This application claims priority to Korean Patent Application No. 10-2010-0038010 (filed on Apr. 23, 2010), which is hereby incorporated by reference in its entirety.
1. Field of the Invention
The present invention relates to a passenger airbag system, more particularly a passenger airbag system in which the portion of an airbag cushion which contacts the head of the occupant in a child restraint system mounted on the passenger seat is depressed when the airbag cushion inflates.
2. Description of the Related Art
In general, vehicles are equipped with airbag systems that prevent passengers from being hurt by direct impact against the structure of the vehicle by inflating between the structure of the vehicle and the passengers in a collision.
The airbag systems are operated by an ACU (Airbag Control Unit) that controls an inflator, which is a gas generator, in response to a signal detected by a sensor that senses a collision. That is, as the gas-generating substance inside the inflator is exploded by a control command from the ACU and gas is generated, the gas flows into the airbag cushion connected to the inflator and the airbag cushion is inflated by the gas flowing inside, thereby protecting the passenger.
The airbag cushions, however, are generally manufactured to be expanded by expansion pressure for protecting adults, in consideration of the body conditions of adults. However, in some cases, not only adults, but infants or children sit in the passenger seat, the excessive expansion pressure of the passenger airbag cushion is potentially a dangerous life threatening factor for of the infants or children.
In practice, North America has established a law to preclude infants and children from being hurt due to excessive expansion pressure of the passenger airbag cushion, by classifying the passengers in the passenger seat, which are infants to 1 year or under and 3 years or under, and children 6 years or under.
Therefore, there have been conducted many researches for developing passenger airbag cushions for protecting all passengers, that is, infants 1 year or under, 3 years or under, and children 6 years or under, in addition to adults, by controlling the expansion pressure of the passenger airbag cushion.
It is an object of the present invention to provide a passenger airbag system that can prevent the airbag cushion from pressing the head of an occupant in a child restraint system mounted on the passenger seat.
The present invention is not limited to the object and other objects, which are not described above, can be obviously understood by those skilled in the art from the following description.
In order to achieve the objects of the present invention, a passenger airbag system according to an embodiment of the present invention includes: an airbag cushion inflated by gas flowing inside and including a head contact portion that contacts the head of an occupant in a child restraint system mounted on the passenger seat; a strap connected to the head contact portion; and a tether connected to the airbag cushion and pulling the strap such that the head contact portion is depressed, when the airbag cushion inflates.
Other configurations of embodiments are included in the detailed description and drawings.
A passenger airbag system according to the present invention has the advantage of preventing an airbag cushion from pressing down the head of the occupant in a child restraint system, because the head contact portion of the airbag cushion which contacts the head of the occupant in the child restraint system is depressed, when the airbag cushion inflates.
The present invention is not limited to the above-mentioned effects and other effects, which are not described above, can be obviously understood to those skilled in the art from the claims.
Advantages and features of the present invention, and methods of achieving them will be clear from the embodiments described below in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiment described herein and may be implemented in various ways. Further, the embodiments help complete the present invention and are provided for those skilled in the art to help completely understand the spirit of the present invention, and the present invention is defined within the claims. The same reference numerals represent the same components throughout the specification.
A passenger airbag system according to an embodiment of the present invention will be described hereafter with reference to the drawings.
Referring to
The passenger airbag system 10 includes an inflator 3 generating gas and an airbag cushion 100 connected with the inflator 3. The airbag cushion 100 protect an occupant in the passenger seat S when inflated by the gas flowing inside from the inflator 3.
Infants or children, as well as adults, sit in the passenger seat S.
A child restraint system 20 is mounted on the passenger seat S and the infants or the children are laid in the child restraint system 20, with the head positioned toward to the front.
North America has prescribed that the infants and the children are classified into infants 1 year or under and 3 year or under and children 6 years or under to protect all of them from being hurt due to the expansion pressure of the aircushion bag 100. Therefore, the occupant C of the child restraint system 20 considers all of the infants 1 year or under, 3 years or under, and children 6 years or under.
The airbag cushion 100 includes a head contact portion 121 that contacts the head of the occupant C in the child restraint system 20.
Referring to
The side panels 140 and 160 are a first side panel 140 connected to the right side of the main panel 120 and a second side panel 160 connected to the left side of the main panel 120.
Vent holes 145 and 165 discharging gas are formed through the first side panel 140 and the second side panel 160 to prevent the airbag cushion 100 from inflating at excessive expansion pressure. In other words, the gas flowing inside the airbag cushion 100 from the inflator 3 after the airbag cushion 100 expands to an appropriate size is discharged outside the airbag cushion 100 through the vent holes 145 and 165, such that the airbag cushion 100 can maintain appropriate expansion pressure.
The main panel 120 has a rear 122 where the head contact portion 121 is formed, a front 124 disposed apart from the rear 122 and facing the rear 122, and a top 126 connecting the front 124 and the rear 122.
A groove 123 depressed inward is formed at the front 124 and the head contact portion 121 depressed inward is formed at the rear 122.
The groove 123 is continuously formed at the front 124 from the first side panel 140 to the second side panel 160 and the head contact portion 121 is continuously formed at the rear 122 from the first side panel 140 to the second side panel 160.
When an adult sits in the passenger seat S and the airbag cushion 100 inflates, the front 124 contacts and protects the adult.
Further, when the occupant C is in the child restraint system 20 on the passenger seat S and the airbag cushion 100 inflates, the rear 122 contacts and protects the occupant C. In this case, the head contact portion 121 of the rear 122 contacts the head of the occupant in the child restraint system 20.
However, since the occupant C in the child restraint system 20 is physically weaker than the adult, the head contact portion 121 may hurt the neck of the occupant C in the child restraint system 20 by pressing down the head of the occupant C in the child restraint system 20 due to excessive expanding pressure when contacting the head of the occupant C in the child restraint system 20.
Therefore, in order to prevent the occupant C in the child restraint system 20 from being hurt due to the excessive expansion pressure of the head contact portion 121, a strap 130 is connected to the head contact portion 121 of the airbag cushion 100, and a tether 150 is connected to the airbag cushion 100 to pull the strap 130 such that the head contact portion 121 is depressed when the airbag cushion 100 inflates.
Referring to
Both ends 132 and 134 of the strap 130 are attached to the head contact portion 121 but a portion between the ends 132 and 134 is not attached to the head contact portion 121, such that a hole 135 through which the tether 150 passes is defined between the strap 130 and the head contact portion 121.
The tether 150 has one end attached to the top 126 of the airbag cushion 100 through the hole 135 and the other end attached to the groove 123 of the front 124 of the airbag cushion 100, to be movable through the hole 135.
The tether 150 is disposed inside the airbag cushion 100 and of which one end is attached to a middle portion between the first side panel 140 and the second side panel 160 of the top 126 of the airbag cushion 100 and the other end is attached to a middle portion between the first side panel 140 and the second side panel 160 of the groove 123 of the airbag cushion 100.
On the other hand, when the strap 130 is made of an inflexible material, the head of the occupant C in the child restraint system 20 may be hurt due to the inflexibility of the strap 130, when the head contact portion 121 of the airbag cushion 100 contacts the head of the occupant C in the child restraint system 20.
Therefore, it is preferable that the strap 130 is made of a flexible material. The strap 130 is made of the same material as the airbag cushion 100 in this embodiment. In detail, the strap 130 is formed by coating the fabric with silicon that can sustain gas temperature and sewing the fabric to the head contact portion 121.
Further, similar to the strap 130, the tether 150 is preferably made of a flexible material. The tether 150 is also made of the same material as the airbag cushion 100 in this embodiment, similar to the strap 130. In detail, the tether 150 is formed by coating the fabric with silicon that can sustain gas temperature, and of which one end is sewn to the top 126 of the airbag cushion 100 through the hole 135 and the other end is sewn to the groove 123 of the front 124 of the airbag cushion 100.
The operation of the passenger airbag system 10 having the configuration according to an embodiment of the present invention is as follows.
First, when gas flows into the airbag cushion 100 from the inflator 3, as shown in (a) of
In this position, as the gas continues flowing into the airbag cushion 100 from the inflator 3, the airbag cushion 100 starts to further inflate, in which the groove 123 on the front 124 pulls the tether 150 while expanding.
Accordingly, the tether 150 pulls the strap 130, moving along the groove 123 when the groove 123 expands, and the airbag cushion 100 correspondingly fully expands. After the groove 123 completely expands, as shown in (b) of
In particular, in the passenger airbag system 10 according to an embodiment of the present invention, it could be seen that the head contact 121 remained depressed even in 50 msec after the airbag cushion 100 started inflating. That is, the airbag cushion 100 was prevented from pressing the head of the occupant C in the child restraint system 20 by reducing the initial expansion pressure of the airbag cushion 100 in the related art; however, in this configuration, the expansion pressure of the airbag cushion 100 increase again 50 msec after the airbag cushion 100 starts inflating, such that the airbag cushion 100 may still press down the head of the occupant C in the child restraint system 20. However, in the passenger airbag system 10 according to an embodiment of the present invention, since the head contact portion 121 keeps depressed even 50 msec after the airbag cushion 100 starts inflating, it is possible to more securely prevent the airbag cushion 100 from pressing down the head of the occupant C in the child restraint system 20.
While certain embodiments have been described above, it will be understood to those skilled in the art that the embodiments described are by way of example only. Accordingly, it should be construed that the embodiments described herein are just exemplified and not limited. The scope of the present invention is defined in the following claims and all changed or modified types derived from the meanings and scope of the claims and the equivalent concept thereof should be construed as being included in the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
10-2010-0038010 | Apr 2010 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
3879057 | Kawashima et al. | Apr 1975 | A |
3907327 | Pech | Sep 1975 | A |
5308113 | Moriset | May 1994 | A |
5489119 | Prescaro et al. | Feb 1996 | A |
5609363 | Finelli | Mar 1997 | A |
5887894 | Castagner et al. | Mar 1999 | A |
6250677 | Fujimura | Jun 2001 | B1 |
6254130 | Jayaraman et al. | Jul 2001 | B1 |
6334627 | Heym et al. | Jan 2002 | B1 |
6554317 | Lorenz et al. | Apr 2003 | B2 |
6616184 | Fischer | Sep 2003 | B2 |
6736426 | Winters et al. | May 2004 | B2 |
7360789 | Bito | Apr 2008 | B2 |
7377548 | Bauer et al. | May 2008 | B2 |
7396045 | Aranzulla et al. | Jul 2008 | B2 |
7455317 | Bito | Nov 2008 | B2 |
7484757 | Thomas et al. | Feb 2009 | B2 |
7568731 | Miyata | Aug 2009 | B2 |
7597356 | Williams | Oct 2009 | B2 |
7621561 | Thomas et al. | Nov 2009 | B2 |
7784828 | Matsu et al. | Aug 2010 | B2 |
7789421 | Issler et al. | Sep 2010 | B2 |
7793978 | Vigeant et al. | Sep 2010 | B2 |
7862073 | Thomas | Jan 2011 | B2 |
7914041 | Aranzulla et al. | Mar 2011 | B2 |
7922197 | Fukawatase et al. | Apr 2011 | B2 |
7931297 | Abe et al. | Apr 2011 | B2 |
7946622 | Niwa et al. | May 2011 | B2 |
7959184 | Fukawatase et al. | Jun 2011 | B2 |
7967331 | Lim | Jun 2011 | B2 |
8002309 | Kim et al. | Aug 2011 | B2 |
20060186656 | Kumagai | Aug 2006 | A1 |
20070045997 | Abe et al. | Mar 2007 | A1 |
20070126219 | Williams | Jun 2007 | A1 |
20070205591 | Bito | Sep 2007 | A1 |
20080073890 | Williams et al. | Mar 2008 | A1 |
20100102542 | Nakajima et al. | Apr 2010 | A1 |
20100225094 | Rose et al. | Sep 2010 | A1 |
20110062693 | Williams | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
2002-200953 | Jul 2002 | JP |
2008-201214 | Sep 2008 | JP |
10-2008-0017718 | Feb 2008 | KR |
10-2009-0064212 | Jun 2009 | KR |
Number | Date | Country | |
---|---|---|---|
20110260431 A1 | Oct 2011 | US |