This invention relates generally to RF communication systems and particularly to RF filters used in such systems.
Filters play an important role in many telecommunication systems, such as wireless cellular systems, for example. In one application, bandpass filters are utilized to transmit energy in a desired band of frequencies (i.e., the passband) and to reject energy at unwanted frequencies (i.e., the stopband) that are outside of the desired band or passband. In use, and in a transmit or receive function, multiple bandpass filters may be utilized to divide up the entire receive or transmit band into smaller sub-bands for further processing.
One type of bandpass filter utilizes resonators, such as cavity resonators, that are cascaded together to form a multi-pole filter. Such resonator filters, and their characteristics, are often indicated by a quality factor or Q rating. Since the characteristics of a single filter can have a significant impact on the overall performance of the larger communication system, it is desirable to achieve the most ideal response possible in the filter. One of the major performance limitations is the unloaded Q factor of the resonators.
In addition to maintaining a desirable passband and significant rejection at the stopband, one other performance criterion that is important within a bandpass resonator filter is the amount of bandpass ripple or the loss variation in the filtered signal. Bandpass ripple or loss variation refers to the situation where the filter has more insertion loss at the band edges of the passband than it has at the band center or center frequency of the passband. While a theoretical resonator filter might have resonators with infinite Q, in constructing such resonators and implementing them into real filter applications, they have a finite Q. Filters using resonators of finite, uniform unloaded Q have a certain amount of passband ripple that needs to be reduced to meet desirable system requirements.
One technique for addressing such passband ripple is to utilize predistorted Q in the filter. Predistorted Q refers to a filter design technique wherein the resonator Q is not equal or uniform for all the resonators that are used throughout the filter. To realize an equal ripple passband, which is desirable, the filter transmission poles need to be placed in specific locations on the S plane. Finite resonator Q shifts the poles on the real axis, causing ripple distortion, which results in band edge roll-off. Predistorted Q allows the transmission poles to be placed such that their relative positions are generally identical to the infinite Q positions, but with a relative shift on the real axis. The predistorted Q may thus be utilized to realize a flatter passband ripple.
While various predistorted Q techniques are utilized for filter construction, it is still desirable to improve upon such techniques and to provide predistorted Q within a filter using resonators such that the size and the cost of the filter is not significantly high or prohibitive.
It is further desirable to provide a filter configuration that is adaptable to provide a number of different filters with complex filter functions. The complex functions should be realizable while still controlling passband insertion loss as noted. Furthermore, cost savings are a factor for consideration in any such filter design.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate components and embodiments of the invention and, together with the detailed description of the embodiments given below, serve to explain the principles of the invention.
a is a top view of the filter of
b is a top view of an alternative embodiment of a filter in accordance with aspects of the invention.
a is a top view of the filter of
b is a top view of an alternative embodiment of a filter in accordance with aspects of the invention.
c is a top view of another alternative embodiment of a filter in accordance with aspects of the invention.
Filter 10 utilizes an input or input port 12 and an output or output port 14 such that a signal introduced at input port 12 is filtered, pass through the coupled resonators, and is output at port 14. For coupling an appropriate RF signal to filter 10, the input port 12 may include a suitable tap line 16 that is electrically coupled with one or more components of one of the resonators, such as the first sequential resonator. Similarly, at the output port 14, a tap line 18 is utilized for handling the output signal for being passed to other components (not shown) in an overall system.
The present invention is not limited to a specific number of resonators that are coupled together, and the number of such resonators in a bandpass filter will be dependent upon the specific filter design, as well as the desired transfer function, bandwidth, center frequency, and other factors in the filter design. In one of the embodiments illustrated in the drawings and discussed herein, seven resonators are utilized, which are indicated as 20a, 20b, 20c, 20d, 20e, 20f and 20g, as an illustrative example. Other embodiments have fewer resonators, but more could be used as well. The resonators 20a-20g utilized in the illustrated embodiment each include an assembly incorporating a housing 22 and an internal resonant element 24. For designating the specific resonators 20a-20g in the illustrated embodiment, the housings will be indicated as 22a-22g and the respective internal resonant elements as 24a-24g.
In accordance with one aspect of the present invention, filter 10 utilizes multiple different types of resonators for improving the characteristics of the filter. One particular desirable feature of the present invention is the reduction of the passband ripple, as discussed above, although the filter 10 provides other desirable features in accordance with the present invention. Specifically, in the illustrated embodiment, filter 10 incorporates a combination of metal resonators and ceramic resonators. Generally, the reference to a “metal” resonator or “ceramic” resonator is specifically directed to the type of material forming the internal resonant elements or posts 24a-24g utilized in the resonator.
Specifically, in one illustrated embodiment, the input resonator 20aand the output resonator 20g of filter 10 are utilized to have the lowest weighting or lowest Q. In the illustrated embodiment, those resonators have internal elements 24a, 24g that are metal. One or more of the middle resonators or internal resonators 20b-20f of the filter incorporate ceramic resonant elements, such as elements 24b-24f. The metal resonators have a substantially lower unloaded Q than the ceramic resonators. The combination of different types of resonators, and in the illustrated embodiment, the combination of metal resonators and ceramic resonators, provide the desired predistorted Q and bandpass flattening effect to the passband ripple and also provide other improved characteristics to the filter 10 in accordance with the invention. Furthermore, the filter provides cross-coupling between metal and ceramic resonators.
The present invention is not limited to using one type of lower Q resonator, which is a metal resonator, only for the first and last resonators 20a, 20g, respectively, and then using different types of resonators, such as ceramic resonators, for the internal resonators, 20b-20f, as illustrated. Alternatively, the first type of low Q resonator, such as a metal resonator, might extend into the filter and past the first resonator. For example, in an alternative embodiment, resonator 20bor 20c might also be a low Q metal resonator.
Furthermore, it is not necessary that the design be symmetric such that both of the end resonators 20a, 20g are the same type of resonator. For example, only the first resonator 20a might be one particular type, such as a metal resonator, while the other resonators 20b-20g are of another type. It is desirable to put the lower Q resonators on an end or both ends of the filter and the higher Q resonators in the middle in accordance with one aspect of the invention, wherein lower Q metal resonators are used on the ends and higher Q ceramic resonators are used in the middle as illustrated in the embodiment shown in the figures.
Referring again to
Referring to
In accordance with another aspect of the invention, cross-coupling might also be utilized so as to cross-couple a specific resonator to a non-adjacent resonator. For example, while resonator 20c utilizes coupling apertures 30 to directly couple to the preceding adjacent resonator 20b and to the following adjacent resonator 20d, resonator 20c also utilizes a cross-coupling aperture 34 to couple to non-adjacent resonator 20a as well. Similarly, other of the resonators may cross-couple to respective non-sequential or non-adjacent resonators utilizing cross-coupling aperture 34. For example, resonator 20d also cross-couples to resonator 20g through aperture 34 and resonator 20e also cross-couples to resonator 20g. The present invention is not limited to the specific coupling apertures or irises 30 and cross-coupling apertures or irises 34 as illustrated in the embodiment of the figures to provide the desired coupling and cross-coupling between resonators. Rather, other different coupling and cross-coupling techniques might also be utilized. For example, coupling probes might be used.
The coupling apertures 30 and cross-coupling apertures 34 are created by appropriate openings that are formed in respective housing walls 32 between the resonators. The openings are dimensioned and positioned so as to provide the necessary coupling of energy between the resonators at the desired frequencies of the filter 10. The overall housing 11 of the filter might be formed from individual housings 22 coupled together or might be a unitary structure with the desired housing features and apertures 30, 34 that are formed in accordance with the invention. For example, aluminum might be utilized to form the overall housing 11 or individual housings 22 of filter 10. As may be appreciated, the housings 22 form the cavities of the resonator and thus are formed of aluminum, as noted, or some other suitable metal. Furthermore, they might be silver-plated or plated with some other conductive metal on the inside of each housing for better conductance.
The coupling apertures 30, 34 are appropriately sized based upon the bandwidth of the filter, the center frequency of the filter, the number of resonators that are utilized, as well as the number of transmission zeros that are to be achieved in the filter and the positioning of those transmission zeros. As noted, while the illustrated figures show the coupling junctures as apertures formed in the respective housings and cavities of the resonators, probe-type structures (not shown) might also be utilized to pass energy between the sequential resonators, as would be understood by a person of ordinary skill in the art.
Turning now to the internal elements of the resonators 20a-20g, each resonator includes an internal resonant element 24, which is contained within the cavity formed by the respective housing 22 of the resonator. In those resonator elements that are considered “metal” resonators in accordance with one aspect of the invention, the internal resonant element 24 is formed of metal. For example, as illustrated in
For tuning purposes, a tuning element 36 might be utilized with resonator 20a. The tuning element embodiment illustrated in the figures of the present application is in the form of a tuning button that moves up and down with respect to the resonator element in the cavity. Turning to
Turning to
Accordingly, a filter, such as a bandpass filter, is illustrated and described that has sequentially-coupled resonators between input and output ports wherein the resonators are made of two different types of materials to effect higher and lower Q factors. The resonators are arranged to provide at least one resonator having a lower Q factor proximate one of the input and output ports while the higher Q factor resonator is provided proximate the inside of the sequentially-coupled arrangement.
Specifically, the embodiments set forth filters with combinations of resonators wherein at least one of the resonators is metal and at least one other resonator is ceramic. Furthermore, such embodiments also illustrate cross-coupling of non-adjacent resonators and at least one cross-coupling from a metal resonator to a ceramic resonator. Specifically,
In accordance with one aspect of the invention, in addition to direct coupling between the sequential, adjacent resonators, there is also at least one cross-coupling between a metal resonator and a ceramic resonator. That is, there is a cross-coupling between at least one resonator incorporating an internal resonant element made of metal and another resonator incorporating an internal resonant element made of ceramic.
Referring to
In accordance with one aspect of the present invention, the metal resonant element 114 is positioned in various different orientations within the filter, and specifically within its own housing 108, and the various coupling and cross-coupling openings are oriented between adjacent resonators in order to provide a variety of different characteristics in a variety of different implementations for filter 100, as discussed herein, such that filter 100, and the other discussed filters, may be utilized in filters having a larger number of resonators. By providing specifically oriented resonant elements 114,116, and 118, as well as specifically oriented coupling openings (1-2), (2-3), and (1-3), finite transmission zeros may be produced as desired. In the illustrated embodiments, adjacent resonators are coupled together and some non-adjacent resonators are also coupled or cross-coupled to produce the finite transmission zeros. As noted, those couplings are implemented with openings (e.g., irises or apertures) located between the resonator housings where coupling is desired.
In accordance with one aspect of the invention, there will be at least two non-adjacent resonators made of different materials and cross-coupled with each other. More specifically, there is at least one cross-coupling from a metal resonator to a ceramic resonator. In several of the disclosed embodiments, the position of the coupling or cross-coupling aperture with respect to the metal resonator controls the sign of the cross-coupling between resonators. For example, referring to
The embodiment of
FIGS. 10 and 11A-11C illustrate still further embodiments of filters, which incorporate resonators made of different materials and having cross-couplings between the different resonators. Those embodiments illustrate filters with four resonator elements, including at least one metal resonator and one ceramic resonator wherein there is at least one cross-coupling between metal and ceramic resonators. Referring now to
In the quad resonator filter 120, as illustrated in
It should be noted that the illustrated embodiments herein showing a combination of different resonators (e.g., metal and ceramic resonators) within a filter, and also illustrating at least one cross-coupling between the different resonators or metal and ceramic resonators, are not meant to be exhaustive of the various possibilities and combinations, which might be incorporated in designing filters according to the present invention. For example, various different configurations both in the shape and material of the internal resonant elements, the shape and orientation of the resonator housings, the number of resonators, as well as the positioning of the various coupling and cross-coupling apertures might be varied. Generally, referring to the four resonator versions illustrated in
While the present invention has been illustrated by the description of the embodiments thereof, and while the embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details of representative apparatus and method, and illustrative examples shown and described. Accordingly, departures may be made from such details without departure from the spirit or scope of applicant's general inventive concept.