The invention relates generally to gas turbine combustion systems and more particularly to a passive air-fuel mixing prechamber to enable wide fuel flexibility in gas turbine combustion systems.
Fuel flexibility in lean-premixed combustion systems is an important challenge for gas turbines since end users desire to make use of a variety of available fuel sources other than natural gas. These various alternative fuels have different combustion characteristics and may be available in seasonally variable quantities and compositions. A truly fuel flexible combustion system must be able to adapt to these variations, with changes ideally only in the fuel control settings.
Modern gas turbines operating on gaseous fuels, most commonly natural gas, rely on lean-premixed combustion in order to efficiently achieve low NOx emissions levels required by government regulations. The fuel-air premixing process typically occurs inside a premixer located just upstream of the combustion chamber. In the premixer, the fuel is injected into the much larger air flow stream. The fuel injection often occurs as a jet-in-crossflow arrangement; however, many other schemes are also utilized. The fuel mixes in with the air through turbulent structures in the fluid flow.
The premixing process is sensitive to several factors. In the case of jet-in-crossflow mixing, the jet penetration is very sensitive to the momentum flux ratio of the fuel jet relative to the mainstream flow. If the jet momentum flux is too high, the jet overpenetrates through the mainstream flow. This strong jet not only produces a skewed fuel profile in the air passage, but the jet also behaves like a bluff body, generating a strong wake region which can be a potential location for undesirable flameholding inside the premixer. Conversely, if the jet momentum flux is too low, the fuel dribbles out of its hole and does not protrude out into the mainstream flow leading again to a skewed fuel profile. Ultimately, poor premixing leads to regions with fuel/air ratios higher and lower than the mean. High fuel/air ratios will contribute to excessive NOx production and potentially flashback of the flame into the premixer; and low fuel/air ratios can lead to locally extinguished flame fronts.
Fuel-air premixers are designed to work at a specific set of gas turbine conditions and with a specific fuel characteristic. One important fuel characteristic is the lower heating value (LHV), which is equal to the energy content, or heat of reaction, per unit volume of the fuel. As LHV decreases, the gas turbine requires higher volume flow rates of fuel in order to maintain the same power output. However, because of some of the challenges described herein, the premixer is optimized around a specific LHV value and therefore a specific volumetric flow rate. The premixer can operate reasonably well over a narrow range of LHV; however, if the fuel LHV changes more than a few percent, the premixing quality can worsen. In addition, as more volume flow rate is delivered through a fixed orifice, the pressure drop required to drive the fuel injection increases roughly as the square of the volume flow rate. Large changes in fuel pressure drop have been observed to increase sensitivities for certain combustion dynamic tones. Further, increasing fuel pressures will drive additional fuel compression facility requirements and therefore result in additional costs and performance penalties in the system.
Presently, wider fuel flexibility is sometimes achieved through the addition of extra fuel injection circuits. Typically this is required in order to permit the high volumetric flow rates associated with low LHV fuels without simultaneously causing the pressure drop and therefore fuel delivery pressures to increase. Any additional fuel circuits disadvantageously require extra controls for switching between fuels and purging the circuits with air or an inert gas when the circuit is not use. Further, since typical fuel injection strategies are designed around a narrow range of fuels, any additional circuit only adds capability to operate on one additional narrow range of fuels now centered at a different LHV.
In view of the foregoing, it would be advantageous to provide a passive air-fuel mixing prechamber to enable wide fuel-flexibility in gas turbine combustion systems thus providing broader fuel capabilities within a single piece of combustor hardware, moving towards a lean-premixed widely fuel-flexible gas turbine. The prechamber should 1) provide passive compensation within the premixer to adjust and control pressure drops for changes in fuel volumetric flow rate, 2) provide decreased sensitivity of the fuel premixing process to variation in fuel LHV, and 3) provide the ability to optimize premixer (fuel injection) design once for application over a wide range of fuels.
Briefly, in accordance with one embodiment, a passive air-fuel mixing prechamber is provided to enable wide fuel-flexibility in gas turbine combustion systems. The prechamber comprises:
one or more fuel passages, each fuel passage comprising an upstream portion, and further comprising a downstream portion comprising at least one fuel injection orifice; and
one or more fluid conduits, each fluid conduit connecting an upsteam portion fuel passage with one or more air passages such that pressure drops across each fuel injection orifice self-equalize with corresponding air passage pressure drops over a broad range of fuel lower heating value (LHV) from about 150 Btu/scf to about 900 Btu/scf of fuel passing through the fuel passage while mixing with air passing through one or more corresponding fluid conduits.
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
While the above-identified drawing figures set forth alternative embodiments, other embodiments of the present invention are also contemplated, as noted in the discussion. In all cases, this disclosure presents illustrated embodiments of the present invention by way of representation and not limitation. Numerous other modifications and embodiments can be devised by those skilled in the art which fall within the scope and spirit of the principles of this invention.
The embodiments described herein function to solve the challenges of fuel-flexible premixing in gas turbine combustion systems by enabling the fuel injection and premixing process to be more consistent over a large range of fuel LHV and therefore fuel volumetric flow rates. In substantially all gas turbine combustion system premixer designs, a pressure drop occurs in the air flow passage, typically across one or more swirlers, vanes, or orifices. The pressure drop across the fuel injection orifices in one design methodology is designed to roughly match the pressure drop on the air side. In this manner, any acoustic perturbations in the combustion system affect both air and fuel flows equally; thus, the fuel/air ratio remains somewhat constant despite the acoustic pressure fluctuations. However, if a new fuel is introduced with a strongly divergent LHV, among other effects the change in fuel injection pressure drop will cause this system to become no longer balanced.
The fluid communication between the fuel passages 20 and corresponding air passages 18 described herein results in passive modification of the fuel, forcing it to behave consistently, at least from the standpoint of fuel injection and mixing, across a broad range of fuel LHV as stated herein. This is achieved by passively mixing some air with the fuel, as needed, to keep the volumetric fuel mixture flow across the injection orifice 22 almost constant. The fuel mixture being injected is at times a pure fuel (low-LHV fuels) and at other times a rich fuel-air mixture (high-LHV fuels). Many low-LHV fuels have molecular weights similar to air due to their high N2 and/or CO content. Thus, not only is the volumetric flow held steady, but in fact also the mass flow; and therefore the momentum flux through the fuel injection orifices 22 is also held within a small variation.
While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
This invention was made with U.S. Government support under contract number DE-FC26-08NT05868. The Government has certain rights in the invention.