Passenger safe wagon

Information

  • Patent Application
  • 20190118837
  • Publication Number
    20190118837
  • Date Filed
    October 20, 2017
    7 years ago
  • Date Published
    April 25, 2019
    5 years ago
Abstract
The purpose of this plan is to reduce the damages in intercity train crash cases to the passengers. In the next phase, if the train catches fire with the increase in the incident time of smoke and fire entering to the train, the passenger is required to react appropriately. The coupe and the corridor are designed to prevent the fuel, fire, heat and wear from penetrating into the coupe so passengers can have plenty of time to get out of the train. In addition to sound proof its walls are heat and fire proof.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

Not Applicable


STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable


REFERENCE TO SEQUENCE LISTING, A TABLE, OR A COMPUTER PROGRAM LISTING COMPACT DISC APPENDIX

Not Applicable


BACKGROUND OF THE INVENTION
U.S. Patent Classification

244/118.6; 105/316; 105/321; 5/9.1


Bus and train transportation are regarded as one of the safest modes of public transportation. The manufacturers and operators of buses have gone to great lengths to establish and maintain this safety record. However, a fire resulting from a collision or failure of a component puts lives at risk and can have an enormous impact on operational costs as well as customer confidence.


Improving passenger and driver safety is always on the agenda. Part of the safety issues is fire safety which is a continuous process. There are always things to be learnt from experience and actual fire incidences and important learning tools at the disposal of stakeholders which can provide critical input into best practices for design, operation and human interaction. Fire safety in buses has been the focus of significant research in recent years but much improvement still remains, in particular related to fire prevention and safe egress. The sharing of information and best practices can benefit all parties but most importantly, the passenger safety.


I. Ceramic Fiber

Ceramic Fiber is produced from high purity aluminosilicate material through strictly controlled high temperature furnace melting and fiberizing process. The fiber is white and odorless, suitable for high temperature applications up to 2300° F. (1260° C.). Ceramic Fiber products include cloth, tape, rope, braid, tubing, paper, blanket, etc. Types of ceramics are:


Kaowool Blanket

Kaowool blanket is produced from kaolin, a naturally occurring alumina-silica fire clay. Kaowool, the world's most recognizable name in ceramic fiber blanket, is available in a wide variety of densities and sizes. Kaowool blanket offers excellent handle ability and high temperature stability. This allows it to meet a wide range of hot face and backup insulation applications in furnaces, kilns and other equipment requiring high temperature heat containment.


Kaowool RT Blanket

Kaowool RT Blanket is produced from a blend of high quality alumina, silica and kaolin using the spinning process. It is available in a wide variety of densities and sizes, and offers a highly cost effective alternative to Cerablanket with its 2300° F. (1260° C.) maximum temperature rating.


Cerablanket

Cerablanket is produced from exceptionally pure oxides of alumina and silica using the spinning process. The resultant quality spun fibers have been optimized for high handling strength, with on average the highest tensile strength of any Thermal Ceramics ceramic fiber blanket. Cerablanket is available in a wide variety of densities and sizes. Cerablanket offers excellent handle ability and high temperature stability which allows it to meet a wide range of hot face and back up insulation applications in furnaces, kilns and other equipment requiring high temperature heat containment.


Cerachem Blanket

Cerachem Blanket is a 2600° F. (1427° C.) maximum temperature rated refractory blanket formed from a unique, patented, spun alumina-silica-zirconia fiber. It is specially designed for applications where high fiber tensile strength, low thermal conductivity and low shrinkage are required. Cerachem Blanket is used extensively in high temperature units in the ceramic, chemical processing, and ferrous metal industries. Thermal Ceramics Cerachem refractory blankets are ideal for a wide range of hot face lining and backup insulation applications in furnaces, kilns and other high temperature equipment.


Cerachrome Blanket

Made from spun alumina-silica-chromia fiber, Cerachrome Blanket is well suited for hot face lining applications where higher temperatures are encountered, such as soaking pit covers, reheat and forging furnaces. Cerachrome Blanket with its chromia-stabilized chemistry offers improved long term shrinkage characteristics over zirconia containing blankets such as Cerachem. Cerachrome Blanket effectively fills the gap between zirconia blankets and high alumina products.


II. Fire Resistant Glass

Fire resistant glass is one of the most important safety glass. Coefficient expansion of thermal expansion of the glass is extremely low. It could resist much thermal shock caused by extreme temperature gradient across the glass between fire exposed and non-fire exposed sides. Glass becomes molten but does not break under high temperature and high temperature gradient. It remains its integrity to keep away blaze, smoke and fume. This wire free fire resistant glass performs any one, two or three of following characteristics depending on Class and Grade.

    • It remains its integrity for a certain period of time. It refers to the time the glass remains intact in a fire
    • It forms a strong radiation barrier that prevents fire from spreading. It refers to amount the glass prevents heat emission permeate to non-exposed side.
    • It is heat insulation to prevent heat flux or high temperature at non-fire side. It refers to amount the glass restricts the temperature rise on non-fire side.


All of these are significant contribute to evacuation of fire scene, the work of fire fighters and rescuers.


Class

Fire resistant glass is classified into three categories:

    • Class A fire-resistant glass is a kind of fireproof glass with fireproof integrity and fireproof heat insulation.
    • Class B fire-resistant glass is a kind of fireproof glass with fireproof integrity and heat emission intensity.
    • Class C fire-resistant glass is a kind of fireproof glass with fireproof integrity.


Grade

The three classes of fire-resistant glasses are further classified into Grade I, Grade II, Grade III and Grade IV according to various levels of protection which is measured in terms of Integrity, Radiation and Insulation. The Table interpreting Class Vs Grade Vs Time is just for reference. Glass resists more than 90 min (could be as high as 180 min.), is classified into higher levels. There are also Classes E and EI which perform much better and are more safety for fire protection.
















Class
Grade I
Grade II
Grade III
Grade IV







A
90 min.
60 min.
45 min.
30 min.


B
90 min.
60 min.
45 min.
30 min.


C
90 min.
60 min.
45 min.
30 min.









Glass Configuration:
1. Monolithic Fire Resistant Glass

Monolithic glass is single pane. This fire protective glass blocks flames, fumes and smoke but not heat radiation. Its advantages are:

    • As it is not wired or laminated, it stays clear at all times during fire accident so that evacuation and putting out fire could be carried out properly. Clear fire resistant glass offer transparent alternative to solid brick walls.
    • It is thermal shock proof and resists to cold, heat, solar irradiation and humidity.
    • This high strengthened fire resistant glass is 3 to 5 times stronger than thermal temper glass.
    • Various glass thickness of monolithic fire resistant glass is available.
    • Monolithic fire resistant glass is light. Framework is cheaper. Mounting and installation is easier at lower cost.
    • It is easily upgraded to several types of fire resistant glass such as reflective coated fire resistance glass, insulated fire resistant glass, laminated fire resistant glass and energy save fire resistant glass, etc.


There are several types of monolithic fire rated glazing reaching different classes and grades of fire resistance.


2. Chemically Strengthened Glass

Soda lime glass is always chemically strengthened to improve its thermal stability and internal strength. Then glass is thermally tempered by conventional tempering furnace by air quenching to it turn into Class C monolithic fire resistant glass. Xinology FR series fire resistant production system is used to carry out this process to produce Class C fire resistant glass.


3. Metallic Coated Glass

Glass could be metallic coated on both sides to reflect away heat and minimize the possibility of thermal shock. Monolithic fire resistant glass performs consistent regardless of fire attack direction.


4. Borosilicate Glass

Borosilicate glass is excellent in heat proof. It has also very low coefficient of thermal expansion to resist thermal shock. Borosilicate glass is generally fully thermal tempered upgraded to fire resistant glass.


5. Glass Ceramic

It is a special composition of glass and ceramic with excellent thermal shock and heat insulation.


III. Fire-Smoke Protection Curtain

Curtain systems are a modern alternative to conventional systems such as fire protection doors, gates and windows. With a curtain system, unreinforced openings will remain entirely useable and perfectly secured. Curtain systems can be fully integrated in the existing building concept. Due to the compact layout of the system, the fields of application are almost limitless.


The intuitive technology, the high-quality materials and the reliable construction allow an easy installation and low-maintenance operation.


Most of the time, fire smoke is a much more dangerous hazard than the fire itself. Smoke can spread quickly and silently within a building, transporting heat and therefore supporting the expansion of the fire. Just a few breaths could lead to deadly intoxication. Smoke curtains can effectively counteract the spreading of fire smoke and therefore lives can be saved.


A smoke curtain is a much better choice in such situations. In general cases, the system is rolled up and enables the unimpeded passing of the passage. The curtain only drops in case of an emergency and builds an enclosed space according to the required security targets. Usability and fire protection are perfectly combined. With a two-stage drop, it is possible to pass the curtain system before it is totally closed.


Benefits





    • No obstruction of passages

    • Compact and lightweight layout

    • Seamless integration in the building design

    • Easy installation and low-maintenance operation





Modern fire protection concepts demand high standards from buildings and security systems. Owing to their flexibility and ability to easily combine fire protection technology and architectural design, curtain systems will be increasingly used.


Curtain systems can be configured for various applications. They can be used to actively control occurring combustion gases to create a steady space enclosure or establish an isolating heat barrier.


Fields of Application





    • Airports, subway stations

    • Community buildings, schools

    • Industrial buildings, warehouses

    • Universities and laboratories





IV. Fire Resistant Cable

In all fire disasters, fire smoke, heat and toxic fumes are the main obstacles to safe evacuation of a building or area. A major contribution towards overcoming these hazards is the use of fire resistant and non-halogenated cables. These cables provided the following features:

    • Fire resistance
    • Long-term circuit integrity in a fire
    • Low smoke and toxic gas emissions
    • Flame retardant properties
    • Zero halogen gases
    • Ease and low cost of installation


Fire Resistant cables are used, where required by local fire codes, in the wiring of:

    • Fire resistant safety circuits
    • Public address and emergency voice communication system in high-rise buildings
    • Control and instrumentation services in industrial, commercial and residential complexes
    • High-temperature installation conditions


Fire Resistant Cable have been developed to maintain circuit integrity in a fire and to ensure maximum safe evacuation of personnel with no detrimental effects like toxic gases or smoke. The Fire-Resistant cables are constructed in the following typical format:

    • Stranded Annealed Copper Conductor
    • Mica Tape Fire Resisting Barrier
    • XLEVA-MI/XLPEIEPR/LSOH/PE/PVC as Primary Insulation Material.
    • Flame Retardant LSOH, PVC as Bedding or Sheathing Material.


Fire Resistant cable may be single-core or multi-core constructions. The cable may be unarmoured, armoured, braided, with or without metallic screened. The Fire resistant cable may categorized by a letter symbol (e.g. A) or series of symbols (e.g. CWZ) in according to the requirements for fire resistance characteristics which they meet, the test temperature selected and the duration of the test for resistance to fire alone in according to BS 6387 as below:
















Requirement
Symbol









(I) Resistance to fire alone




650° C. for 3 hours
A



750° C. for 3 hours
B



950° C. for 3 hours
C



950° C. for 20 minutes (short duration)
S



(2) Resistance to fire with water
W



(3) Resistance to fire with mechanical shock




650° C.
X



750° C.
Y



950° C.
Z










BRIEF SUMMARY OF THE INVENTION

The purpose of this plan is to reduce the damages in intercity train crash cases to the passengers. In the next phase, if the train catches fire with the increase in the incident time of smoke and fire entering to the train, the passenger is required to react appropriately. The coupe and the corridor are designed to prevent the fuel, fire, heat and wear from penetrating into the coupe so passengers can have plenty of time to get out of the train. In addition to sound proof its walls are heat and fire proof.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING


FIG. 1: General view of the coupe.



FIG. 2: Detail of a sample of top & bottom of wall Joints (Section A-A in FIG. 1).



FIG. 3: Section view of sliding door (Section B-B in FIG. 1).



FIG. 4: Section view of a sample of wall to glass seal joint (Section C-C in FIG. 1).



FIG. 5: Detail of a wall with metal sheet curtain.



FIG. 6: Detail of a wall with roller curtain.



FIG. 7: General arrangement for berth sleeper.



FIG. 8: Section view of a coupe with berth sleeper.



FIG. 9: Method of work of the berth sleeper airbag (covers head of passenger).



FIG. 10: Method of work of the berth sleeper airbag for passenger sleep in soldier, freefaller and starfish position (covers all body of passenger).



FIG. 11: Method of work of the berth sleeper airbag for passenger sleep in foetus, log and yearner position (covers all body of passenger).



FIG. 12: General arrangement of gangway.



FIG. 13: The method of getting off the wagon by a ladder.



FIG. 14: General arrangement for wagon with berth sleeper.



FIG. 15: General arrangement for wagon with seat.



FIG. 16: Section view of a coupe with seat.



FIG. 17: Method of work of the seat airbag embedded on the side wall and passenger seated on the seat (cover the entire seat back).



FIG. 18: Method of work of the seat airbag embedded on the side wall and passenger seated on the seat in front and side view (cover head of passenger).



FIG. 19: Method of work of the seat airbag embedded on the luggage rack and passenger seated on the seat (covers the entire seat back).



FIG. 20: Method of work of the seat airbag embedded on the luggage rack and passenger seated on the seat in side view.





DETAILED DESCRIPTION OF THE INVENTION
I. Invention Objective

The target is to reduce the damages in intercity vehicles crash cases to the passengers (train and bus), at the first phase. In the next phase, if the vehicle catches fire, with the increase in the incident time of smoke and fire spreading to the wagon, the passenger has plenty of time to react appropriately.


II. Description of Drawings and Parts


FIG. 1: General view of the coupe. This figure is composed of:

    • 1) Wall of the wagon (coupe side)
    • 2) Side wall of the coupe
    • 3) Bottom of wagon
    • 4) Sliding door of the coupe
    • 5) Wall of the coupe (gangway side)
    • 6) Fire resistant glass
    • 7) Ladder

      FIG. 2: Detail of a sample of top & bottom of wall Joints (Section A-A in FIG. 1). This figure is composed of:
    • 3) Bottom of wagon
    • 8) High temperature resistant sheet (metal sheet)
    • 9) High temperature resistant materials (Ceramic fiber)
    • 10) Heat temperature resistant holder
    • 11) High temperature sealant tape
    • 12) Fuel dam (welded to Bottom of wagon)
    • 14) Fire and Fuel Barrier Tape

      FIG. 3: Section view of sliding door (Section B-B in FIG. 1). This figure is composed of:
    • 3) Bottom of wagon
    • 8) High temperature resistant sheet (metal sheet)
    • 9) High temperature resistant materials (Ceramic fiber)
    • 15) Wheel of the sliding door
    • 16) Pin of the wheel
    • 17) Flexible intumescent tape
    • 18) Rail of the sliding door (Fixed to Bottom of wagon)

      FIG. 4: Section view of a sample of wall to glass seal joint (Section C-C in FIG. 1). This figure is composed of:
    • 6) Fire resistant glass
    • 8) High temperature resistant sheet (metal sheet)
    • 9) High temperature resistant materials (Ceramic fiber)
    • 19) Intumescent fire glass seals

      FIG. 5: Detail of a wall with metal sheet curtain. This figure is composed of:
    • 6) Fire resistant glass
    • 8) High temperature resistant sheet (metal sheet)
    • 9) High temperature resistant materials (Ceramic fiber) 19) Intumescent fire glass seals 20) Sliding metal sheet 21) Guide rail 22) Heat insulation handles

      FIG. 6: Detail of a wall with roller curtain. This figure is composed of:
    • 6) Fire resistant glass
    • 8) High temperature resistant sheet (metal sheet)
    • 9) High temperature resistant materials (Ceramic fiber)
    • 19) Intumescent fire glass seals
    • 21) Guide rail
    • 22) Heat insulation handles
    • 23) Box
    • 40) Fire smoke curtain

      FIG. 7: General arrangement for berth sleeper. This figure is composed of:
    • 25) Berth sleeper
    • 26) Seat belt
    • 27) Safety belt
    • 48) Airbag location (embedded on the wall)
    • 30-4) Airbag guide rails
    • 6) Fire resistant glass

      FIG. 8: Section view of a coupe with berth sleeper. This figure is composed of:
    • 25) Berth sleeper
    • 26) Seat belt
    • 27) Safety belt
    • 28) Soft cover to protect the passenger
    • 29) Passenger compartment

      FIG. 9: Method of work of the berth sleeper airbag (covers head of passenger). This figure is composed of:
    • 25) Berth sleeper
    • 26) Seat belt
    • 30-1) First stage airbag
    • 30-2) Second stage airbags
    • 30-3) Rupture disc
    • 30-4) Airbag guide rails

      FIG. 10: Method of work of the berth sleeper airbag for passenger sleep in soldier, freefaller and starfish position (airbag covers all body of passenger). This figure is composed of:
    • 25) Berth sleeper
    • 26) Seat belt
    • 30-1) First stage airbag
    • 30-2) Second stage airbags
    • 30-3) Rupture disc
    • 30-5) Gas flow path
    • 46) Passenger's weight
    • 47) Reaction force applied from airbags to passenger

      FIG. 11: Method of work of the berth sleeper airbag for passenger sleep in foetus, log and yearner position (airbag covers all body of passenger). This figure is composed of:
    • 25) Berth sleeper
    • 26) Seat belt
    • 46) Passenger's weight
    • 47) Reaction force applied from airbags to passenger

      FIG. 12: General arrangement of gangway. This figure is composed of:
    • 6) Fire resistant glass
    • 31) Wall of the wagon (gangway side)
    • 32) Sliding window with fire resistant glass
    • 33) Sliding window opener electric motor
    • 34) Fire-smoke curtain device
    • 35) Head box
    • 36) Winding shaft with motor unit
    • 37) Control unit
    • 38) Side guides
    • 39) Bottom bar
    • 11) High temperature sealant tape attached to bottom bar
    • 40) Multi-piece fire smoke curtain
    • 41) Roof hatch
    • 42) Air exhaust pipe
    • 50) Spring steel strip attached to fire smoke curtain
    • 51) Magnet
    • 24) Fire-smoke detector

      FIG. 13: The method of getting off the wagon by ladder.

      FIG. 14: General arrangement for wagon with berth sleeper. This figure is composed of:
    • 25) Berth sleeper
    • 45) Gangway
    • 34) Fire-smoke curtain device

      FIG. 15: General arrangement for wagon with seat. This figure is composed of:
    • 45) Gangway
    • 34) Fire-smoke curtain device
    • 43) Seat

      FIG. 16: Section view of a coupe with seat. This figure is composed of:
    • 26) Seat belt
    • 43) Seat
    • 44) Seat slider rail
    • 53) Bus luggage rack

      FIG. 17: Method of work of the seat airbag embedded on the side wall and passenger seated on the seat (covers the entire seat back). This figure is composed of:
    • 48) Airbag location (embedded on the side wall)
    • 49) Airbag location (embedded on the seat back)
    • 52-1) First step of seat airbag
    • 52-2) Second step of seat airbag
    • 52-3) Rupture disc
    • 52-4) Locker airbag

      FIG. 18: Method of work of the seat airbag embedded on the side wall and passenger seated on the seat in front and side view (covers head of passenger). This figure is composed of:
    • 43) Seat
    • 52-1) First step of seat airbag
    • 52-2) Second step of seat airbag
    • 52-3) Rupture disc
    • 52-5) Gas flow path

      FIG. 19: Method of work of the seat airbag embedded on the luggage rack and passenger seated on the seat (covers the entire seat back). This figure is composed of:
    • 52-1) First step of seat airbag
    • 53) Bus luggage rack
    • 54) Airbag location (embedded on the luggage rack)
    • 55) Rubber band

      FIG. 20: Method of work of the seat airbag embedded on the luggage rack and passenger seated on the seat in side view. This figure is composed of:
    • 52-1) First step of seat airbag
    • 52-2) Second step of seat airbag
    • 53) Bus luggage rack
    • 56) Forces applied to abdomen of passenger to keep the passenger in place


III. Description of the Invention

According to the FIG. 1, each wagon is composed of a plurality of coupes and a gangway. Each coupe is composed of these major parts:

    • Side walls
    • Side wall of the wagon
    • Gangway side walls
    • Roof of the wagon
    • Ladder
    • Heating-cooling system
    • Seats or berth sleeper
    • Manual fire-smoke curtains
    • Airbags
    • Airbag inflation system


Gangway is composed of these major parts:

    • Fire-smoke detectors
    • Control unit
    • Automatic-manual fire-smoke curtains
    • Sliding windows
    • Air roof hatches along with an exhaust fans


That each part is explained on the following:


1) Side Walls:

The side walls are made up of two metal plates, the gap between which is filled with fire-resistant materials such as rock wool or ceramic fiber. The jointing of the walls together or to the floor of the coupe is sealed by high temperature sealant tape so this layer prevents fuel leakage into the coupe.


2) Side Wall of the Wagon:

This wall is common between coupes and wagon and does not absorb heat, and responds extremely well to fire. Beside it is soundproof it does not contribute to the development or the propagation of fire. This wall is made up of the materials resistant to high temperature and sound. It includes a window with a fire resistant glass and a manual fire-smoke curtain. Experts designed the wall with no common glass between the coupes, and the gap between the glass and the side walls does not allow the fire to transmit through the window to the side coupe.


3) Gangway Side Walls:

The side wall of the gangway consists of two fixed parts with some windows and a sliding door. The wall of the gangway of the coupe, like its side walls, has been made of two metal plates filled with refractory materials such as rock wool or fiber ceramics.


Also, wagons are equipped with fire resistant glass and given that the glass can be crushed due to accidents, behind the windows there are manual fire-smoke curtains or Sliding metal sheet. Passenger can close it immediately that prevents fire and smoke from entering to the coupe (FIG. 5 and FIG. 6).


The outer surface of the side wall of the gangway is covered with intumescent coatings. It reduces the heat transfer rate to the coupe during fire. In crashes due to impact or overturning of the walls, there may be a gap between the walls of the coupe and the bottom. A flexible fire and fuel barrier tape is used to prevent fire and smoke from entering the coupe.


To prevent smoke from entering from the sliding door, flexible intumescent tapes are used, which swells during a fire and fills the gap between the door and the span and prevents the smoke from entering the coupe. In order to prevent fuel penetration from the entrance door, the rail of the sliding door with a height of 30 mm is designed as shown in FIG. 3, as well as flexible intumescent tapes.


4) Roof of the Wagon:

The roof is coated with a layer of soft, high temperature resistant, soundproofed or airbag materials that could cause less damage to the passenger in the event of overturning of the train and collision of the passenger with the roof of the coupe.


5) Ladder:

Ladders are used for passenger climbing for second or third floor beds. Also, during an accident, passenger can break the window and by the ladder get off from the coupe (FIG. 13).


6) Cooling-Heating Ventilation System:

Cooling/heating ventilation system in each coupe is independent of other coupes or gangways, so during fire smoke from other coupes or gangways does not penetrate the coupe.


7) Berth Sleeper:

The material used in the berth sleeper is resistant to high temperature. Berth sleeper airbags are designed to protect the passenger's head and body while the passenger is asleep in the berth sleeper, which inflates in the event of a rollover accident. These airbags are multi-stages. In the first stage, the airbag inflates along the berth sleeper and covers the head or the whole body of the passenger (FIG. 9I). In order to bear the passenger weight during a head on collision accident the safety belt is used as support for first stage or the airbag inflates along the guide rails and the guide rails used as support. In the second stage, the guiding airbag inflates to take the passenger's head in the middle of the airbag (FIG. 9II). In this type of airbag, when the wagon is tilted, the passenger's weight load is applied to the shoulders of the passenger and a lesser force is applied to the neck and head of him/her (FIG. 10 and FIG. 11). This airbag along with berth sleeper can protect the passenger's head against the impact applied from left, right, front, back and up.


To save the passenger of severe injuries in heavy accidents, seat belts are installed on the bed in order to keep the passenger in place. Soft covers are also mounted on the side walls of the coupe and below the upper bed so that the passengers can receive less damage by creating a soft compartment around them in the case of overturning the wagon and passenger's collision with walls or under the upper bed. This berth sleeper airbag can be used in heavy truck sleeper cabs too.


8) Seat:

In FIG. 15, an overview of the wagon is shown with the seat arrangement. These seats are capable to move along the slider rails (FIG. 16). Seat airbags are designed to protect head and upper limb of the passenger while sitting on the seat. These airbags are embedded on the side wall of the cabin or on the edge of the seat back or on the luggage rack. These airbags are multi-stages. Each type of seat airbag is explained on the following:


Airbags Embedded on the Side Wall of the Cabin or on the Edge of the Seat Back:

in the first stage, the support airbag inflates (FIG. 17 II) and in the second stage, the guiding airbag inflates and covers the head and upper limb of the passenger (FIG. 17 III), and also this airbag along with seat back protects the passenger's head and upper limb against the impact applied from left, right, front, back and up.


Airbags Embedded on the Luggage Rack:

At the time of the accident, the first stage airbag inflates from up to down and fully cover the upper limb of passenger and the seat back (FIG. 20 I) then the second stage airbags inflate and lead the passenger to good situation and keep the passenger in place (FIG. 20 II). At the time of the wagon is tilted, the second stage airbags apply forces to the shoulders of the passenger and reduce the intensity of forces applied to the head and neck of the passenger. This airbag along with seat back protects the passenger's head and upper limb against the impact applied from left, right, front, back and up.


As the airbags inflate, the gas in the airbags, escapes in a controlled manner through small vent holes then the rubber bands retract the airbags (FIG. 19 III).


According to FIG. 20 II, when the second stage airbags inflate, apply forces to abdomen of the passenger and keep the passenger in place even if the passenger forget to wear a seat belt. This type of airbag can be used for driver and passenger seats in different vehicles such as car, bus, trailer and etc.


In the following table, airbags specify that protect a part of body in different crash test.






















25% small
Rear offset



Airbag

Frontal-impact
Side impact
overlap
impact
Rollover


Type
Part of body
crash test
crash test
crash test
crash test
crash test







seat airbag
Head of passenger with seat belt
2th airbags
2th airbags
2th airbags
seat back
2th airbags


embedded
Neck of passenger with seat belt
2th airbags
2th airbags
2th airbags
seat back
2th airbags


on the side
Upper limb passenger with seat belt
2th airbags
2th airbags
2th airbags
seat back
2th airbags


wall
Head of passenger without seat belt
2th airbags
2th airbags
2th airbags
seat back
2th airbags



Neck of passenger without seat belt
2th airbags
2th airbags
2th airbags
seat back
2th airbags



Upper limb passenger without seat belt
2th airbags
2th airbags
2th airbags
seat back
2th airbags


seat airbag
Head of passenger with seat belt
2th airbags
2th airbags
2th airbags
seat back
2th airbags


embedded
Neck of passenger with seat belt
2th airbags
2th airbags
2th airbags
seat back
2th airbags


on the roof
Upper limb passenger with seat belt
2th airbags
1th airbag
2th airbags
seat back
2th airbags



Head of passenger without seat belt
2th airbags
2th airbags
2th airbags
seat back
2th airbags



Neck of passenger without seat belt
2th airbags
2th airbags
2th airbags
seat back
2th airbags



Upper limb passenger without seat belt
2th airbags
1th airbag
2th airbags
seat back
2th airbags









9) Airbag Inflation System:

It's necessary to inflate second airbag after the first airbags inflated completely, to the berth sleeper airbag and seat airbag proper performance. These airbag inflation systems can be used:

    • An airbag inflation system for a unique airbag: the second airbags coupled to the first airbag and a plurality of rupture disc placed between the first and second airbags that fail within an optimal range of gas pressure in the first stage airbag then the second stage airbags inflate.
    • Multi airbag inflation system for some separate airbags: the second airbag is separate from the first airbag and a multistage airbag inflation system that with a short term delay, inflates the first and second airbags respectively.


The inflation of the airbags in the vehicle is controlled by a central airbag control unit.


10) The Gangway of the Wagon:

The gangway is the most important route for the passengers to escape at the time of the incident. The gangway contains fire-smoke curtains and fire-smoke detector, so that when the wagon is fired, smoke quickly does not spread into the gangway and allow passengers to leave the wagon through the gangway.


In the wall of wagon on the side of the gangway, there are embedded sliding window with fire resistant glass that is connected to the control unit, and when the fire is detected by the fire-smoke detector, the window opens, so that the smoke exit from the open window in a controlled manner and do not fill in the gangway. It can also be used to exhausts smoke from the gangway through roof hatch that embedded between the two fire-smoke curtains at the roof of the gangway and exhaust the air in the gangway to outside the wagon (in addition to exhaust the air in the gangway in the normal state, it also takes command from the control unit). Wires and cables used in this wagon are resistant to heat and mechanical shock, and fireproof electrical ducts have been used.


Methods of Opening Curtains are:





    • Drop opening method: In this way with the command of the control unit, the power is removed from the roller motor then gravity acting on the bottom bar weight makes the curtain drop. This assumes that the curtain is a gravity drop type, which most curtains are actually are. This method is not suitable for cases where the wagon is overturned and the fire occurs.

    • Controlled opening method: In this way with the command of the control unit, the electromotor is turned on and by applying the electric motor force on the metal strip, the curtain is opened along the guide rails. This method, in case of overturning of the wagon, has the ability to open the anti-fire curtain.





If the curtain is open and the wagon overturns, the magnet on the bottom bar will prevent the bar from sliding off the wagon's floor. Anti-smoke curtains are made of some pieces to allow passengers to cross the curtain. These curtains delay the spread of fire and smoke in the gangway, providing time and space for passengers to leave the wagon.


In FIGS. 15 and 16, general arrangement for wagon with berth sleeper and seat are showed. The target of this invention is to reduce the damages caused accident to the passengers, at the first phase. In the next phase, if the vehicle catches fire, with the increase in the incident time of smoke and fire spreading to the wagon, the passenger has plenty of time to react appropriately. At the time of the accident, passengers are not able to make appropriate decisions due to accidental shock, so the necessary training should be given to passengers to know how to react during and after an accident.

Claims
  • 1. A device defining a passenger safe wagon comprising: a plurality of coupes that is capable of resisting penetration of fuel and is high temperature and thermal resistance and comprising; a plurality of seats or berth sleepers;a heating-cooling system that is separate from other coupes;a plurality of fire resistant glasses along with fire-smoke curtain;a plurality of seat airbags or berth sleeper airbags;an airbag inflation system;a ladder;a gangway comprising: a plurality of fire-smoke detectors;a control unit;a plurality of fire-smoke curtains;a plurality of sliding windows;a plurality of air roof hatches along with an exhaust fan;wherein at the time of the fire, the fire-smoke detectors feed the control unit then the fire curtain will descend fully and the sliding window will open and the exhaust fan will turn on.
  • 2. The device according to claim 1, the coupe comprising: first and second side walls of the coupe that is capable of resisting penetration of fuel and voice and is high temperature and thermal resistance;a side wall of the wagon that is high temperature and thermal resistance comprising a window with fire resistant glasses along with a fire-smoke curtain;a gangway side wall further comprising: first and second fix walls that is high temperature and thermal resistance comprising a plurality of windows with fire resistant glasses along with a plurality of fire-smoke curtains;a sliding door of the coupe that is high temperature and thermal resistance comprising a window with fire resistant glasses along with a fire-smoke curtain;a floor of the coupe, which is covered with a layer of soft, high temperature resistant materials;a bottom of the coupe;wherein walls to floor joints, walls to roof joints and wall to wall joints are capable of resisting penetration of fuel, heat and voice.
  • 3. The device according to claim 1, the fire-smoke curtain device comprising: a head box;a winding shaft positioned within the head box and defining a centerline axis;an electric motor coupled to the shaft;a multi-piece and high temperature resistance curtain rolled around the shaft;first and second spring steel strip coupled to the sides of the curtain;a bottom bar, coupled to the curtain;a plurality of magnets coupled to the bottom bar;a high temperature sealant tape coupled to bottom bar;first and second guide rails, wherein the curtain and the bottom bar move along the guide rails;wherein the control unit turn on the electric motor and the fire curtain descend fully.
  • 4. The device according to claim 1, the sliding window further comprising: a fire resistant glass;a sliding window opener electric motor connected to the control unit;wherein the detector feed the control unit and the control unit opens the sliding window.
  • 5. The device according to claim 1, the berth sleeper further comprising: a plurality of seat belts coupled to the sides of the berth sleeper;a safety belt;a plurality of soft cover coupled to the sides of the coupe and under the top berth sleeper;wherein the berth sleeper, the soft covers, the airbags and the safety belt configure a compartment defining a passenger compartment that fully covers a body of passenger and is capable of protecting the passenger from shocks an incident.
  • 6. The device according to claim 1, the seat further comprising: a seat belt;first and second seat slider rail fixed to the bottom of the wagon.
  • 7. A device defining a berth sleeper airbag comprising one or a plurality of airbags that is capable of inflating along the berth sleeper and covers all the body or head of a passenger, wherein at the time of the accident or the wagon is tilted, the airbag inflates along the berth sleeper and fully cover the body or head of the passenger and the airbag apply forces to the shoulders of the passenger and reduce the intensity of forces applied to the head and neck of the passenger while the passenger is asleep in the berth sleeper.
  • 8. The device according to claim 7, the berth sleeper airbag further comprising: first and second guide rails coupled to respective berth sleeper sides;wherein the airbag is capable of inflating along the guide rails and covers all the body of passenger or head of the passenger wherein at the time of the accident or the wagon is tilted.
  • 9. The device according to claim 7, further comprising: an airbag defining a first stage airbag and is capable of inflating along the berth sleeper and covers all the body of the passenger or head of passenger;a plurality of airbags defining second stage airbags coupled to the first stage airbag and inflate after the first stage airbag and lead the passenger to good situation;wherein at the time of the accident or the wagon is tilted, the first stage airbag inflates along the berth sleeper and covers all the body of the passenger, then the second stage airbags inflate and along with the berth sleeper, fully cover the head of passenger and the second stage airbags apply force to the shoulders of the passenger and reduce the intensity of forces applied to the head and neck of the passenger while the passenger is asleep in the berth sleeper.
  • 10. The device according to claim 7, further comprising: the first stage airbag;the second stage airbags coupled to the first stage airbag and inflate after the first stage airbag and lead the passenger to good situation;a plurality of rupture disc placed between the first stage airbag and the second stage airbags that fail within an optimal range of gas pressure in the first stage airbag then the second stage airbags inflate;wherein at the time of the accident or the wagon is tilted, the first stage airbag inflates along the berth sleeper and covers all the body of the passenger, then the second stage airbags inflate and along with the berth sleeper, fully cover the head of passenger and the second stage airbags apply force to the shoulders of the passenger and reduce the intensity of forces applied to the head and neck of the passenger while the passenger is asleep in the berth sleeper.
  • 11. The device according to claim 7, further comprising: the first stage airbag;the second stage airbags coupled to the first stage airbag and inflate after the first stage airbag and lead the passenger to good situation;a multistage airbag inflation system that with a short term delay, inflates the first and second airbags respectively;wherein at the time of the accident or the wagon is tilted, the first stage airbag inflates along the berth sleeper and covers all the body of the passenger, then the second stage airbags inflate and along with the berth sleeper, fully cover the head of passenger and the second stage airbags apply force to the shoulders of the passenger and reduce the intensity of forces applied to the head and neck of the passenger while the passenger is asleep in the berth sleeper.
  • 12. A device defining a seat airbag comprising one or a plurality of airbags that is capable to cover the upper limb or head of the passenger, wherein at the time of the accident, the airbag inflates along the seat back and fully covers the upper limb or head of the passenger along with seat back and keep the passenger in place. at the time of the wagon is tilted, the airbag applies force to the shoulders of the passenger and reduce the intensity of forces applied to the head and neck of the passenger while seated on the seat.
  • 13. The device according to claim 12, further comprising: an airbag defining a first stage airbag coupled to the side wall or to the seat back;a plurality of airbags defining second stage airbags coupled to the first stage airbag and to the side wall or to the seat back. the second stage airbags inflate after the first stage airbag and cover the upper limb of the passenger and also lead the passenger to good situation;wherein at the time of the accident, the second stage airbags along with the seat, fully cover the head and upper limb of passenger and keep the passenger in place. at the time of the wagon is tilted, the second stage airbags apply force to the shoulders of the passenger and reduce the intensity of forces applied to the head and neck of the passenger.
  • 14. The device according to claim 12, further comprising: the first stage airbag coupled to the side wall or to the seat back;the second stage airbags coupled to the first stage airbag and to the side wall or to the seat back. the second stage airbags inflate after the first stage airbag and cover the upper limb of the passenger and also lead the passenger to good situation;a plurality of airbags defining locker airbags coupled to the second stage airbags and inflate after the second airbags and lock the first and second stage airbags to the seat;a plurality of rupture disc placed between the first stage airbag and second stage airbags and the locker airbags that fail within an optimal range of gas pressure in the first and second stage airbags then the second stage airbags or the locker airbags inflate;wherein at the time of the accident, the second stage airbags along with the seat, fully cover the head and upper limb of passenger and keep the passenger in place. at the time of the wagon is tilted, the second stage airbags apply force to the shoulders of the passenger and reduce the intensity of forces applied to the head and neck of the passenger.
  • 15. The device according to claim 12, further comprising: the first stage airbag coupled to the side wall or to the seat back;the second stage airbags coupled to the first stage airbag and to the side wall or to the seat back. the second stage airbags inflate after the first stage airbag and cover the upper limb of the passenger and also lead the passenger to good situation;a multistage airbag inflation system that with a short term delay, inflates the first and second airbags respectively;wherein at the time of the accident, the second stage airbags along with the seat, fully cover the head and upper limb of passenger and keep the passenger in place. at the time of the wagon is tilted, the second stage airbags apply force to the shoulders of the passenger and reduce the intensity of forces applied to the head and neck of the passenger.
  • 16. The device according to claim 12, further comprising: an airbag defining a first stage airbag coupled to the luggage rack or roof of the wagon. the first stage airbag inflates along the seat back and cover the upper limb of the passenger and the seat back;a plurality of airbags defining second stage airbags coupled to the first stage airbag and inflate after the first stage airbag and lead the passenger to good situation;a plurality of rubber bands coupled to the first stage airbag;wherein at the time of the accident, the first stage airbag inflates from up to down and fully cover the upper limb of passenger and the seat back then the second stage airbags inflate and lead the passenger to good situation and keep the passenger in place. at the time of the wagon is tilted, the second stage airbags apply force to the shoulders of the passenger and reduce the intensity of forces applied to the head and neck of the passenger and the rubber bands retract the airbags after the accident.
  • 17. The device according to claim 12, further comprising: an airbag defining a first stage airbag coupled to the luggage rack or roof of the wagon. the first stage airbag inflates along the seat back and cover the seat back and the upper limb of the passenger;a plurality of airbags defining second stage airbags coupled to the first stage airbag and lead the passenger to good situation;a plurality of rupture disc placed between the first stage airbag and second stage airbags that fail within an optimal range of gas pressure in the first stage airbags then the second stage airbags inflate;a plurality of rubber bands coupled to the first stage airbag;wherein at the time of the accident, the first stage airbag inflates from up to down and fully cover the upper limb of passenger and the seat back then the second stage airbags inflate and lead the passenger to good situation and keep the passenger in place. at the time of the wagon is tilted, the second stage airbags apply force to the shoulders of the passenger and reduce the intensity of forces applied to the head and neck of the passenger and the rubber bands retract the airbags after the accident.
  • 18. The device according to claim 12, further comprising: an airbag defining a first stage airbag coupled to the luggage rack or roof of the wagon. the first stage airbag inflates along the seat back and cover the upper limb of the passenger and the seat back;a plurality of airbags defining second stage airbags coupled to the first stage airbag and lead the passenger to good situation;a multistage airbag inflation system that with a short term delay, inflates the first and second airbags respectively;a plurality of rubber bands coupled to the first stage airbag;wherein at the time of the accident, the first stage airbag inflates from up to down and fully cover the upper limb of passenger and the seat back then the second stage airbags inflate and lead the passenger to good situation and keep the passenger in place. at the time of the wagon is tilted, the second stage airbags apply force to the shoulders of the passenger and reduce the intensity of forces applied to the head and neck of the passenger and the rubber bands retract the airbags after the accident.