Rotorcraft main rotor gearboxes carry flight loads and are often not mounted rigidly to airframe for dynamics reasons. This means they can move significantly relative to other drive system components in the aircraft. Coupling shafts are typically used to isolate these motions, however, the coupling shafts conventionally require an axial space that undesirably adds significant distance between the systems they connect so that the overall drive systems require longer than desirable longitudinal lengths. The resultant overall lengths require location of some heavy components further away from a center of gravity of the aircraft than is desired.
Prior Art
While the making and using of various embodiments of the present disclosure are discussed in detail below, it should be appreciated that the present disclosure provides many applicable inventive concepts, which can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative and do not limit the scope of the present disclosure. In the interest of clarity, not all features of an actual implementation can be described in the present disclosure. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developer's specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming but would be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
In the specification, reference may be made to the spatial relationships between various components and to the spatial orientation of various aspects of components as the devices are depicted in the attached drawings. However, as will be recognized by those skilled in the art after a complete reading of the present disclosure, the devices, members, apparatuses, and the like described herein can be positioned in any desired orientation. Thus, the use of terms such as “above,” “below,” “upper,” “lower” or other like terms to describe a spatial relationship between various components or to describe the spatial orientation of aspects of such components should be understood to describe a relative relationship between the components or a spatial orientation of aspects of such components, respectively, as the device described herein can be oriented in any desired direction. In addition, as used herein, the term “coupled” can include direct or indirect coupling by any means, including moving and/or non-moving mechanical connections.
Referring to Prior Art
Referring now to
In this embodiment, each of the first coupling 208 and the second coupling 210 are substantially similar so that substantially equal amounts of misalignment are accommodated by each. The drive system 200 can be described as comprising longitudinal packaging length 212 required to accommodate both the MRGB 202 and the intermediate gearbox 204. It will be appreciated that when MRGB 202 is substantially the same as MRGB 102 and intermediate gearbox 104 is substantially the same as intermediate gearbox 204, packaging length 212 is substantially shorter than conventional packaging length 112. This relative shortening of the packaging length is attributable to providing longitudinal overlap between the coupling shaft 206 and the intermediate gearbox 204.
Referring now to
Referring now to
At least one embodiment is disclosed, and variations, combinations, and/or modifications of the embodiment(s) and/or features of the embodiment(s) made by a person having ordinary skill in the art are within the scope of this disclosure. Alternative embodiments that result from combining, integrating, and/or omitting features of the embodiment(s) are also within the scope of this disclosure. Where numerical ranges or limitations are expressly stated, such express ranges or limitations should be understood to include iterative ranges or limitations of like magnitude falling within the expressly stated ranges or limitations (e.g., from about 1 to about 10 includes, 2, 3, 4, etc.; greater than 0.10 includes 0.11, 0.12, 0.13, etc.). For example, whenever a numerical range with a lower limit, Rl, and an upper limit, Ru, is disclosed, any number falling within the range is specifically disclosed. In particular, the following numbers within the range are specifically disclosed: R=Rl+k*(Ru−Rl), wherein k is a variable ranging from 1 percent to 100 percent with a 1 percent increment, i.e., k is 1 percent, 2 percent, 3 percent, 4 percent, 5 percent, . . . 50 percent, 51 percent, 52 percent, . . . , 95 percent, 96 percent, 95 percent, 98 percent, 99 percent, or 100 percent. Moreover, any numerical range defined by two R numbers as defined in the above is also specifically disclosed.
Use of the term “optionally” with respect to any element of a claim means that the element is required, or alternatively, the element is not required, both alternatives being within the scope of the claim. Use of broader terms such as comprises, includes, and having should be understood to provide support for narrower terms such as consisting of, consisting essentially of, and comprised substantially of. Accordingly, the scope of protection is not limited by the description set out above but is defined by the claims that follow, that scope including all equivalents of the subject matter of the claims. Each and every claim is incorporated as further disclosure into the specification and the claims are embodiment(s) of the present invention. Also, the phrases “at least one of A, B, and C” and “A and/or B and/or C” should each be interpreted to include only A, only B, only C, or any combination of A, B, and C.
This invention was made with Government support under Agreement No. W911W6-19-9-0002, awarded by the Army Contracting Command-Redstone Arsenal. The Government has certain rights in the invention.