Partner snore feature for adjustable bed foundation

Information

  • Patent Grant
  • 10058467
  • Patent Number
    10,058,467
  • Date Filed
    Tuesday, February 17, 2015
    9 years ago
  • Date Issued
    Tuesday, August 28, 2018
    6 years ago
Abstract
A sleep system comprises at least one mattress including a first sleep area for a first occupant, the first sleep area including a first section for a portion of a body of the first occupant, and a second sleep area adjacent to the first sleep area for a second occupant, the second sleep area including a second section for a portion of a body of the second occupant, an articulation system for articulating the first section and the second section, a first user controller configured to communicate with the articulation system in order to control articulation of the first section, and a second user controller configured to communicate with the articulation system in order to control articulation of the second section, wherein the first user controller is further configured to communicate with the articulation system in order to move the second section into a predetermined position.
Description
BACKGROUND

Snoring can disturb another person who is sleeping in the same room. Snoring can be particularly disturbing if the snorer and the other person are attempting to sleep on the same bed, such as a married couple where one spouse snores. Some people deal with the problem by waking the snorer up in order to stop the snoring. However, the snorer often begins snoring again after going back to sleep. Moreover, waking the snorer interrupts the snorers sleep as well.


SUMMARY

The present disclosure is directed to a sleep system and method that allows a first occupant on an adjustable bed to select a position for an opposite side of the bed. For example, if a second occupant on the opposite side of the bed is snoring, the first occupant can control the opposite side to move into a snore-reducing position. The first occupant can activate the snore-reducing position without having to wake the second occupant. The ability to control the position of the opposite side of the bed can be incorporated into a remote control or other controlling device that is accessible by the first occupant so that the second occupant's side of the bed can be actuated by the first occupant's remote control or other controlling device. This feature can allow the first occupant to reduce or eliminate the second occupant's snoring easily without the first occupant having to wake the second occupant and disturb his or her sleep.


The present disclosure describes a sleep system comprising at least one mattress including a first sleep area for a first occupant, the first sleep area including a first section for a portion of a body of the first occupant, and a second sleep area adjacent to the first sleep area for a second occupant, the second sleep area including a second section for a portion of a body of the second occupant, an articulation system for articulating the first section and the second section, a first user controller configured to communicate with the articulation system in order to control articulation of the first section, and a second user controller configured to communicate with the articulation system in order to control articulation of the second section, wherein the first user controller is further configured to communicate with the articulation system in order to move the second section into a predetermined position.


The present disclosure also describes a sleep system, comprising a support frame, at least one mattress configured to be positioned on the support frame, the at least one mattress including, a first sleep area for a first occupant, the first sleep area including an articulable first head section and an articulable first leg section, and a second sleep area adjacent to the first sleep area for a second occupant, the second sleep area including an articulable second head section and an articulable second leg section. The sleep system further comprises an articulation system including a first head motor for articulating the first head section, a first leg motor for articulating the first leg section, a second head motor for articulating the second head section, a second leg motor for articulating the second leg section, and at least one controller for controlling the first head motor, the first leg motor, the second head motor, and the second leg motor. The sleep system also includes a first user controller configured to communicate with the at least one controller via a first communication link in order to control articulation of the first head section to a plurality of positions and to control the first leg section to a plurality of positions and a second user controller configured to communicate with the at least one controller via a second communication link in order to control articulation of the second head section to a plurality of positions and to control the second leg section to a plurality of positions. The first user controller is further configured to communicate with the at least one controller in order to move the second head section to a predetermined position.


The present disclosure further describes a method for controlling an articulating bed, the method comprising sending a first movement control signal from a first user controlling device to one or more controllers, wherein the first movement control signal comprises one or more commands to move a first sleep area to any of a plurality of positions, sending a first motor control signal, triggered by the first movement control signal, from the one or more controllers to a first set of one or more articulating motors, moving the first sleep area to one of the plurality of positions according to the first motor control signal with the first set of one or more articulating motors, sending a second movement control signal from the first user controlling device to the one or more controllers, wherein the second movement control signal comprises one or more commands to move a second sleep area to a predetermined position, sending a second motor control signal, triggered by the second movement control signal, from the one or more controllers to a second set of one or more articulating motors, and moving the second sleep area to the predetermined position according to the second motor control signal with the second set of one or more articulating motors.


These and other examples and features of the present systems and methods will be set forth in part in the following Detailed Description. This Summary is intended to provide an overview of the present subject matter, and is not intended to provide an exclusive or exhaustive explanation. The Detailed Description below is included to provide further information about the present systems and methods.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a perspective view of an example sleep system including an adjustable bed for two occupants with both sides of the bed being in a horizontal or flat position.



FIG. 2 is a side view of the example sleep system shown in FIG. 1.



FIG. 3 is a perspective view of the example sleep system of FIGS. 1 and 2 with a head portion of one of the sides of the bed being raised into a snore-reducing position.



FIG. 4 is a side view of the example sleep system shown in FIG. 3.



FIG. 5 is a top view of the example sleep system of FIGS. 1-4.



FIG. 6 is a top view of another example sleep system including an adjustable bed for two occupants.



FIG. 7 is a schematic diagram of an example controller for controlling articulating motors of an adjustable sleep system.



FIG. 8 is a flow diagram of an example method for controlling a sleep system.





DETAILED DESCRIPTION

This disclosure describes a sleep system including an adjustable bed configured for two occupants to share. The adjustable bed can be configured so that each side of the bed can be independently adjusted by each occupant of the bed, e.g., so that each occupant can select a particular position or positions that he or she prefers. Each side of the bed can be independently controlled by a controlling device, such as a remote control, so that each occupant has individual control over their side of the bed. The sleep system can be configured so that a first occupant's remote control can control the position of one or more aspects of the second occupant's side of the bed. For example, the sleep system can be configured so that if one of the occupants begins to snore, the snoring occupant's partner can use their own remote to adjust the snoring occupant's side of the bed into a snore-reducing position.



FIGS. 1 and 2 show a perspective view and a side view, respectively, of an example sleep system 10. The sleep system 10 can include a bed 12 that is configured and intended to be used by two occupants, a first occupant 14 and a second occupant 16. The bed 12 can include one or more mattresses 18A, 18B (collectively referred to as “mattress 18” or “mattresses 18”) supported by a frame 19. The occupants 14, 16 can be supported by the one or more mattresses 18. The bed 12 can include a first sleep area 20 for the first occupant 14 and a second sleep area 22 for the second occupant 16.


Each of the sleep areas 20, 22 can be movable or articulable between a plurality of positions to provide the occupants 14, 16 with the ability to select a preferred position for comfort of for a particular purpose. Each sleep area 20, 22 can include one or more articulable sections. In an example, the first sleep area 20 can include a section 24 that can be raised and lowered to adjust a position of the head or upper torso, or both, of the first occupant 14 (referred to herein as the first head section 24) and a section 26 that can be raised and lowered to adjust a position of the legs or lower torso, or both, of the first occupant 14 (referred to herein as the first leg section 26). Similarly, the second sleep area 22 can include a section 28 that can be raised and lowered to adjust a position of the head or upper torso, or both, of the second occupant 16 (referred to herein as the second head section 28) and a section 30 that can be raised and lowered to adjust a position of the legs or lower torso, or both, of the second occupant 16 (referred to herein as the second leg section 30).



FIGS. 3 and 4 show a perspective view and a side view, respectively, of an example configuration of the bed 12 wherein the first sleep area 20 is in a first configuration while the second sleep area 22 is in a second configuration. For example, as shown in FIGS. 3 and 4, the first sleep area 20 is in a flat configuration with the first head section 24 and the first leg section 26 being in a horizontal or substantially horizontal orientation. Thus, the first sleep area 20 is in the same or substantially the same configuration in FIGS. 3 and 4 as it is in FIGS. 1 and 2. Further, the second sleep area 22 includes at least one articulable section 28, 30 in an articulated position relative to the other section. The example configuration of the second sleep area 22 in FIGS. 3 and 4 includes the second head section 28 being elevated relative to the horizontal position (FIGS. 1 and 2). FIGS. 3 and 4 show the second sleep area 22 being arranged in a snore-reducing configuration (described in more detail below).


Examples of adjustable beds that are similar to the articulable sleep areas of the present disclosure include, but are not limited to, Sleep Number Split King or Split Queen beds, sold by Select Comfort Corp., Minneapolis, Minn., or the Queen Split, California King Split, or Eastern King Split mattresses sold by Comfortaire Corp., Greenville, S.C. Other sizes of split-type articulating mattress, other than queen and king size mattresses, can be used without varying from the scope of the present disclosure.


In the example best seen in FIGS. 1 and 3, the one or more mattresses 18 can comprise a pair of mattresses 18A, 18B, with a first mattress 18A making up the first sleep area 20 and a second mattress 18B making up the second sleep area 22. The use of two separate adjustable mattresses, placed adjacent to one another, is similar to the arrangement of Split King mattress, sold by Select Comfort Corporation. Alternatively, a single mattress (not shown) can be configured such that it is separated into the first sleep area 20 and the second sleep area 22. The use of a single mattress that is configured with two separate, independently adjustable sleep areas, is similar to the configuration of the elite4 Split mattresses sold by Comfortaire Corporation.


The sleep system 10 can also include a pair of user controlling devices 32, 34 to allow each occupant 14, 16 to control the articulation of his or her respective sleep area 20, 22. As shown in FIGS. 1 and 3, the sleep system 10 can include a first user controlling device 32, e.g., a first handheld remote control 32, that has been programmed to control operation of the first sleep area 20, and a second user control device 34, e.g., a second handheld remote control 34, that has been programmed to control operation of the second sleep area 22. The first occupant 14 can use the first remote control 32 to control operation of the first sleep area 20, upon which the first occupant 14 is sleeping, and the second occupant 16 can use the second remote control 34 to control operation of the second sleep area 22 upon which the second occupant 16 is sleeping. In order to ensure proper linking between each remote control 32, 34 and the corresponding sleep area 20, 22, each remote control 32, 34 can include an address or other unique identifier, for example to distinguish the first remote control 32 from the second remote control 34.


Each head section 24, 28 and each leg section 26, 30 can be independently articulated. For example, the first occupant 14 can select, via the first remote control 32, to articulate the first head section 24 upward or downward by a certain amount or to articulate the first leg section 26 upward or downward by a certain amount. In an example, the head sections 24, 28 and the leg sections 26, 30 can be independently controlled bythe remote controls 32, 34, e.g., continuously or along a discrete set of positions between a minimum height or orientation and a maximum height or orientation. The head section 24, 28 and the leg section 26, 30 can be articulable from a minimum height position (e.g., flat) to a maximum height position (e.g., with the head section 24, 28 at amaximum angle with respect horizontal, such as about 60°, or with the leg section 26, 30 at a maximum angle with respect to horizontal, such as about 45°).


The sleep system 10 can also be configured so that the sleep areas 20, 22 can be positioned into one or more predetermined or preset positions. For each preset position, the head section 24, 28 and the leg section 26, 30 can be moved to predetermined positions or orientations. Examples of preset positions that can each be programmed into the sleep system 10 include, but are not limited to:

    • (a) a flat preset, e.g., with both the head section 24, 28 and the leg section 26, 30 being in a horizontal or substantially horizontal orientation;
    • (b) a “reading” preset, e.g., with the head section 24, 28 being at an elevated or angled position relative to the leg section 26, 30 to allow the occupant 14, 16 to read a book, magazine, or other written material; and
    • (c) a “television” preset, e.g., with the head section 24, 28 being elevated or angled relative to the leg section 26, 30, which can be at a different angle relative to the “reading” preset, to allow the occupant 14, 16 to comfortably watch television.


In an example, a preset position can be a snore-reducing or snore-eliminating position. Snoring can be caused by soft tissue in the back of the mouth or the throat that relaxes during sleep. The relaxed soft tissue can partially block the snorer's airway. The snorer's body typically reacts by breathing harder, which can cause the soft tissue to vibrate and cause a snoring sound. It has been found that, in some cases, snoring can be reduced or prevented by elevating the snorer's head or torso by a small amount, which can reduce vibration of the soft tissue. The slight elevation of the snorer's body can also induce the snorer to change his or her sleeping position, which can cause the snoring to stop. Therefore, in an example, a “snore-reducing” preset can comprise the head section 24, 28 being elevated slightly relative to the leg section 26, 30 (for example, less than the “reading” preset or the “television” preset) in order to reduce or alleviate snoring by the occupant 14, 16 laying on the sleep area 20, 22 being articulated. In an example, the snore-reducing preset can include the head section 24, 28 being raised at a preset angle θ relative to horizontal, as shown with head section 28 in FIG. 4. In an example, the angle θ can be selected to reduce or eliminate vibration of soft tissue within the mouth or throat of an occupant 14, 16 in order to reduce or eliminate snoring by the occupant 14, 16. In an example, the angle θ can be from about 5° to about 15° from horizontal, such as about 7°.



FIG. 5 shows a top view of the sleep system 10. As shown in FIG. 5, the sleep system 10 can include an articulation system 40 for controlling articulation of the articulable sections 24, 26, 28, 30. The articulation system 40 can include a set of articulating motors, with each articulable section being articulated by one or more of the motors. For example, a first head motor 42 can be configured to articulate the first head section 24 of the first sleep area 20. A first leg motor 44 can be configured to articulate the first leg section 26 of the first sleep area 20. A second head motor 46 can be configured to articulate the second head section 28 of the second sleep area 22. And, a second leg motor 48 can be configured to articulate the second leg section 30 of the second sleep area 22. Examples of motors that can be used for the articulating motors 42, 44, 46, 48 include, but are not limited to, bed articulating motors manufactured by Leggett & Platt, Inc., Carthage, Mo., USA.


The articulation system 40 can also include one or more controllers, such as a control box that includes the electronics and hardware for providing instructions to the articulating motors 42, 44, 46, 48. FIG. 5 is a top view of the example sleep system 10, showing the articulation system 40 including a single, common controller 50 that is configured to control each of the sleep areas 20, 22, e.g., each of the articulating motors 42, 44, 46, 48. Each remote control 32, 34 can be in communication with the controller 50, such as via a wireless communication link 52, 54. The remote controls 32, 34 can send movement control signals to the controller 50 via the communication links 52, 54. A “movement control signal,” as used herein, can refer to a signal or plurality of signals sent from a remote control 32, 34 to the controller 50 corresponding to a particular movement or position of one or more of the articulable sections 24, 26, 28, 30. A movement control signal can include one or more instructions for the direction of movement of a particular articulable section 24, 26, 28, 30, e.g., the direction of movement of a corresponding articulating motor 42, 44, 46, 48, a speed for the movement of a particular articulable section 24, 26, 28, 30 or of a particular articulating motor 42, 44, 46, 48, or an overall position of the corresponding sleep area 20, 22 being controlled by the remote control 32, 34, such as a preset position.


The controller 50 can send one or more motor control signals to the articulating motors 42, 44, 46, 48 corresponding to a desired motion of the articulating motors 42, 44, 46, 48. A “motor control signal,” as used herein, can refer to a signal or plurality of signals sent from a controller, such as the controller 50, to one or more articulating motors 42, 44, 46, 48 corresponding to a particular movement or position of one or more articulable sections 24, 26, 28, 30. A motor control signal or signals can comprise an instruction for one or both of the direction that the articulating motor 42, 44, 46, 48 should articulate and the speed that the articulating motor 42, 44, 46, 48 should travel. In an example, a plurality of communication cables 56A, 56B, 56C, 56D (collectively referred to herein as “cable 56” or “cables 56”) can carry the motor control signals from the controller 50 to the articulating motors 42, 44, 46, 48, with each cable 56 corresponding to a particular motor (such as a first cable 56A for the first head motor 42, a second cable 56B for the first leg motor 44, a third cable 56C for the second head motor 46, and a fourth cable 56D for the second foot motor 48).


In another example, a sleep system 60 can include an articulating system 62 having more than a single common controller. In the example shown in FIG. 6, each sleep area 20, 22 can have its own controller, such as a first controller 64A corresponding to the first sleep area 20 and configured to control the articulating motors 42 and 44 and a second controller 64B corresponding to the second sleep area 22 and configured to control the articulating motors 46 and 48. Each remote control 32, 34 can send movement control signals to a corresponding controller 64A, 64B, similar to the transmission of movement control signals described above with respect to a single controller 50.


The separate controllers 64A, 64B (collectively referred to herein as “controller 64” or “controllers 64”) can each be in communication with one of the remote controls 32, 34 or configured to respond to the commands sent from only one of the remote controls 32, 34. For example, the first controller 64A can be linked to the first remote control 32 via a first wireless communication link 52 and the second controller 64B can be linked to the second remote control 34 via a second wireless communication link 54. Each separate controller 64 can include communication links, such as cables, to the articulating motors 42, 44, 46, 48 that are controlled by that particular controller 64. For example, the first controller 64A can be linked to the first head motor 42 via a first cable 66A and to the first leg motor 44 via a second cable 66B. Similarly, the second controller 64B can be linked to the second head motor 46 via a first cable 68A and to the second leg motor 48 via a second cable 68B. The controllers 64A and 64B can be in communication with each other via a communication link, such as a cable 69 running between the controllers 64A, 64B to pass control signals between the controllers 64A, 64B.



FIG. 7 shows a schematic diagram of a controller 70, which can represent either the single controller 50 of the example sleep system 10 shown in FIG. 5 or one of the plurality of controllers 64A and 64B of the example sleep system 60 shown in FIG. 6.


The controller 70 can include communication modules to allow the controller 70 to communicate with the remote controls 32, 34 and the articulating motors 42, 44, 46, 48, such as a telemetry module 72 and a communication bus 74. The telemetry module 72 can allow for the wireless transfer of data, such as control signals, to and from one or both of the remote controls 32, 34 by establishing a wireless communication link 52, 54 between the telemetry module 72 and a similar corresponding telemetry module within each remote control 32, 34. The telemetry module 72 can include a radio frequency (RF) transceiver to permit bi-directional communication between the controller 70 and the remote controls 32, 34. To support wireless communication, such as RF communication, the telemetry module 72 can include appropriate electrical components, such as one or more of amplifiers, filters, mixers, encoders, decoders, and the like.


The communication bus 74 can provide for a physical communication link to the controller 70, such as via one or more cables 76A, 76B, 76C, 76D (collectively “cable 76” or “cables 76”), which can correspond to the cables 56 from the controller 50 in FIG. 5 or the cables 66, 68, 69 from the controllers 64A, 64B in FIG. 6. The communication bus 74 can include one or more physical ports 78A, 78B, 78C, 78D (collectively “port 78” or “ports 78”), each configured to provide for connection to a corresponding cable 76.


Each port 78 can be addressed to correspond to a particular communication link that is to be established. For example, in the case of the single controller 50 of FIG. 5, a first port 78A can be addressed to correspond to a link to the first head motor 42, a second port 78B can be addressed to correspond to a link to the first leg motor 44, a third port 78C can be addressed to correspond to a link to the second head motor 46, and a fourth port 78D can be addressed to correspond to a link to the second leg motor 48. In the example of the separate controllers 64A, 64B for each of the sleep areas 20, 22, one of the controllers 64, such as the first controller 64A, can include a first port 78A being addressed to correspond to a link to the other controller 64B, a second port 78B being addressed to correspond to a link to a corresponding head motor (such as the first head motor 42), and a third port 78C being addressed to correspond to a link to a corresponding leg motor (such as the first leg motor 44).


The controller 70 can also include a processor 80, a memory 82, and a power source 84. The processor 80 can control the overall operation of the controller 70, such as by storing and retrieving information from the memory 82, by controlling transmission of signals to and from the remote controls 32, 34 via the telemetry module 72, and controlling transmission of signals to and from the articulating motors 42, 44, 46, 48 or another controller via the communication bus 74. The processor 80 can take the form of one or more microprocessors, one or more controllers, one or more digital signal processor (DSP), one or more application-specific integrated circuit (ASIC), one or more field-programmable gate array (FPGA), or other digital logic circuitry.


The memory 82 can store instructions for execution by the processor 80, such as predetermined control instructions for the articulating motors 42, 44, 46, 48. The memory 82 can also store information corresponding to the operation of the sleep system 10, such as storing addresses identifying each remote control 32, 34 or each articulating motor 42, 44, 46, 48. The memory 82 can also store other information regarding the components of the sleep system 10, such as the present configuration of each articulable section 24, 26, 28, 30, or the present position of each articulating motor 42, 44, 46, 48, or both. The memory 82 can also store preset positions of each articulable section 24, 26, 28, 30 or each articulating motor 42, 44, 46, 48, or both, with each preset position corresponding to a particular preset position of the sleep areas 20, 22 (as described in more detail above). The memory 82 can include any electronic data storage media, such as any one or more of random access memory (RAM), read-only memory (ROM), electronically-erasable programmable ROM (EEPROM), flash memory, and the like.


Alternatively, or in conjunction with the memory 82, the sleep system 10 can include one or more positional sensors configured to determine a position or orientation of each of the articulable sections 24, 26, 28, 30 or each of the articulating motors 42, 44, 46, 48, or both. The one or more positional sensors can transmit the position or orientation of each articulable section 24, 26, 28, 30 or each articulating motor 42, 44, 46, 48, or both, to the controller 70. Examples of positional sensors that can be used with the sleep systems of the present disclosure include, but are not limited to, accelerometers and gyroscope positional or orientation sensors. Alternatively, a sensor can be included on the motors 42, 44, 46, 48, such as a motor encoder, to determine a position of the motor or an actuater moved by the motor. Other types of positional or orientation sensors can be used.


The power source 84 can comprise power circuitry that is connectable to an external power supply, such as a standard alternating current (AC) power supply. The power source 84 can also include a battery, such as a non-rechargeable primary cell battery or a rechargeable battery, which can be coupled to the power circuitry.


As described above, each sleep area 20, 22 can be controlled by a corresponding remote control 32, 34, such as the first remote control 32 controlling the first sleep area 20 and the second remote control 34 controlling the second sleep area 22. As further described above, the sleep system 10 can be configured so that the first remote control 32 is linked to the first sleep area 20, e.g., so that when the first occupant 14 selects a movement command on the first remote control 32, the articulation system 40 correctly articulates the first sleep area 20 occupied by the first occupant 14 rather than the second sleep area 22 occupied by the second occupant 16. Similarly, the sleep system 10 can be configured so that the second remote control 34 is linked to the second sleep area 22.


In order to ensure proper linking between each remote control 32, 34 and the corresponding sleep area 20, 22, each remote control 32, 34 can have an address or other unique identifier. The address can allow the controller 70 (e.g., the controller 50 or the controllers 64A, 64B) to identify which remote control 32, 34 is sending a movement control signal. For example, when the first remote control 32 sends a movement control signal to the controller 70, the movement control signal can include a header that includes the address for the first remote control 32. Upon receiving the movement control signal, the controller 70 can read the header including the address and determine that the movement control signal came from the first remote controller 32. The controller 70 can then determine that the movement control signal should correspond to the first sleep area 20, and the controller 70 can relay a corresponding motor control signal or signals to the first head motor 42 or the first leg motor 44, or both. Similarly, when the second remote control 34 sends a movement control signal to the controller 70, the movement control signal can include a header with the address for the second remote control 34. The controller 70 can then send a corresponding control signal to the second head motor 46 or to the second leg motor 48, or both.


Each remote control 32, 34 can be configured to allow an occupant 14, 16 operating the remote control 32, 34 to select a specific, desired movement of the sleep system 10. Selection of the desired movement by the occupant 14, 16 can, in turn, trigger a corresponding movement control signal to be sent from the remote control 32, 34 to the controller 70. Examples of movements that can be selected by an occupant 14, 16 on each remote control 32, 34 can include, but are not limited to, at least one of the following commands: raise a first section, e.g., a command to raise a head section 24, 28; lower a first section, e.g., a command to lower a head section 24, 28; raise a second section, e.g., a command to raise a leg section 26, 30; lower a second section, e.g., a command to lower a leg section 26, 30; move one or both of the first section and the second section into a preset position, such as a flat position, a reading position, a “watch TV” position, and so forth.


Each command can be activated by activating a particular button, series of buttons, or series of menu selections, on the remote control 32, 34. Each button or menu selection can be a physical button or can be a virtual button, such as a button on a touch screen, or a series of button presses or menu prompts that are entered through physical or virtual buttons.


As noted above, each remote control 32, 34 can be configured to control the articulation of the articulable sections 24, 26, 28, 30 of a corresponding sleep area 20, 22. In other words, each occupant 14, 16 can control the articulation of his or her own sleep area 20, 22. For example, as described above, the first remote control 32 can be linked to the first sleep area 20, e.g., so that the first occupant 14 can control articulation of the first sleep area 20 upon which the first occupant 14 is resting. Similarly, the second remote control 34 can be linked to the second sleep area 22, e.g., so that the second occupant 16 can control articulation of the second sleep area 22 upon which the second occupant 16 is resting.


In an example, one or both of the remote controls 32, 34 can be configured to not only control articulation of a corresponding sleep area 20, 22, but can also be configured to control one or more specific aspects of articulation of the opposite sleep area 20, 22. For example, while the first remote control 32 can be configured to provide total control over articulation of the first sleep area 20, the first remote control 32 can also be configured to move the second sleep area 22 into a specific, predetermined position or preset.


In one configuration, the first remote control 32 can be configured to place the second sleep area 22 into a snore-reducing preset position (described above). For example, the first remote control 32 can be configured so that if the first occupant 14 selects a particular button, a particular button sequence, or a particular menu sequence on the first remote control 32, then the second sleep area 22 will be articulated into the snore-reducing position. Similarly, the second remote control 34 can be configured so that if the second occupant 16 selects a particular button, button sequence, or menu sequence, then the first sleep area 20 will be articulated into the snore-reducing position. For the purposes of brevity, the remainder of this disclosure will describe the first remote control 32 being configured to adjust the second sleep area 22. However, it is to be understood that a similar configuration could be applied to the second remote control 34 controlling the first sleep area 20 without varying from the scope of the present disclosure.


In an example, the first remote control 32 can be configured to allow for full intended control of the articulation of the first sleep area 20 by the first occupant 14, while only allowing the first remote control 32 to select the predetermined position (e.g., the snore-reducing position) of the second sleep area 22.


In an example, when the first remote control 32 is being used by the first occupant 14 to control the articulation of the first sleep area 20 (e.g., the sleep area upon which the first occupant 14 is resting), then the controller 50, 64A can be configured to move the articulation motors 42, 44 of the first sleep area 20 at a first speed. However, when the first remote control 32 is being used by the first occupant 14 to move the second sleep area 22 into the predetermined position or preset, the controller 50, 64B can be configured to move the articulation motors 46, 48 of the second sleep area 22 at a second speed that is different than the first speed. The second speed can also be different than the speed at which the motors 46,48 would move if the second occupant 16 had used the second remote control 34 to select the same predetermined position or preset.


In an example, the second speed of the motors 46, 48 can be slower than the first speed. A slower second speed can be desirable because, as described above, the second occupant 16 can be asleep, and a slower speed can prevent or reduce the likelihood of the second occupant 16 waking up as the second sleep area 22 is moved to the predetermined position or preset. For example, if a “Partner Snore” feature is implemented, then the first occupant 14 can be selecting the snore-reducing position because the second occupant 16 is snoring, and therefor asleep, on the second sleep area 22.



FIG. 8 is a flow diagram of an example method 100 for the first remote control 32 controlling full articulation of the first sleep area 20 and placing the second sleep area 22 into a predetermined “Partner Snore” position, e.g, that will place the second sleep area 22 into the snore-reducing position. At 102, the first occupant 14 selects the “Partner Adjust” position using the first remote control 32. For example, the first occupant 14 can select a specific button or combination of buttons on the first remote control 32 that correspond to the “Partner Snore” position.


At 104, the first remote control 32 can send a movement control signal to one or more controllers, such as the single controller 50 (FIG. 5) or the two or more controllers 64A, 64B (FIG. 6). The movement control signal can include a first address or other unique identifier that identifies that it is the first remote control 32 that is sending the movement control signal. Similarly, the second remote control 34 can send an address that is different from that of the address from the first remote control 32. The movement control signal can also include a second address or unique identifier that indicates which sleep area 20, 22 is to be moved according to the movement control signal. In an example, the movement control signal can include a header that includes a predetermined sequence of the first address (e.g., identifying the remote control 32, 34 sending the signal) and the second address (e.g., identifying the sleep area 20, 22 to be moved according to the instructions in the signal).


In the case of the “Partner Snore” control signal, wherein the first controller 32 has sent a movement control signal to move the second sleep area 22 into the snore-reduction position, then the movement control signal can include an indication that the movement is for the opposite sleep area from the remote control 32, 34 that sent the movement control signal. For example, the movement control signal can come from the first remote control 32, but can include a movement control signal configured to articulate motion of one or more sections of the second sleep area 22, such as a control signal configured to cause the second head motor 46 to articulate the second head section 28 to the snore-reducing angle θ relative to horizontal, as described above.


At 106, the one or more controllers 50, 64A, 64B receive the movement control signal and determine what action to take. Determining what action to take can include the controller 50, 64A, 64B determining which remote control 32, 34 sent the movement control signal, for example by analyzing the header and reading the address contained therein. The controller 50, 64A, 64B can then determine whether the movement control signal is intended for itself, or for another controller 50, 64A, 64B. In the case of a single controller 50, each movement control signal is intended for the controller 50 unless a remote control from another sleep system is being used. However, when more than one controller 64A, 64B is included, as in FIG. 6, then movement control signals from the first remote control 32 are only intended for the first controller 64A, and movement control signals from the second remote control 34 are only intended for the second controller 64B (as described above). For example, if the first controller 64A receives a movement control signal with an address corresponding to the first remote control 32, then the first controller 64A can determine that it should pass the movement control on to its corresponding articulating motors 42, 44. But, if the first controller 64A receives a movement control signal with an address corresponding to the second remote control 34, then the first controller 64A can choose to ignore the movement control signal or alternatively can pass the signal to the second controller 64B, e.g., via the cable 69.


At 108, the one or more controllers 50, 64A, 64B can formulate a motor control signal or signals that are to be sent to one or more of the articulating motors 42, 44, 46, 48. The motor control signal or signals for each articulating motor 42, 44, 46, 48 can include what action the articulating motor 42, 44, 46, 48 should take, such as what direction the articulating motor 42, 44, 46, 48 should move, at what speed, and for how long. The motor control signal or signals can also include the timing and order of the actions that each articulating motor 42, 44, 46, 48 is to take. In the case of two or more controllers 64A, 64B, the controller 64A, 64B that receives the movement control signal can determine which remote control 32, 34 sent the movement control signal, such as by analyzing the address within the movement control signal, and what articulable section or sections 24, 26, 28, 30 to which the movement control signal is directed. The controller 64A, 64B can then determine whether to send a motor control signal directly to an articulating motor 42, 44, 46, 48 over which the controller 64A, 64B has direct control, or to send the motor control signal to the other controller 64A, 64B, such as via the cable 69.


For example, if the first controller 64A receives a movement control signal from the first remote control 32 indicating that the first head section 24 or the first leg section 26, or both, should be articulated, then the controller 64A can determine that a motor control signal can be sent directly to the first head motor 42 or the first leg motor 44, or both. Conversely, if the first controller 64A receives a movement control signal from the first remote control 32 indicating that the second head section 28 or the second leg section 30, or both, should be articulated (e.g., to move the second sleep area 22 into the snore-reducing position), then the controller 64A can send a control signal to the second controller 64B, via the cable 69, that will trigger the second controller 64B to formulate one or more appropriate motor control signals for the second head motor 46 or the second leg motor 48, or both.


At 110, the one or more controllers 50, 64A, 64B send the one or more motor control signals to the appropriate articulating motor or motors 42, 44, 46, 48, such as via the cables 56, 66, or 68. In an example, the motor control signal can include an address or unique identifier corresponding to the articulating motor 42, 44, 46, 48 to which the control signal is being directed. The address can be placed in a header of the control signal, similar to the address for the remote controls 32, 34 in the movement control signals described above.


In the case of a “Partner Snore” signal that was sent from the first controller 32, the controller 50 or 64B can send a motor control signal to the second head motor 46 that will move the second head section 28 to be at the snore-reducing angle θ, described above. The controller 50 or 64B can also send a motor control signal to the second leg motor 48 to move the second led section 30 into a flat position, e.g., a horizontal or substantially horizontal position.


In an example, before sending a signal to the articulating motors 42, 44, 46, 48, the controller 50 or 64B can determine the current position of each section 28, 30 of the second sleep area 22. For example, after accessing the current positions of the second head section 28 and the second leg section 30 from the memory of the controller 50, 64B (e.g., the memory 82 of controller 70 described above with respect to FIG. 7) or by requesting a position or orientation determination from a position sensor for each section 28, 30, the controller 50, 64B can then determine what direction each section 28, 30 of the second sleep area 22 is to be moved in order to facilitate the desired position (e.g., the snore-reducing position). The controller 50, 64B can then send a motor control signal to each motor 46, 48 of the second sleep area 22 that corresponds to the direction in which each section 28, 30 of the second sleep area 22 is to be articulated.


At 112, the motor control signal or signals are received by one or more of the articulating motors 46, 48 associated with the second sleep area 22, e.g., the second head motor 46 and the second leg motor 48. At 114, each motor 46, 48 can then articulate a corresponding section (e.g., the second head section 28 being articulated by the second head motor 46 and the second leg section 30 being articulated by the second head motor 48) so that the second sleep area is moved into the desired position, e.g., the snore-reducing position.


The ability for the first remote control 32 to move the second sleep area 22 into a predetermined position, such as the snore-reducing position, can have advantages that are not realized in other sleep systems. For example, such a configuration can allow the first occupant 14 who is being disturbed by the snoring of the second occupant 16 to reduce or alleviate the snoring by simply selecting an option on the first remote control 32, which presumably can be conveniently located relative to the first occupant 14 because the first remote control 32 is also configured to control the first sleep area 20. The use of the first remote control 32 to adjust the second sleep area 22 can provide a convenient and effective solution to the first occupant 14.


Such a configuration can also allow the first occupant 14 to reduce or eliminate the snoring of the second occupant 16 without having to disturb the sleep of the second occupant 16, e.g., without having to wake or otherwise disturb the second occupant 16. Thus, the sleep systems of the present disclosure can provide for a better sleep experience for the second occupant 16.


The configuration described herein can also provide a more lasting solution to snoring by the second occupant 16. As noted above, previously, the first occupant 14 might attempt to remedy the snoring of the second occupant 16 by waking the second occupant 16. The awakened second occupant 16 may temporarily cease snoring, but often the snoring will continue once the second occupant 16 goes back to sleep because the bed upon which the second occupant 16 is sleeping is still in the same snore-inducing position as before. The systems 10, 60 of the present disclosure allow the first occupant 14 to reduce or eliminate snoring of their partner by placing the second sleep area 22 into a different position than it was when the second occupant 16 began snoring. Thus, the systems 10, 60 of the present disclosure can be more likely to reduce or eliminate snoring.


The above Detailed Description is intended to be illustrative, and not restrictive. For example, the above-described examples (or one or more elements thereof) can be used in combination with each other. Other embodiments can be used, such as by one of ordinary skill in the art upon reviewing the above description. Also, various features or elements can be grouped together to streamline the disclosure. This should not be interpreted as intending that an unclaimed disclosed feature is essential to any claim. Rather, inventive subject matter can lie in less than all features of a particular disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.


In the event of inconsistent usages between this document and any documents so incorporated by reference, the usage in this document controls.


In this document, the terms “a” or “an” are used, as is common in patent documents, to include one or more than one, independent of any other instances or usages of “at least one” or “one or more.” In this document, the term “or” is used to refer to a nonexclusive or, such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated. In this document, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Also, in the following claims, the terms “including” and “comprising” are open-ended, that is, a system, device, article, composition, formulation, or process that includes elements in addition to those listed after such a term in a claim are still deemed to fall within the scope of that claim. Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects.


Method examples described herein can be machine or computer-implemented, at least in part. Some examples can include a computer-readable medium or machine-readable medium encoded with instructions operable to configure an electronic device to perform methods or method steps as described in the above examples. An implementation of such methods or method steps can include code, such as microcode, assembly language code, a higher-level language code, or the like. Such code can include computer readable instructions for performing various methods. The code may form portions of computer program products. Further, in an example, the code can be tangibly stored on one or more volatile, non-transitory, or non-volatile tangible computer-readable media, such as during execution or at other times. Examples of these tangible computer-readable media can include, but are not limited to, hard disks, removable magnetic disks, removable optical disks (e.g., compact disks and digital video disks), magnetic cassettes, memory cards or sticks, random access memories (RAMs), read only memories (ROMs), and the like.


The Abstract is provided to comply with 37 C.F.R. § 1.72(b), to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.


Although the invention has been described with reference to exemplary embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.

Claims
  • 1. A sleep system comprising: a mattress including a first sleep area for a first occupant, the first sleep area including a first section for a portion of a body of the first occupant, and a second sleep area adjacent to the first sleep area for a second occupant, the second sleep area including a second section for a portion of a body of the second occupant;an articulation system for articulating the first section and the second section;an articulation controller for controlling the articulation system;a first user controller configured to transmit a first set of one or more articulation control signals to the articulation controller to cause the articulation controller to control the articulation to articulate the first section within a first range of articulation positions;wherein the first user controller is further configured to provide a user selectable predetermined position control that, when selected, causes the first user controller to transmit a second set of one or more articulation control signals to the articulation controller to cause the articulation controller to control the articulation system to articulate the second section to a predetermined articulation position, wherein the predetermined articulation position can only be selected from a second range of articulation positions, the second range of articulation positions having a maximum articulation angle of no more than about 15° from horizontal wherein the articulation controller is further configured to receive a third set of one or more articulation control signals from a second user controller, such that the third set of one or more articulation control signals cause the controller to control the articulation system to articulate the second section within a third range of articulation positions in response to receiving the third set of one or more articulation control signals from the second user controller.
  • 2. The sleep system of claim 1, wherein the first set of one or more articulation control signals are configured to cause the articulation system to articulate the first section to one or more articulation positions of a set of multiple discrete articulation positions within the first range of articulation positions.
  • 3. The sleep system of claim 1, wherein the second range of articulation positions ranges from about 5° to about 15° from horizontal.
  • 4. The sleep system of claim 1, wherein the first range of articulation positions has a maximum articulation angle that is no greater than about 60° from horizontal.
  • 5. A sleep system comprising: a mattress including a first sleep area for a first occupant, the first sleep area including a first section for a portion of a body of the first occupant, and a second sleep area adjacent to the first sleep area for a second occupant, the second sleep area including a second section for a portion of a body of the second occupant; andan articulation system for articulating the first section and the second section, the articulation system configured to receive a first set of one or more articulation control signals, the articulation system further configured to articulate the first section within a first range of articulation positions in response to receiving the first set of one or more articulation control signals;wherein the articulation system is further configured to receive a second set of one or more articulation control signals and to articulate the second section to a predetermined articulation position in response to receiving the second set of one or more articulation control signals, wherein the predetermined articulation position can only be selected from a second range of articulation positions, the second range of articulation positions having a maximum articulation angle of no more than about 15° from horizontal;wherein the articulation system is further configured to receive a third set of one or more articulation control signals and to articulate the second section within a third range of articulation positions in response to receiving the third set of one or more articulation control signals; andwherein the first set of one or more articulation control signals and the second set of one or more articulation control signals are generated and transmitted by a first user controller and the third set of one or more articulation control signals are generated and transmitted by a second user controller.
  • 6. The sleep system of claim 5, wherein the articulation system is further configured to articulate the first section to a particular articulation position of a set of multiple discrete articulation positions within the first range of articulation positions in response to receiving the first set of one or more articulation control signals.
  • 7. The sleep system of claim 5, wherein the second range of articulation positions ranges from about 5° to about 15° from horizontal.
  • 8. The sleep system of claim 5, wherein the first range of articulation positions has a maximum articulation angle that is no greater than about 60° from horizontal.
  • 9. The sleep system of claim 5, wherein the articulation system is further configured to articulate the first section to a first articulation position of a first set of multiple discrete articulation positions within the first range of articulation positions in response to receiving the first set of one or more articulation control signals; and wherein the articulation system is further configured to articulate the second section to a second articulation position of a second set of multiple discrete articulation positions within the third range of articulation positions in response to receiving the third set of one or more articulation control signals.
  • 10. The sleep system of claim 5, wherein the first range of articulation positions and the third range of articulation positions each has a maximum articulation angle that is no greater than about 60° from horizontal.
  • 11. The sleep system of claim 5, wherein the articulation system is further configured to receive a fourth set of one or more articulation control signals from the second controller and to articulate the first section to another predetermined articulation position in response to receiving the fourth set of one or more articulation control signals, wherein the another predetermined articulation position can only be selected from a fourth range of articulation positions, the fourth range of articulation positions having a maximum articulation angle of no more than about 15° from horizontal.
  • 12. A sleep system comprising: a mattress;an articulation system configured to receive a first set of one or more articulation control signals from a first user controller and to articulate at least a first portion of the mattress within a first range of articulation positions in response to receiving the first set of one or more articulation control signals;wherein the articulation system is further configured to receive a second set of one or more articulation control signals from the first user controller and to articulate at least a second portion of the mattress to a predetermined articulation position in response to receiving the second set of one or more articulation control signals, wherein the predetermined articulation position can only be selected from a second range of articulation positions, the second range of articulation positions having a maximum articulation angle of no more than about 15° from horizontal; andwherein the articulation system is further configured to receive a third set of one or more articulation control signals from a second user controller and to articulate the second portion of the mattress within a third range of articulation positions in response to receiving the third set of one or more articulation control signals from the second user controller.
  • 13. The sleep system of claim 12, wherein the second range of articulation positions ranges from about 5° to about 15° from horizontal.
  • 14. The sleep system of claim 12, wherein the first range of articulation positions has a maximum articulation angle that is no greater than about 60° from horizontal.
  • 15. The sleep system of claim 12, wherein the first portion is different than the second portion.
  • 16. The sleep system of claim 12, wherein the mattress includes a first sleep area for a first occupant and a second sleep area adjacent to the first sleep area for a second occupant.
Parent Case Info

This application is a continuation of application Ser. No. 13/803,671, filed on Mar. 14, 2013, the entire contents of which is hereby incorporated by reference.

US Referenced Citations (381)
Number Name Date Kind
3646621 Fragas Mar 1972 A
3727606 Sielaff Apr 1973 A
3795019 Fragas Mar 1974 A
3998209 Macvaugh Dec 1976 A
4146885 Lawson, Jr. Mar 1979 A
4299233 Lemelson Nov 1981 A
4657026 Tagg Apr 1987 A
4662012 Tarbet May 1987 A
4766628 Greer et al. Aug 1988 A
4788729 Greer et al. Dec 1988 A
4829616 Walker May 1989 A
4890344 Walker Jan 1990 A
4897890 Walker Feb 1990 A
4908895 Walker Mar 1990 A
4991244 Walker Feb 1991 A
5062169 Kennedy et al. Nov 1991 A
5144706 Walker et al. Sep 1992 A
5170522 Walker Dec 1992 A
5197490 Steiner et al. Mar 1993 A
5459452 DePonte Oct 1995 A
5509154 Shafer et al. Apr 1996 A
5515865 Scanlon May 1996 A
5537701 Elliott Jul 1996 A
5564140 Shoenhair et al. Oct 1996 A
5642546 Shoenhair Jul 1997 A
5652484 Shafer et al. Jul 1997 A
5675855 Culp Oct 1997 A
5684460 Scanlon Nov 1997 A
5699038 Ulrich et al. Dec 1997 A
5724990 Ogino Mar 1998 A
5765246 Shoenhair Jun 1998 A
5771511 Kummer et al. Jun 1998 A
5796340 Miller Aug 1998 A
5844488 Musick Dec 1998 A
5848450 Oexman et al. Dec 1998 A
5903941 Shafer et al. May 1999 A
5904172 Gifft et al. May 1999 A
5948303 Larson Sep 1999 A
5964720 Pelz Oct 1999 A
5989193 Sullivan Nov 1999 A
6008598 Luff Dec 1999 A
6024699 Surwit et al. Feb 2000 A
6037723 Shafer et al. Mar 2000 A
6058537 Larson May 2000 A
6062216 Corn May 2000 A
6079065 Luff et al. Jun 2000 A
6108844 Kraft et al. Aug 2000 A
6120441 Griebel Sep 2000 A
6146332 Pinsonneault et al. Nov 2000 A
6147592 Ulrich et al. Nov 2000 A
6161231 Kraft et al. Dec 2000 A
6202239 Ward et al. Mar 2001 B1
6208250 Dixon et al. Mar 2001 B1
6234642 Bokaemper May 2001 B1
6272378 Baumgart-Schmitt Aug 2001 B1
6386201 Fard May 2002 B1
6396224 Luff et al. May 2002 B1
6397419 Mechache Jun 2002 B1
6438776 Ferrand et al. Aug 2002 B2
6450957 Yoshimi et al. Sep 2002 B1
6468234 Ford et al. Oct 2002 B1
6483264 Shafer et al. Nov 2002 B1
6485441 Woodward Nov 2002 B2
6546580 Shimada Apr 2003 B2
6547743 Brydon Apr 2003 B2
6561047 Gladney May 2003 B1
6566833 Bartlett May 2003 B2
6643875 Boso et al. Nov 2003 B2
6686711 Rose et al. Feb 2004 B2
6698432 Ek Mar 2004 B2
6708357 Gaboury et al. Mar 2004 B2
6719708 Jansen Apr 2004 B1
6763541 Mahoney et al. Jul 2004 B2
6778090 Newham Aug 2004 B2
6804848 Rose Oct 2004 B1
6832397 Gaboury et al. Dec 2004 B2
6840117 Hubbard, Jr. Jan 2005 B2
6840907 Brydon Jan 2005 B1
6847301 Olson Jan 2005 B1
6878121 Krausman Apr 2005 B2
6883191 Gaboury et al. Apr 2005 B2
6993380 Modarres Jan 2006 B1
7041049 Raniere May 2006 B1
7077810 Lange et al. Jul 2006 B2
7150718 Okada Dec 2006 B2
7237287 Weismiller et al. Jul 2007 B2
7253366 Bhai Aug 2007 B2
7304580 Sullivan et al. Dec 2007 B2
7314451 Halperin et al. Jan 2008 B2
7321811 Rawls-Meehan Jan 2008 B1
7330127 Price et al. Feb 2008 B2
7389554 Rose Jun 2008 B1
7396331 Mack Jul 2008 B2
7429247 Okada et al. Sep 2008 B2
7437787 Bhai Oct 2008 B2
7465280 Rawls-Meehan Dec 2008 B2
7480951 Weismiller Jan 2009 B2
7506390 Dixon et al. Mar 2009 B2
7520006 Menkedick et al. Apr 2009 B2
7524279 Auphan Apr 2009 B2
7532934 Lee et al. May 2009 B2
7538659 Ulrich May 2009 B2
7568246 Weismiller et al. Aug 2009 B2
7631377 Sanford Dec 2009 B1
7637859 Lindback et al. Dec 2009 B2
7652581 Gentry et al. Jan 2010 B2
7666151 Sullivan et al. Feb 2010 B2
7669263 Menkedick et al. Mar 2010 B2
7676872 Block et al. Mar 2010 B2
7685663 Rawls-Meehan Mar 2010 B2
7698761 Neuenswander et al. Apr 2010 B2
7699784 Wan et al. Apr 2010 B2
7717848 Heruth et al. May 2010 B2
7749154 Cornel Jul 2010 B2
7784128 Kramer Aug 2010 B2
7785257 Mack et al. Aug 2010 B2
7805785 Rawls-Meehan Oct 2010 B2
7841031 Rawls-Meehan Nov 2010 B2
7849545 Flocard et al. Dec 2010 B2
7854031 Rawls-Meehan Dec 2010 B2
7860723 Rawls-Meehan Dec 2010 B2
7862523 Ruotoistenmaki Jan 2011 B2
7865988 Koughan et al. Jan 2011 B2
7868757 Radivojevic et al. Jan 2011 B2
7869903 Turner et al. Jan 2011 B2
7930783 Rawls-Meehan Apr 2011 B2
7933669 Rawls-Meehan Apr 2011 B2
7953613 Gizewski May 2011 B2
7954189 Rawls-Meehan Jun 2011 B2
7956755 Lee et al. Jun 2011 B2
7967739 Auphan Jun 2011 B2
7979169 Rawls-Meehan Jul 2011 B2
8019486 Rawls-Meehan Sep 2011 B2
8020230 Rawls-Meehan Sep 2011 B2
8028363 Rawls-Meehan Oct 2011 B2
8032263 Rawls-Meehan Oct 2011 B2
8032960 Rawls-Meehan Oct 2011 B2
8046114 Rawls-Meehan Oct 2011 B2
8046115 Rawls-Meehan Oct 2011 B2
8046116 Rawls-Meehan Oct 2011 B2
8046117 Rawls-Meehan Oct 2011 B2
8050805 Rawls-Meehan Nov 2011 B2
8052612 Tang Nov 2011 B2
8065764 Kramer Nov 2011 B2
8069852 Burton Dec 2011 B2
8073535 Jung et al. Dec 2011 B2
8078269 Suzuki et al. Dec 2011 B2
8078336 Rawls-Meehan Dec 2011 B2
8078337 Rawls-Meehan Dec 2011 B2
8083682 Dalal et al. Dec 2011 B2
8090478 Skinner et al. Jan 2012 B2
8092399 Sasaki Jan 2012 B2
8094013 Lee Jan 2012 B1
8096960 Loree et al. Jan 2012 B2
8146191 Bobey et al. Apr 2012 B2
8150562 Rawls-Meehan Apr 2012 B2
8166589 Hijlkema May 2012 B2
8181296 Rawls-Meehan May 2012 B2
8266742 Andrienko Sep 2012 B2
8272892 McNeely et al. Sep 2012 B2
8276585 Buckley Oct 2012 B2
8279057 Hirose Oct 2012 B2
8280748 Allen Oct 2012 B2
8281433 Riley et al. Oct 2012 B2
8282452 Grigsby et al. Oct 2012 B2
8284047 Collins, Jr. Oct 2012 B2
8287452 Young et al. Oct 2012 B2
8336369 Mahoney Dec 2012 B2
8341784 Scott Jan 2013 B2
8341786 Oexman et al. Jan 2013 B2
8348840 Heit et al. Jan 2013 B2
8350709 Receveur Jan 2013 B2
8375488 Rawls-Meehan Feb 2013 B2
8376954 Lange et al. Feb 2013 B2
8382484 Wetmore et al. Feb 2013 B2
8386008 Yuen et al. Feb 2013 B2
8398538 Dothie Mar 2013 B2
8403865 Halperin et al. Mar 2013 B2
8413274 Weismiller et al. Apr 2013 B2
8421606 Collins, Jr. et al. Apr 2013 B2
8428696 Foo Apr 2013 B2
8444558 Young et al. May 2013 B2
8620615 Oexman Dec 2013 B2
8672853 Young Mar 2014 B2
8682457 Rawls-Meehan Mar 2014 B2
8769747 Mahoney et al. Jul 2014 B2
8909357 Rawls-Meehan Dec 2014 B2
8931329 Mahoney et al. Jan 2015 B2
8966689 McGuire et al. Mar 2015 B2
8973183 Palashewski et al. Mar 2015 B1
8984687 Stusynski et al. Mar 2015 B2
9730524 Chen Aug 2017 B2
20020124311 Peftoulidis Sep 2002 A1
20020184711 Mahoney et al. Dec 2002 A1
20020189621 Ek Dec 2002 A1
20030045806 Brydon Mar 2003 A1
20030128125 Burbank et al. Jun 2003 A1
20030163874 Boso et al. Sep 2003 A1
20030166995 Jansen Sep 2003 A1
20030182728 Chapman et al. Oct 2003 A1
20030221261 Tarbet et al. Dec 2003 A1
20040049132 Barron et al. Mar 2004 A1
20050022606 Partin et al. Feb 2005 A1
20050038326 Mathur Feb 2005 A1
20050115561 Stahmann et al. Jun 2005 A1
20050190065 Ronnholm Sep 2005 A1
20050190068 Gentry et al. Sep 2005 A1
20050283039 Cornel Dec 2005 A1
20060020178 Sotos et al. Jan 2006 A1
20060031996 Rawls-Meehan Feb 2006 A1
20060047217 Mirtalebi Mar 2006 A1
20060152378 Lokhorst Jul 2006 A1
20060162074 Bader Jul 2006 A1
20070049842 Hill et al. Mar 2007 A1
20070118054 Pinhas et al. May 2007 A1
20070149883 Yesha Jun 2007 A1
20070179334 Groves et al. Aug 2007 A1
20070180047 Dong et al. Aug 2007 A1
20070180618 Weismiller et al. Aug 2007 A1
20070276202 Raisanen et al. Nov 2007 A1
20080052837 Blumberg Mar 2008 A1
20080071200 Rawls-Meehan Mar 2008 A1
20080077020 Young et al. Mar 2008 A1
20080092291 Rawls-Meehan Apr 2008 A1
20080092292 Rawls-Meehan Apr 2008 A1
20080092293 Rawls-Meehan Apr 2008 A1
20080092294 Rawls-Meehan Apr 2008 A1
20080093784 Rawls-Meehan Apr 2008 A1
20080097774 Rawls-Meehan Apr 2008 A1
20080097778 Rawls-Meehan Apr 2008 A1
20080097779 Rawls-Meehan Apr 2008 A1
20080104750 Rawls-Meehan May 2008 A1
20080104754 Rawls-Meehan May 2008 A1
20080104755 Rawls-Meehan May 2008 A1
20080104756 Rawls-Meehan May 2008 A1
20080104757 Rawls-Meehan May 2008 A1
20080104758 Rawls-Meehan May 2008 A1
20080104759 Rawls-Meehan May 2008 A1
20080104760 Rawls-Meehan May 2008 A1
20080104761 Rawls-Meehan May 2008 A1
20080109959 Rawls-Meehan May 2008 A1
20080109964 Flocard et al. May 2008 A1
20080109965 Mossbeck May 2008 A1
20080115272 Rawls-Meehan May 2008 A1
20080115273 Rawls-Meehan May 2008 A1
20080115274 Rawls-Meehan May 2008 A1
20080115275 Rawls-Meehan May 2008 A1
20080115276 Rawls-Meehan May 2008 A1
20080115277 Rawls-Meehan May 2008 A1
20080115278 Rawls-Meehan May 2008 A1
20080115279 Rawls-Meehan May 2008 A1
20080115280 Rawls-Meehan May 2008 A1
20080115281 Rawls-Meehan May 2008 A1
20080115282 Rawls-Meehan May 2008 A1
20080120775 Rawls-Meehan May 2008 A1
20080120776 Rawls-Meehan May 2008 A1
20080120777 Rawls-Meehan May 2008 A1
20080120778 Rawls-Meehan May 2008 A1
20080120779 Rawls-Meehan May 2008 A1
20080120784 Warner et al. May 2008 A1
20080122616 Warner May 2008 A1
20080126122 Warner et al. May 2008 A1
20080126132 Warner May 2008 A1
20080127418 Rawls-Meehan Jun 2008 A1
20080127424 Rawls-Meehan Jun 2008 A1
20080147442 Warner Jun 2008 A1
20080162171 Rawls-Meehan Jul 2008 A1
20080262657 Howell et al. Oct 2008 A1
20080275314 Mack et al. Nov 2008 A1
20080281611 Rawls-Meehan Nov 2008 A1
20080281612 Rawls-Meehan Nov 2008 A1
20080281613 Rawls-Meehan Nov 2008 A1
20080288272 Rawls-Meehan Nov 2008 A1
20080288273 Rawls-Meehan Nov 2008 A1
20080306351 Izumi Dec 2008 A1
20080307582 Flocard et al. Dec 2008 A1
20090018853 Rawls-Meehan Jan 2009 A1
20090018854 Rawls-Meehan Jan 2009 A1
20090018855 Rawls-Meehan Jan 2009 A1
20090018856 Rawls-Meehan Jan 2009 A1
20090018857 Rawls-Meehan Jan 2009 A1
20090018858 Rawls-Meehan Jan 2009 A1
20090024406 Rawls-Meehan Jan 2009 A1
20090037205 Rawls-Meehan Feb 2009 A1
20090043595 Rawls-Meehan Feb 2009 A1
20090064420 Rawls-Meehan Mar 2009 A1
20090100599 Rawls-Meehan Apr 2009 A1
20090121660 Rawls-Meehan May 2009 A1
20090139029 Rawls-Meehan Jun 2009 A1
20090203972 Heneghan et al. Aug 2009 A1
20090275808 DiMaio et al. Nov 2009 A1
20090314354 Chaffee Dec 2009 A1
20100025900 Rawls-Meehan Feb 2010 A1
20100090383 Rawls-Meehan Apr 2010 A1
20100094139 Brauers et al. Apr 2010 A1
20100099954 Dickinson et al. Apr 2010 A1
20100152546 Behan et al. Jun 2010 A1
20100170043 Young et al. Jul 2010 A1
20100170044 Kao et al. Jul 2010 A1
20100174198 Young et al. Jul 2010 A1
20100174199 Young et al. Jul 2010 A1
20100191136 Wolford Jul 2010 A1
20100199432 Rawls-Meehan Aug 2010 A1
20100231421 Rawls-Meehan Sep 2010 A1
20100302044 Chacon et al. Dec 2010 A1
20100317930 Oexman et al. Dec 2010 A1
20110001622 Gentry Jan 2011 A1
20110010014 Oexman et al. Jan 2011 A1
20110015495 Dothie et al. Jan 2011 A1
20110041592 Schmoeller et al. Feb 2011 A1
20110068935 Riley et al. Mar 2011 A1
20110087113 MacK et al. Apr 2011 A1
20110094041 Rawls-Meehan Apr 2011 A1
20110115635 Petrovski et al. May 2011 A1
20110138539 Mahoney et al. Jun 2011 A1
20110144455 Young et al. Jun 2011 A1
20110156915 Brauers et al. Jun 2011 A1
20110224510 Oakhill Sep 2011 A1
20110239374 Rawls-Meehan Oct 2011 A1
20110252569 Rawls-Meehan Oct 2011 A1
20110258784 Rawls-Meehan Oct 2011 A1
20110282216 Shinar et al. Nov 2011 A1
20110283462 Rawls-Meehan Nov 2011 A1
20110291795 Rawls-Meehan Dec 2011 A1
20110291842 Oexman Dec 2011 A1
20110295083 Doelling et al. Dec 2011 A1
20110302720 Yakam et al. Dec 2011 A1
20110306844 Young Dec 2011 A1
20120017371 Pollard Jan 2012 A1
20120025992 Tallent et al. Feb 2012 A1
20120053423 Kenalty et al. Mar 2012 A1
20120053424 Kenalty et al. Mar 2012 A1
20120056729 Rawls-Meehan Mar 2012 A1
20120057685 Rawls-Meehan Mar 2012 A1
20120090698 Giori et al. Apr 2012 A1
20120110738 Rawls-Meehan May 2012 A1
20120110739 Rawls-Meehan May 2012 A1
20120110740 Rawls-Meehan May 2012 A1
20120112890 Rawls-Meehan May 2012 A1
20120112891 Rawls-Meehan May 2012 A1
20120112892 Rawls-Meehan May 2012 A1
20120116591 Rawls-Meehan May 2012 A1
20120119886 Rawls-Meehan May 2012 A1
20120119887 Rawls-Meehan May 2012 A1
20120138067 Rawls-Meehan Jun 2012 A1
20120154155 Brasch Jun 2012 A1
20120186019 Rawls-Meehan Jul 2012 A1
20120198632 Rawls-Meehan Aug 2012 A1
20120204887 Connor Aug 2012 A1
20120240340 Driscoll et al. Sep 2012 A1
20120304391 Driscoll et al. Dec 2012 A1
20120311790 Nomura et al. Dec 2012 A1
20130160212 Oexman et al. Jun 2013 A1
20130174347 Oexman et al. Jul 2013 A1
20130227787 Herbst et al. Sep 2013 A1
20140007656 Mahoney Jan 2014 A1
20140047644 Mossbeck Feb 2014 A1
20140137332 McGuire et al. May 2014 A1
20140182061 Zaiss Jul 2014 A1
20140250597 Chen et al. Sep 2014 A1
20140257571 Chen et al. Sep 2014 A1
20140259417 Nunn et al. Sep 2014 A1
20140259418 Nunn et al. Sep 2014 A1
20140259419 Stusynski Sep 2014 A1
20140259431 Fleury Sep 2014 A1
20140259433 Nunn et al. Sep 2014 A1
20140259434 Nunn et al. Sep 2014 A1
20140277611 Nunn et al. Sep 2014 A1
20140277778 Nunn et al. Sep 2014 A1
20140277822 Nunn et al. Sep 2014 A1
20140313700 Connell et al. Oct 2014 A1
20150007393 Palashewski Jan 2015 A1
20150025327 Young et al. Jan 2015 A1
20150026896 Fleury et al. Jan 2015 A1
20150136146 Hood et al. May 2015 A1
20150157137 Nunn et al. Jun 2015 A1
20150157519 Stusynski et al. Jun 2015 A1
20150182033 Brosnan et al. Jul 2015 A1
20150182397 Palashewski et al. Jul 2015 A1
20150182399 Palashewski et al. Jul 2015 A1
20150182418 Zaiss Jul 2015 A1
Foreign Referenced Citations (12)
Number Date Country
202605093 Dec 2012 CN
40 05 822 Aug 1991 DE
2 471 401 Dec 2010 GB
2002-503504 Feb 2002 JP
2004229875 Aug 2004 JP
2004-255138 Sep 2004 JP
WO 2004082549 Sep 2004 WO
WO 2008023724 Feb 2008 WO
WO 2008128250 Oct 2008 WO
WO 2009108228 Sep 2009 WO
WO 2009123641 Oct 2009 WO
WO 2010149788 Dec 2010 WO
Non-Patent Literature Citations (7)
Entry
U.S. Appl. No. 14/283,675, filed May 21, 2014, Mahoney et al.
U.S. Appl. No. 14/675,355, filed Mar. 31, 2015, Palashewski et al.
U.S. Appl. No. 14/687,633, filed Apr. 15, 2015, Brosnan et al.
International Search Report in International Application No. PCT/US2014/028137, dated Jul. 7, 2014, 2 pages.
U.S. Appl. No. 14/146,281, Palashewski et al.
U.S. Appl. No. 14/146,327, Palashewski et al.
International Preliminary Report on Patentability and Written Opinion in International Application No. PCT/US2014/028137, dated Sep. 24, 2015, 6 pages.
Related Publications (1)
Number Date Country
20150157519 A1 Jun 2015 US
Continuations (1)
Number Date Country
Parent 13803671 Mar 2013 US
Child 14624305 US