The subject matter herein relates generally to an electrical connector assembly that provides one or more electrical pathways through a wall that separates two spaces while impeding leakage of fluid between the two spaces.
Electrical connectors may be used to transfer data and/or electrical power between different systems or devices. Electrical connectors are often designed to operate in challenging environments where contaminants, shock, and/or vibration can disrupt the electrical connection. For example, automobiles and other machinery utilize electrical connectors to communicate data and/or electrical power therein. At least some known electrical connector assemblies are configured to provide one or more electrical pathways through a wall that separates two spaces. For example, the wall may separate fluids within a transmission case of an automobile or other machinery. Such connector assemblies, which are hereinafter referred to as pass-thru connector assemblies, extend through an opening in the wall. The pass-thru connector assembly is not only designed to operate in challenging environments but is also designed to impede leakage through the pass-thru connector assembly itself or through an interface between the pass-thru connector assembly and the wall.
Conventional pass-thru connector assemblies may be manufactured by overmolding a leadframe of electrical contacts. The electrical contacts extend through a housing that was formed during the overmolding process. Mating segments of the electrical contacts project from one side of the housing and are configured to engage other contacts of a mating connector. Trailing segments of the electrical contacts project from another side of the housing and are terminated to wires. Although such pass-thru connector assemblies are effective for their intended applications, the manufacturing process can be costly and/or time-consuming.
Accordingly, there is a need for a pass-thru connector assembly that may be manufactured through a process that is less costly or time-consuming than known manufacturing methods.
In an embodiment, a pass-thru connector assembly is provided that includes an electrical cable having a wire conductor and an electrical contact terminated to an end of the wire conductor. The electrical cable has an outer jacket. The pass-thru connector assembly also includes a pass-thru body having a passage section and a loading section that are configured to be positioned in separate first and second spaces, respectively. The pass-thru body also includes a body channel that extends therethrough. The passage section defines an opening to the body channel in the first space, the pass-thru body having a cable seal in the body channel that separates a cable portion of the body channel from the second space. The cable seal has an aperture therethrough. The pass-thru connector assembly also includes a header housing that is configured to mate with an electrical connector. The header housing is attached to the passage section and covers the opening to the body channel. The electrical cable extends through the aperture of the cable seal and into and through the cable portion of the body channel. The cable seal engages the outer jacket of the electrical cable at a sealed interface. The electrical contact is coupled to the header housing and positioned for engaging a corresponding contact of the electrical connector.
In some embodiments, the passage section has an elongated neck that includes the opening of the body channel at a distal end of the neck. Optionally, the elongated neck and the header housing form a pluggable engagement between each other.
In some embodiments, the header housing includes an insert section that receives the electrical cable. The insert section may be disposed within the body channel. Optionally, the header housing has a blocking surface disposed in the housing cavity that engages the electrical contact and impedes withdrawal of the electrical contact through the insert section.
In some embodiments, a frictional engagement is formed at the sealed interface that holds the electrical cable in an essentially fixed position within the cable portion of the body channel during operation. The pass-thru connector assembly may be devoid of a frictional engagement between the sealed interface and the end of the wire conductor.
In some embodiments, the pass-thru body includes a base section positioned generally between the loading section and the passage section. The base section may include a flange portion that is configured to engage a wall.
In some embodiments, the pass-thru body has an interior surface that is shaped to form a positive stop. The positive stop prevents the header housing from moving closer toward the cable seal.
In some embodiments, the pass-thru connector assembly also includes an outer sealing band that surrounds the pass-thru body.
In some embodiments, the pass-thru body includes a main housing and the cable seal. The main housing includes the body channel and the opening to the body channel.
In some embodiments, the electrical contact includes a terminating segment that is mechanically and electrically coupled to the wire conductor. The electrical contact also includes a mating segment that is exposed for engaging the corresponding contact. The mating segment may be pin-shaped or blade-shaped.
In some embodiments, the electrical cable is a first electrical cable. The pass-thru connector assembly also includes a second electrical cable. The second electrical cable extends through a different aperture of the cable seal and into and through the cable portion of the body channel. The cable seal engages an outer jacket of the second electrical cable at a corresponding sealed interface.
In some embodiments, the pass-thru body includes a base section positioned generally between the loading section and the passage section. The passage section may have an elongated neck that has the opening to the body channel. The pass-thru body may also include a support rib that extends between and joins the base section and the passage section.
In an embodiment, an apparatus is provided that includes a partition wall separating first and second spaces that are configured to hold respective fluids. The partition wall has a wall opening therethrough. The apparatus also includes a pass-thru connector assembly extending through the wall opening of the partition wall. The pass-thru connector assembly and the partition wall define a first sealed interface therebetween. The pass-thru connector assembly includes a pass-thru body having a passage section and a loading section that are positioned in the first and second spaces, respectively. The pass-thru body includes a body channel that extends therethrough. The passage section defines an opening to the body channel in the first space. The pass-thru body has a cable seal in the body channel that separates a cable portion of the body channel from the second space. The cable seal has an aperture therethrough. The pass-thru connector assembly also includes an electrical cable having a wire conductor and an electrical contact terminated to an end of the wire conductor. The electrical cable extends through the aperture of the cable seal and into and through the cable portion of the body channel. The cable seal forms a second sealed interface with an outer jacket of the electrical cable. The pass-thru connector assembly also includes a header housing configured to mate with an electrical connector. The header housing is attached to the passage section and covers the opening to the body channel. The electrical contact is coupled to the header housing and positioned for engaging a corresponding contact of the electrical connector.
The connector assembly 100 also includes an electrical cable 110 (shown in
In operation, the pass-thru connector assembly 100 is configured to provide a passage for an electrical pathway through a partition wall 118 (shown in
As shown, the pass-thru connector assembly 100 is oriented with respect to mutually perpendicular X, Y, and Z axes. The pass-thru body 102, the header housing 104, the cable seal 106, and the seal cover 108 are configured to be generally aligned along a longitudinal axis 114 such that these elements are stacked along the longitudinal axis 114. As such, the elements of the pass-thru connector assembly 100 may be characterized as being in-line with one another. As described below, however, one more of the elements may not be stacked in-line in other embodiments.
The seal cover 108 includes an outer side 120, an inner side 122, and a plurality of apertures or ports 124 that extend between the outer side 120 and the inner side 122. The seal cover 108 has a plug section 126 that includes the inner side 122 and an outer section (or cap section) 128 that includes the outer side 120. The plug section 126 is sized and shaped to be inserted into a recess of the pass-thru body 102 (
The cable seal 106 is sized and shaped to be positioned within the recess of the pass-thru body 102. The cable seal 106 includes a first side 130, a second side 132, and a plurality of apertures or ports 134 that extend between the first side 130 and the second side 132. The apertures 134 are configured to align with the apertures 124 of the seal cover 108. The apertures 134 are defined by interior surfaces 135 that are configured to engage and grip respective electrical cables 110 (
In the illustrated embodiment, the seal cover 108 includes four (4) apertures 124 and the cable seal 106 includes four (4) apertures 134. It should be understood, however, that the seal cover 108 and the cable seal 106 may each include a different number of apertures 124. For example, each of the seal cover 108 and the cable seal 106 may include only a single corresponding aperture, two corresponding apertures, three corresponding apertures, or more than four corresponding apertures.
In the illustrated embodiment, the pass-thru body 202 includes a base section 240, a passage section 242, and a loading section 244. For embodiments in which the cable seal and seal cover are discrete with respect to a remainder of the pass-thru body 202, the remainder may be referred to as a main housing 203. A longitudinal axis 214 extends through a body channel 216 of the pass-thru body 202. The base section 240 is positioned generally between the passage section 242 and the loading section 244. The base section 240 is configure to engage or interface with a wall (not shown) through which the pass-thru body 202 extends. The wall may be similar to the wall 118 (
The base section 240 may also form a flange or rim portion 254 that extends radially away. The flange portion 254 may have a profile that is greater than a profile of a hole through which the pass-thru body 202 extends. More specifically, the flange portion 254 may be sized to prevent the pass-thru body 202 from being inserted entirely through the hole of the wall.
The passage section 242 and the loading section 244 are configured to be positioned in separate first and second spaces, respectively. The body channel 216 extends through the pass-thru body 202. The body channel 216 includes a cable portion 256 and a seal portion 258. The cable portion 256 extends through the passage section 242. The seal portion 258 represents the portion of the body channel 216 that receives a cable seal and a seal cover (not shown), which may be similar to the cable seal 106 and the seal cover 108 (
The passage section 242 defines an opening 260 to the body channel 216. In the illustrated embodiment, the passage section 242 includes an elongated neck or nozzle 243 that extends a distance 264 along the longitudinal axis 214 from the base section 240 to a distal end. The elongated neck 243 includes the opening 260 at the distal end. The distance 264 may be, for example, at least one (1) centimeter (cm), at least two (2) cm, or at least three (3) cm. In some embodiments, the distance 264 may be, for example, at least four (4) cm, at least five (5) cm, or at least six (6) cm. In particular embodiments, the distance 264 is less than ten (10) cm. In some embodiments, the passage section 242 includes support ribs or walls 265 that extend from the base section 240 in a direction toward a mid-portion of the neck 243 or the opening 260. The support ribs 265 engage the neck 243 and may support the neck 243 in a designated position.
The opening 260 is defined by a distal edge 266. The distal edge 266 is configured to engage a header housing 204 (shown in
In the illustrated embodiment, the housing cavity 276 includes a receiving portion 284. Electrical contacts (not shown) are configured to be exposed within the receiving portion 284 for engaging the mating connector (not shown). The receiving portion 284 is sized and shaped to receive the mating connector and form a pluggable engagement. In other embodiments, however, the housing cavity 276 does not receive the mating connector. In such embodiments, the electrical contacts may clear the front end 273.
The electrical contacts are configured to be inserted through the rear opening 280. The header housing 204 may include a self-locking mechanism 286 that includes one or more blocking surfaces that prevent withdrawal of the electrical contacts after the electrical contacts have been operably positioned. For example, the insert section 272 includes a first latch 290 and the mating section 274 includes a second latch 292. Each of the first and second latches 290, 292 is configured to be deflected by one or more of the electrical contacts. Each of the first and second latches 290, 292 may be biased or predisposed to flex back toward an undeflected position after the electrical contact clears the respective latch.
The first and second latches 290, 292 include blocking surfaces 291, 293, respectively. When the electrical contacts are operably positioned, the blocking surfaces 291, 293 are positioned to engage the electrical contacts. For example, if the electrical contacts (or corresponding electrical cables) are moved in a withdrawal direction 294 along the longitudinal axis 214, the blocking surfaces 291, 293 may engage the electrical contacts and impede withdrawal.
Also shown in
Prior to the assembly stage shown in
The electrical contact 310 also includes an intermediate segment 316. The intermediate segment 316 is shaped to include first and second engagement surfaces 318, 320 that are configured to engage first and second latches 422, 424 (shown in
Returning to
The pass-thru connector assembly 100 is in an operable position in
While in the operable position, the electrical cable 110 extends through the cable portion 156 of the body channel 116. A frictional engagement is formed at the sealed interface 308 that holds the electrical cable 110 in an essentially fixed position within the cable portion 156 during operation. The header housing 104 includes first and second latches 422, 424 that hold the electrical contact 112 in an essentially fixed position within a housing cavity 426 of the header housing 104. In some embodiments, the pass-thru connector assembly 100 is devoid of other frictional engagements between the sealed interface 308 and the end of the wire conductor 302. In such embodiments, slack in the electrical cable 110 may exist within the cable portion 156 so that strain or other unwanted forces are not continuously exerted at the interface between the wire conductor 302 and the electrical contact 112.
The sealed interface 308 is a first sealed interface. In the illustrated embodiment, a sealing band 414 may surround the pass-thru body 102. The sealing band 414 may engage the partition wall 118 or other component of the apparatus to form a second sealed interface 416. The sealed interface 420 may be a third sealed interface. Additional sealed interfaces may exist.
The passage section 342 is positioned in the first space 402, and the pass-thru body 102 has a loading section 344 that is positioned in the second space 404. The body channel 116 extends through the pass-thru body 102. The header housing 104 is attached to the passage section 342 and covers the opening 360 to the body channel 116. The electrical contact 112 is coupled to the header housing 104 and is positioned for engaging a corresponding contact of the electrical connector (not shown).
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the various embodiments without departing from its scope. Dimensions, types of materials, orientations of the various components, and the number and positions of the various components described herein are intended to define parameters of certain embodiments, and are by no means limiting and are merely exemplary embodiments. Many other embodiments and modifications within the spirit and scope of the claims will be apparent to those of skill in the art upon reviewing the above description. The patentable scope should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
As used in the description, the phrase “in an exemplary embodiment” and the like means that the described embodiment is just one example. The phrase is not intended to limit the inventive subject matter to that embodiment. Other embodiments of the inventive subject matter may not include the recited feature or structure. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects. Further, the limitations of the following claims are not written in means-plus-function format and are not intended to be interpreted based on 35 U.S.C. § 112(f), unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure.
Number | Name | Date | Kind |
---|---|---|---|
5520553 | Cecil, Jr. | May 1996 | A |
6203348 | Fukuda | Mar 2001 | B1 |
6361341 | Okayasu | Mar 2002 | B1 |
6361378 | Konoya et al. | Mar 2002 | B1 |
6494731 | Suzuki | Dec 2002 | B1 |
6521160 | Suzuki | Feb 2003 | B2 |
6659797 | Ichio | Dec 2003 | B2 |
6786768 | Murakami | Sep 2004 | B2 |
7001215 | Nakamura | Feb 2006 | B2 |
7476133 | Tanaka | Jan 2009 | B2 |
7575463 | Mase | Aug 2009 | B2 |
7682191 | Iwahori | Mar 2010 | B2 |
8419485 | Stausser et al. | Apr 2013 | B2 |
20160118742 | Akagi et al. | Apr 2016 | A1 |
Number | Date | Country |
---|---|---|
102014102745 | Sep 2015 | DE |
2011097007 | Aug 2011 | WO |
Entry |
---|
International Search Report, International Application No. PCT/IB2017/056233, International Filing Date Oct. 9, 2017. |