This application relates to power sources. More specifically, this invention relates to providing a power source utilizing existing vehicular hardware without inhibiting the functionality of the vehicular hardware.
Vehicles include various features to aid with diagnosis for repair, testing, and evaluation. Standardizing features reduces the assortment of tools needed to perform a vehicle diagnostic test across multiple vehicle lines. One such standardized feature is the onboard diagnostic (OBD) port. A technician or vehicle operator can engage the port with a diagnostic device to obtain a variety of information about the vehicle. Standardizing the architecture of the port across various vehicle platforms enables a technician or vehicle operator to use similar diagnostic devices to evaluate multiple vehicles. Although standardized, various versions of the OBD port exist, each version representing a developmental iteration of the OBD standard port. The OBD-II port is one such iteration.
The OBD-II port includes multiple pins. At least one pin provides power from the vehicle, and at least one pin provides a ground from the vehicle. When not directly connected to a diagnostic device, such as when the vehicle is moving, the OBD-II port typically remains disconnected under the hood of the vehicle. Another common installation location for the OBD-II diagnostic port is in the vehicle cabin. Vehicular packaging constraints under the hood and in the vehicle cabin limit the size and geometry of OBD-II connectors capable of engaging the OBD-II port.
When engaged, the OBD-II connector may interfere with the driver or the front seat passenger. Reducing the size of the OBD-II connector may reduce the interference, but may limit the OBD-II connector functions.
In addition to increasingly demanding diagnostic capabilities, today's consumers and technicians increasingly rely on vehicles as a source of power for aftermarket devices. The IPAID device manufactured by Intelligent Mechatronic Systems Inc. of Waterloo, Canada is one such aftermarket device requiring power. Further, to meet consumer demands, vehicle original equipment manufactures may augment existing vehicles with added power-requiring content, such as dealer installed equipment. Further, vehicle packaging constraints also limit incorporating power points and outlets within existing vehicle architectures.
An exemplary pass-through connector includes a connector housing a first end and a second end. A plurality of terminals extends from said first end to said second end. A supply line connects to a subset of the plurality of terminals. The supply line is located apart from the first end and the second end.
The supply line connects to the subset of the plurality of terminals through a supply line link. The position of the supply line and the supply line link relative to the connector orientation is reversible, and may be repositioned depending on the car architecture. The supply line may be protected from overcurrent with a polyswitch resettable device.
An exemplary method of providing power from a vehicle includes engaging a diagnostic port of a vehicle with a connector and providing a port within the connector for engaging a diagnostic device. Also, directing power from the connector through a supply line apart from the port and providing greater diagnostic capability from the port than from the supply line.
The various features and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the currently preferred embodiment. The drawings that accompany the detailed description can be briefly described as follows:
The connector 10 communicates information about the vehicle to the diagnostic equipment through various terminals 22 within the connector 10. At least some of the terminals 22 communicate power and ground from the vehicle. In this example, a supply line 26 communicates power and ground away from the connector 10 to a powered and grounded device 28. A supply line link 20 connects the supply line 26 to the connector 10. A cover 24 engages the connector 10 adjacent the supply line link 20, and includes an aperture 25 for receiving the first supply line link 20.
The example connector 10 includes sixteen terminals 22, as shown in the side view of
A device adapted to utilize power may directly connect to a power terminal 22a at the second end 18; however, doing so would interfere with connecting diagnostic equipment to the connector 10. The supply line 26 routes power from the connector 10 without interfering with the connectivity to the pass-through connector 10, which is in direct communication with the OBD-II port of the vehicle. Thus, diagnostic equipment may be connected and disconnected to the second end 18 without interrupting power routed via the supply line 26. Example devices designed to utilize power from the OBD-II port include the IPAID system designed and marketed by Intelligent Mechatronic Systems Inc. of Waterloo, Canada.
Referring now to
Although generally described in terms of communicating power and ground away from the connector 10, those skilled in the art and having the benefit of this disclosure may recognize that information about the vehicle, such as diagnostic information, could similarly be communicated away from the connector 10 via the supply line 26. For example, in addition to wires 46 and 50 respectively communicating power and ground from the connector 10, a third wire may communicate emissions information from a terminal 22 within the connector 10. Including a connection to this terminal 22 within the supply line 26 (
Individually selecting the contents of the supply line 26 allows the supply line and associated connections to the terminal 22 within the connector 10 to be tailored for connecting to a specific device. As a result, superfluous connections can be eliminated, which reduces the size of the supply line 26, and the size of the connector 10 needed to accommodate the associated connections of the supply line 26 to the terminal 22. Thus, the connector 10 may be accommodated in environments with limited packaging space. Further, as the supply line 26 communicates with the OBD-II port 12 (
An uninterrupted source of power and ground is especially useful with devices designed to monitor vehicular habits. That is, those devices requiring power sources when the vehicle is not running. Further, as the connector 10 incorporates features designed to reduce packaging requirements, the connector 10 is especially suited to provide power to devices having packaging constraints.
In another example, the connector 10 provides power to devices installed within confined areas of the vehicle, such as in the vehicle trunk and vehicle glove compartment.
The IPAID device may incorporate the connector 10 as a primary connection for power. For example, the supply line 26 may directly communicate power from the OBD-II port 12 through the connector 10 to the IPAID device. The IPAID device may include a removable memory device for extracting information about the vehicle, such as driving habits, etc. The uninterrupted power source from the connector 10 allows the IPAID device to perform operations, such as calculations, when the vehicle is not running. The packaging requirements for the connector 10 enable an operator to position the IPAID device under the hood of the vehicle in a position accessible to the driver, but without substantially obstructing the driver.
In some examples, the IPAID device cannot be installed under the hood. Environmental constraints may limit the installation locations of the IPAID device in this manner. In such an example, the IPAID device is typically installed in the trunk or the vehicle cabin. The supply line 26 provides enough length to install the IPAID, or another aftermarket powered device, in several areas of the vehicle other than underneath the hood.
The example connector 10 includes other improvements for reducing its overall packaging requirements. For example, in the terminal 22 of
Referring now to
In this example, removing the top cover 24 permits moving the male connector portion 64 between opposing sides of the connector 10, as shown in
Although illustrated as having the male connector portion 64 of the supply line link 20 (
Although a preferred embodiment has been disclosed, variations and modifications to the disclosed examples may become apparent to those skilled in the art that do not necessarily depart from the essence of this invention. The scope of legal protection given to this invention can only be determined by studying the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5289378 | Miller | Feb 1994 | A |
5532927 | Pink | Jul 1996 | A |
5680328 | Skorupski et al. | Oct 1997 | A |
5732074 | Spaur | Mar 1998 | A |
5928292 | Miller | Jul 1999 | A |
6104988 | Klarer | Aug 2000 | A |
6246935 | Buckley | Jun 2001 | B1 |
6346876 | Flick | Feb 2002 | B1 |
6356823 | Iannotti | Mar 2002 | B1 |
6795760 | Fuller | Sep 2004 | B2 |
6847887 | Casino | Jan 2005 | B1 |
6853956 | Ballard, Jr. | Feb 2005 | B2 |
7209850 | Brott | Apr 2007 | B2 |
7225065 | Hunt | May 2007 | B1 |
7228211 | Lowrey | Jun 2007 | B1 |
7346370 | Spaur | Mar 2008 | B2 |
7447574 | Washicko | Nov 2008 | B1 |
7596437 | Hunt | Sep 2009 | B1 |
7599769 | Nou | Oct 2009 | B2 |
7643912 | Heffington | Jan 2010 | B2 |
7672763 | Hunt | Mar 2010 | B1 |
7690950 | Owen, Sr. | Apr 2010 | B2 |
7705602 | Bertness | Apr 2010 | B2 |
7724517 | Attlesey et al. | May 2010 | B2 |
7818098 | Koepf | Oct 2010 | B2 |
7904219 | Lowrey | Mar 2011 | B1 |
20020016655 | Joao | Feb 2002 | A1 |
20080268662 | Krivtsov | Oct 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20080268662 A1 | Oct 2008 | US |