumps are typically connected to a fracturing manifold that directs the high pressure fracturing fluids to a zipper manifold which in turn directs the fluids to the wellheads at the well pad.
A significant limitation to improving the operational performance of a well site employing hydraulic fracturing is the need for regular maintenance on the high pressure pumps. The area around the high pressure pumps is referred to as the red zone because the high pressures generated by the pumps create risks of leaks and equipment failures that can be dangerous to workers. For the safety of workers, maintenance typically requires that the high pressure pumps are turned off and depressurized before the workers can enter the red zone to perform maintenance. However, turning off and depressurizing the high pressure pumps requires shutting down the equipment at the well site for significant periods of time, resulting in substantial disruption of the operations of the well site as well as added costs.
Accordingly, improved approaches to performing maintenance on the high pressure pumps use in hydraulic fracturing would improve the operations of the well site and reduce costs.
In one example embodiment, the present disclosure is generally directed to a system at a well site. The system can comprise a plurality of brine pumps and a plurality of slurry pumps. The brine pumps can be configured to pump brine into at least one wellhead at the well site. The plurality of slurry pumps can be configured to pump slurry into the at least one wellhead at the well site. A split stream barrier can separate the plurality of brine pumps from the plurality of slurry pumps. At least one slurry barrier can separate a first slurry pump and a second slurry pump of the plurality of slurry pumps.
In another example embodiment, the present disclosure is generally directed to a method for operating a well site. The method can comprise: 1) positioning a plurality of brine pumps at the well site, wherein the plurality of brine pumps are configured to pump brine into at least one wellhead at the well site; 2) positioning a plurality of slurry pumps at the well site, wherein the plurality of slurry pumps are configured to pump slurry into the at least one wellhead at the well site; 3) separating the plurality of brine pumps from the plurality of slurry pumps by installing a split stream barrier between the plurality of brine pumps and the plurality of slurry pumps; 4) separating each slurry pump of the plurality of slurry pumps by placing a slurry barrier between each adjacent slurry pump of the plurality of slurry pumps; 5) identifying a selected slurry pump for maintenance, wherein a remainder of the slurry pumps are not selected for maintenance; 6) remotely turning off and depressurizing the selected slurry pump with a remotely operated actuator; and 7) performing the maintenance on the selected slurry pump while continuing operation of the plurality of brine pumps.
In yet another example embodiment, the present disclosure is generally directed to a system at a well site, the system comprising a brine pump area comprising a plurality of brine pumps and a slurry pump area comprising a plurality of slurry pumps. The plurality of brine pumps are configured to pump brine into at least one wellhead at the well site, while the plurality of slurry pumps are configured to pump slurry into the at least one wellhead at the well site. A split stream barrier separates the brine pump area from the slurry pump area. At least one slurry barrier separates a first slurry pump of the plurality of slurry pumps from a second slurry pump of the plurality of slurry pumps.
In yet another example embodiment, the present disclosure is generally directed to a method for operating a well site. The method can comprise: 1) positioning a plurality of brine pumps in a brine pump area at the well site, wherein the plurality of brine pumps are configured to pump brine into at least one wellhead at the well site; 2) positioning a plurality of slurry pumps in a slurry pump area at the well site, wherein the plurality of slurry pumps are configured to pump slurry into the at least one wellhead at the well site; 3) separating the brine pump area from the slurry pump area by installing a split stream barrier between the brine pump area and the slurry pump area; 4) separating a first slurry pump of the plurality of slurry pumps from a second slurry pump of the plurality of slurry pumps by installing a slurry barrier between the first slurry pump and the second slurry pump; 5) identifying the first slurry pump for maintenance; 6) remotely turning off and depressurizing the first slurry pump with a remotely operated actuator; and 7) performing the maintenance on the first slurry pump while continuing operation of the second slurry pump and the plurality of brine pumps.
The foregoing embodiments are non-limiting examples and other aspects and embodiments will be described herein. The foregoing summary is provided to introduce various concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify required or essential features of the claimed subject matter nor is the summary intended to limit the scope of the claimed subject matter.
The accompanying drawings illustrate only example embodiments of a system and method for a well site comprising multiple wells and therefore are not to be considered limiting of the scope of this disclosure. The principles illustrated in the example embodiments of the drawings can be applied to alternate methods and apparatus. Additionally, the elements and features shown in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the example embodiments. Certain dimensions or positions may be exaggerated to help visually convey such principles. In the drawings, the same reference numerals used in different embodiments designate like or corresponding, but not necessarily identical, elements.
The example embodiments discussed herein are directed to apparatus and methods for partitioning high pressure pumps at a well site to improve operations of the well site. Because slurry pumps typically require frequent maintenance while brine pumps do not, a brine pump area and a slurry pump area can be separated by a split stream barrier. Additionally, the slurry pump area can sub-divided with slurry barriers to separate one or more slurry pumps from other slurry pumps. The system of barriers allows one or more slurry pumps to be deactivated for maintenance while other slurry pumps and the brine pumps continue to operate. Isolating the high pressure slurry pumps for maintenance improves the safety of the well site for workers performing maintenance on the slurry pumps. Additionally, the system of barriers permits operations of the well site to continue while maintenance is performed on a selected slurry pump. Accordingly, the well site can operate more efficiently.
In the following paragraphs, particular embodiments will be described in further detail by way of example with reference to the drawings. In the description, well-known components, methods, and/or processing techniques are omitted or briefly described. Furthermore, reference to various feature(s) of the embodiments is not to suggest that all embodiments must include the referenced feature(s).
As referenced previously, the high pressures generated by the pumps increase the probability of equipment leaking or failing, thereby increasing the risks for workers in the areas around the high pressure pumps 120, 122, 124, 126, 128, and 130. Accordingly, it is common to refer to the areas around the high pressure pumps as red zones. Given the increased risks in the red zones, if maintenance is needed on a single pump, it is common to shut down and depressurize all nearby pumps so that the maintenance can be performed. However, shutting down all nearby pumps disrupts the operation of the well site 100.
Separately,
Referring now to
Well site 300 includes two strategies for improving the operation of the well site. First, the high pressure pumps are organized into a split stream arrangement where they are separated into a brine pump area 370 and a slurry pump area 380. The brine pumps will pump brine solution that does not include a proppant. In contrast, the slurry pumps will pump a slurry solution that includes a proppant. The existence of a proppant in the fluid stream often causes fouling of valves and other components of the pumps, resulting in the need for more frequent maintenance of the pumps. The advantage of the split stream arrangement is that the pumps handling the fluid streams with proppant, which will require more frequent maintenance, are separated into a slurry pump area. In contrast, the pumps handling a brine solution that does not include a proppant, and therefore require less frequent maintenance, are organized into a brine pump area.
As illustrated in
Referring now to
In operation 405, brine pumps are positioned at the well site in the brine pump area and slurry pumps are positioned at the well site in the slurry pump area. The brine pumps and slurry pumps are typically located on trailers that are transported to and positioned at the well site. In operation 410, one or more split stream barriers are installed between the brine pump area and the slurry pump area. In operation 415, one or more slurry barriers are installed between the slurry pumps. In some cases, slurry barriers can be installed between each slurry pump. In other cases, slurry barriers can be installed between subgroups of slurry pumps. Once the barrier system is installed, the hydraulic fracturing operations can proceed with a split stream approach on the wells in operation 420.
Given the negative affects of proppant on the slurry pumps, slurry pumps can be identified for maintenance when needed. In operation 425, a slurry pump is selected for maintenance. Alternatively, a subgroup of slurry pumps can be selected for maintenance. In operation 430, the slurry pump selected for maintenance is turned off and depressurized. Each slurry pump can be equipped with an actuator that is remotely controlled and that can control powering off/on and depressurizing/ pressurizing the slurry pump. The actuator can be remotely controlled by radio signals or a length of cable that allows a worker to control the pump without being in proximity to the pump. With the selected slurry pump turned off and depressurized, it is now safe for workers to be in the red zone surrounding the slurry pump in order to perform maintenance as indicated in operation 435. The protection provided by the barrier system allows adjacent slurry pumps and brine pumps to continue operating at high pressures while the workers perform maintenance on the selected slurry pump.
After the maintenance is complete, the workers can move away from the selected slurry pump and can use the remotely controlled actuator to prime and restart the selected slurry pump in operation 440. As indicated in operation 445, method 400 can return to operation 420 where the hydraulic fracturing operations can proceed at the well site until maintenance is required on another slurry pump.
While method 400 of
Turning to
For any figure shown and described herein, one or more of the components may be omitted, added, repeated, and/or substituted. Additionally, it should be understood that in certain cases components of the example systems can be combined or can be separated into subcomponents. Accordingly, embodiments shown in a particular figure should not be considered limited to the specific arrangements of components shown in such figure. Further, if a component of a figure is described but not expressly shown or labeled in that figure, the label used for a corresponding component in another figure can be inferred to that component. Conversely, if a component in a figure is labeled but not described, the description for such component can be substantially the same as the description for the corresponding component in another figure.
With respect to the example methods described herein, it should be understood that in alternate embodiments, certain operations of the methods may be performed in a different order, may be performed in parallel, or may be omitted. Moreover, in alternate embodiments additional operations may be added to the example methods described herein. Accordingly, the example methods provided herein should be viewed as illustrative and not limiting of the disclosure.
Terms such as “first”, “second”, “top”, “bottom”, “side”, “distal”, “proximal”, and “within” are used merely to distinguish one component (or part of a component or state of a component) from another. Such terms are not meant to denote a preference or a particular orientation, and are not meant to limit the embodiments described herein. In the example embodiments described herein, numerous specific details are set forth in order to provide a more thorough understanding of the invention. However, it will be apparent to one of ordinary skill in the art that the invention may be practiced without these specific details. In other instances, well-known features have not been described in detail to avoid unnecessarily complicating the description.
The terms “a,” “an,” and “the” are intended to include plural alternatives, e.g., at least one. The terms “including”, “with”, and “having”, as used herein, are defined as comprising (i.e., open language), unless specified otherwise.
Various numerical ranges are disclosed herein. When Applicant discloses or claims a range of any type, Applicant's intent is to disclose or claim individually each possible number that such a range could reasonably encompass, including end points of the range as well as any sub-ranges and combinations of sub-ranges encompassed therein, unless otherwise specified. Numerical end points of ranges disclosed herein are approximate, unless excluded by proviso.
Values, ranges, or features may be expressed herein as “about”, from “about” one particular value, and/or to “about” another particular value. When such values, or ranges are expressed, other embodiments disclosed include the specific value recited, from the one particular value, and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment. It will be further understood that there are a number of values disclosed therein, and that each value is also herein disclosed as “about” that particular value in addition to the value itself. In another aspect, use of the term “about” means ±20% of the stated value, ±15% of the stated value, ±10% of the stated value, ±5% of the stated value, ±3% of the stated value, or ±1% of the stated value.
Although embodiments described herein are made with reference to example embodiments, it should be appreciated by those skilled in the art that various modifications are well within the scope of this disclosure. Those skilled in the art will appreciate that the example embodiments described herein are not limited to any specifically discussed application and that the embodiments described herein are illustrative and not restrictive. From the description of the example embodiments, equivalents of the elements shown therein will suggest themselves to those skilled in the art, and ways of constructing other embodiments using the present disclosure will suggest themselves to practitioners of the art. Therefore, the scope of the example embodiments is not limited herein.
The present application claims priority to U.S. Provisional Patent Application No. 63/347,856, filed Jun. 1, 2022, the entire content of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
63347856 | Jun 2022 | US |