The present invention relates to the use of a metal scrim on a passenger airbag door panel on the interior of an automobile.
Airbags are a common safety device used in automobiles to prevent injury to the vehicle passengers when an accident occurs. Typically, airbags are integrated into the steering wheel or the dashboard and deploy when the vehicle is in a collision; if the vehicle is hit head-on, the momentum of the driver and passenger will be absorbed by the airbag, and the driver and passenger will avoid hitting the steering wheel and dashboard, respectively.
As technology has developed, airbags are also being used in other areas of the vehicle besides the steering wheel and dashboard. It has become commonplace for airbags to be used in door panels and overhead panels in the interior of the vehicle.
When the airbag is installed in the vehicle, it is placed in an area that will provide a minimal amount of interference with the use of the vehicle because the airbag is only necessary when there is a collision. It is common for aesthetic reasons for the airbag to be covered by a panel that follows a similar contour to, for example, the rest of the instrument panel of the vehicle and is similar in color. The modern trend with airbags is to have a seamless panel covering the airbag so as to disguise the location of the airbag completely. The airbag is typically located in a chute, and a door behind the panel aids in holding the airbag in place. It is important to prevent any panels or breakaway structures from being propelled toward the driver or passengers when deployed.
The processes of either the heat-staking or vibration welding are expensive, both in capital and required labor costs. Accordingly, there exists a need for an improved assembly of a plastic airbag door in an instrument panel.
The present invention is directed to a seamless airbag door assembly for a motor vehicle. A panel having an inner surface and an outer surface. The inner surface of the panel has predetermined breaking lines that are not visible when the panel is viewed from the outside surface. A scrim is connected to the inner surface of the panel and has a cut-line operable aligned with the predetermined breaking lines of the inner surface of the panel. An airbag chute is connected to the scrim and inner surface of the panel in order to connected the airbag chute to the panel.
Upon deployment of an airbag through the airbag chute, the panel ruptures along the predetermined breaking lines, and the door assembly opens outward away from the panel along with the ruptured portion of the panel and the area of the scrim connected to the door.
The scrim acts as a hinge to prevent the door assembly and the ruptured portion of the panel from detaching from rest of the panel.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
A seamless passenger airbag door assembly 10 in the interior of an automobile is generally shown in
Operably connected to the scrim 18 is an airbag chute 20 formed by an upper support 22, a lower support 24, a first side support 26, and a second side support 28 that can be separate components or integrated into a single piece. The airbag chute 20 surrounds a door assembly 30; in the embodiment shown, the door assembly 30 and airbag chute 20 are connected to the scrim 18. The door assembly 30 and airbag chute 20 can be separate components or they can be formed together. The scrim 18 is larger in area that the airbag chute 20 and the door assembly 30. The scrim 18 is also pre-cut on three sides as shown in
The panel 12 also includes pre-determined breaking lines (not shown) which are located on the inner surface 16 and are of the same shape as the airbag chute 20. Locating the pre-determined breaking lines on the inner surface 16 will allow them to be hidden from view of the passengers, thus concealing the position of the airbag (not shown) and providing a seamless airbag door 10 while still allowing the airbag to be deployed through the panel 12.
Assembly is achieved through a process known as resistive implant welding (RIW). The scrim 18 is positioned against the inner surface 16 of the panel 12, and the airbag chute 20 is placed against the scrim 18. The resistive implant welding process involves applying an electrical current to the scrim 18, which in this particular application is made of metal or another suitable conductive material, while the scrim 18 is in contact with the airbag chute 20 and the panel 12. The electrical current causes the scrim 18 to heat up. The heated scrim 18 will cause the panel 12 and the airbag chute 20 to melt. Upon cooling, the scrim 18 is firmly connected to the inner surface 16 of the panel 12 and the airbag chute 20. The use of the resistive implant welding process has the advantage of connecting the scrim 18 to the panel 12 and the airbag chute 20 as a single step in the manufacturing process. Other ways of heating the scrim material which facilitates the melt can be used. For instance the scrim 18 can be heated by an induction heating process and achieve the same results.
It is not necessary for the upper support member, 22, lower support member 24, first side support member 26 and second side support member 28 to all be attached to the inner surface 16. It is possible to only connect two sides and still secure the panel 12 and airbag chute 20 together.
The scrim 18 is bonded to the panel 12 in two ways. The scrim 18 is either post applied to the panel 12 or the scrim 18 is over molded with the panel 12. When the scrim 18 is over molded with the panel 12, the scrim 18 is either partially embedded in the panel 12 or fully embedded in the panel 12. After the scrim 18 and panel 12 are attached to one another, the airbag chute 20 is placed on the panel 12 and scrim 18. However, if the scrim 18 is fully embedded in the panel 12, the airbag chute 20 is only placed on the panel 12. After that, heat or electrical current is applied to the scrim 18 which in turn melts the thermo plastic of the panel 12 and/or the air bag chute 20 for melt bonding them together. For example, when the heat is applied to the scrim 18 the heat is transferred from the scrim 18 to the panel 12, and the surface of the panel 12 melts in order to create a tacky or sticky surface which is capable of adhering to the surface of the airbag chute 20 as the surface of panel 12 cools. Furthermore, the heat or electric current applied to the scrim 18 can also be transferred to the panel 12 and the airbag chute 20 when the airbag chute 20 contacts the panel 12. Thus, both the surface of the panel 12 and the surface of the airbag chute 20 melt in order to create a tacky or sticky surface which adhere together when the surfaces cool.
In operation, an airbag device 36 is located in the airbag chute 20, and remains there when not in use. Upon deployment, the airbag device 36 will apply pressure against the door assembly 30, which will in turn apply pressure against the scrim 18, and the panel 12. The pre-determined breaking lines will allow the portion of the panel 12 covering the airbag chute 20 to breakaway forming a ruptured portion of the panel 12, and the door assembly 30 will be pushed outward. The area of the scrim 18 covering the airbag chute 20 will also breakaway along the cut-lines 34. Upon airbag deployment, the ruptured portion of the panel 12, the portion of the scrim 18 covering the airbag chute 20, and the door assembly 30 will open as a single unit, and the airbag will inflate. The hinge portion of the scrim 38 will act as a hinge, preventing the door 30 and the panel 12 from hitting the passengers during airbag deployment.
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
This application claims the benefit of U.S. Provisional Application No. 60/779,529, filed Mar. 6, 2006. The disclosure of the above application is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA2007/000347 | 3/6/2007 | WO | 00 | 9/5/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/101334 | 9/13/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4181514 | Lefkowitz et al. | Jan 1980 | A |
5382047 | Gajewski | Jan 1995 | A |
5393089 | Pakulsky et al. | Feb 1995 | A |
5449196 | Ohno et al. | Sep 1995 | A |
5639115 | Kelley et al. | Jun 1997 | A |
5643390 | Don et al. | Jul 1997 | A |
5769451 | Inada et al. | Jun 1998 | A |
5775727 | Sun et al. | Jul 1998 | A |
5934702 | Coleman | Aug 1999 | A |
6079733 | Towler | Jun 2000 | A |
6453535 | Nicholas | Sep 2002 | B1 |
20020000711 | Schmidt et al. | Jan 2002 | A1 |
20040232668 | DePue et al. | Nov 2004 | A1 |
20050127641 | Cowelchuk et al. | Jun 2005 | A1 |
20050269804 | Yamada et al. | Dec 2005 | A1 |
Number | Date | Country |
---|---|---|
0495655 | Jul 1992 | EP |
WO 2004067330 | Aug 2004 | WO |
WO 2004076233 | Sep 2004 | WO |
WO 2006004077 | Jan 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20090026741 A1 | Jan 2009 | US |
Number | Date | Country | |
---|---|---|---|
60779529 | Mar 2006 | US |