A first embodiment of the present invention will be described with reference to
The seat 4 includes: a cushion pad 6 fixed to the metallic frame 3; a cushion cover 7 covering a seat surface of the seat 4; a seat heater 8 embedded in the cushion pad 6 in substantially parallel to the seat surface; a detector electrode 9 for detecting an occupant on the seat embedded under the seat heater 8 in parallel thereto; and a waterproof film (or an insulating film) 10 disposed between the detector electrode 9 and the seat heater 8. The cushion pad 6 is made of a material such as hard form-urethane, and the cushion cover 7 is made of a material such as woven fibers having a good ornamental effect.
The seat heater 8 is made of a plane resistor member or wire resistor members, which are not necessarily covered with insulating films. The seat heater 8 may be embedded also in the seat back 5. One end (a high potential end) of the seat heater 8 is connected to a plus terminal of an on-board battery (not shown) through a seat heater switch 11, and the other end (a low potential end) of the seat heater 8 is connected to a ground terminal (a minus terminal) of the battery through another seat heater switch 12, as shown in
The detector electrode 9 is formed by a plane conductor plate, plural wires or net-shaped wires. An alternating current power source 13 powered by the battery supplies a constant alternating current in this particular embodiment. By supplying the alternating current to the detector electrode 9, an impedance between the detector electrode 9 and the ground varies according to whether the seat is occupied or not. This causes a change in an electric potential of the detector electrode 9 relative to the ground. Since the impedance decreases when the seat is occupied, the potential of the detector electrode 9 is lowered, which is detected by the occupant detector 14.
The occupant detector 14 includes a band pass filter 15, a rectifying and smoothing circuit 16, an amplifier 17, an A-D converter 18 and a microcomputer 19. The band pass filter 15 allows a predetermined frequency contained in the power source 13 to pass through. The band pass filter 15 may be composed of an resonant filter. The alternating current component passing through the band pass filter 15 is rectified and smoothed by the rectifying and smoothing circuit 16, and amplified by the amplifier 17. Then, the amplified analog output is converted into a digital signal by the A-D converter 18, and then the digital signal is fed to the microcomputer 19. The microcomputer 19 determines that the seat is occupied if the digital signal becomes lower than a predetermined level. It is also possible to design the microcomputer 19 to determine whether the occupant is an adult or a child, or whether a child seat or the like is positioned on the seat or not. These conditions are referred to as “occupancy conditions.”
An important feature of the first embodiment resides in that the seat heater 8 is disconnected form the battery and the ground at a predetermined interval of ΔT for a predetermined period of ΔT-off to bring the seat heater 8 to a floating potential, and the computer 19 determines the occupancy conditions in the period in which the seat heater 8 is at a floating potential. For example, the predetermined interval ΔT is set to 500 milliseconds, and the predetermined off-period ΔT-off is set to 20 milliseconds. It is preferable, however, to determine the occupancy conditions at a time as late as possible in the off-period ΔT-off to avoid any influence caused by operation of the heater switches 11, 12 for disconnecting the seat heater 8.
By disconnecting the seat heater 8, the seat heater 8 becomes a floating potential, and a capacitance between the detector electrode 9 and the seat heater 8 is considerably reduced, and sensitivity of the occupant detector is much improved. The seat heater switches 11, 12 are also utilized as switches for supplying heating power to the seat heater 8 from the on-board battery. When it is not necessary to heat the seat, it is preferable to open the heater switches 11, 12 and to bring the seat heater 8 to the floating potential.
A modified form of the first embodiment will be described with reference to
A second embodiment of the present invention will be described with reference to
In the second embodiment, the occupancy conditions are detected with a high sensitivity since the data for determining the occupancy conditions are sampled when the seat heater 8 is brought to the floating state. The alternating voltage may be supplied from the alternating power source 130 to the seat heater 8 and the occupant detector 14 only when the data are sampled by the microcomputer 19. The coupling capacitor 22 interrupts influence of the battery voltage on the alternating power source 130 and the occupant detector 14.
A modified form (1) of the second embodiment is shown in
A modified form (2) of the second embodiment is shown in
A modified form (3) of the second embodiment is shown in
The present invention is not limited to the embodiments and modified forms described above, but it may be variously modified. For example, though a single electrode is used as the detector electrode 9 in the first embodiment, the detector electrode 9 may be composed of a pair of electrodes having an insulating film interposed therebetween. While the present invention has been shown and described with reference to the foregoing preferred embodiments and modified forms, it will be apparent to those skilled in the art that changes in form and detail may be made therein without departing from the scope of the invention as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2006-196958 | Jul 2006 | JP | national |