The present disclosure relates to valves, and more particularly to inline bleed valves and methods of controlling fluid flow through bleed valves such as in gas turbine engines.
Gas turbine engines, such as on aircraft, commonly employ compressors. The compressor provides a flow of compressed fluid for combustion and subsequent expansion of high pressure combustion products in the engine turbine. The turbine extracts work from the expanding combustion products to provide power to the compressor during steady state operation.
During engine starting the power available from combustion products can be limited. In some engines, for purposes of limiting the work input requirement of the compressor during starting, the compressor is vented. Venting is typically accomplished by opening a bleed valve, opening the compressor at least partially open to the external environment until fluid moving through the compressor section reaches suitable pressure. Open and closure of bleed valves is generally accomplished actively, such as by energizing or de-energizing a solenoid, or other commanded device.
Such conventional methods and systems have generally been considered satisfactory for their intended purpose. However, there is still a need in the art for improved bleed valves, compressors, gas turbine engines, and methods of controlling fluid flow through a bleed valve. The present disclosure provides a solution for this need.
A bleed valve includes a housing with an inlet coupled to an outlet by a duct, a guide tube with an orifice fixed in the housing between the inlet and the outlet, a piston, and baffle. The piston is slideably supported on the guide tube and is movable between an open and a closed position, the duct fluidly coupling the inlet and outlet in the open position, the duct fluidly separating the inlet and outlet in the closed position. The orifice fluidly couples the inlet and outlet in the open and closed positions to move piston between the open and closed positions according to differential pressure between the bleed valve inlet and outlet. The baffle is slideably supported by the guide tube to set the differential pressure at which the piston moves between the open and closed positions.
In certain embodiments the baffle can extend circumferentially about an interior of the guide tube. The baffle can have a first position and a second position. Flow area of orifice can be larger in the second position than in the first position. The baffle can have a skirt portion and a face portion. The skirt portion can overlap a portion of the orifice in the first position. The face portion can of the baffle can be arranged within an interior of the guide post. The face portion can have a set pin aperture to seat a set pin in the baffle.
In accordance with certain embodiments the bleed valve can include a set pin. The set pin can movably couple the baffle to the housing for displacement of the baffle relative to the guide tube. A collar can be connected to the set pin and fix the baffle to the set pin. The set pin can have a flange arranged on the set pin adjacent the baffle and fix the baffle to the set pin. The housing can have a set pin aperture. The set pin can be received within the set pin aperture. The set pin can be free for rotation and axial movement relative to the housing for setting the differential pressure.
It is contemplated that a sleeve threadably seated in the set pin aperture. The set pin can be received within the sleeve. The set pin can be threadably coupled to the sleeve for rotation and displacement relative to sleeve when moving between the first position and the second position. The set pin can have a set pin has a tool engagement feature arranged on an end of the set pin opposite the baffle. The orifice can include a plurality of axially extending slots. The baffle can overlap the axially extending slots in at least one of the first position and the second position. The housing can have a housing orifice fluidly coupling the guide tube orifice with the bypass channel, The set pin can be arranged between guide tube orifice and the housing aperture.
A gas turbine engine includes a compressor with a plenum, a turbine operably connected to the compressor, and bleed valve as described above. The bleed valve couples the plenum with the external environment and includes a set pin movably coupling the baffle to the housing for displacement of the baffle relative to the guide tube. The set pin is threadably coupled to the housing for rotation and displacement relative to sleeve to set the differential pressure. In certain embodiments the housing can have a housing aperture fluidly coupling the guide tube orifice with the bypass channel, the set pin arranged between guide tube orifice and the housing aperture.
A method of setting differential pressure at which a bleed valve opens includes setting the differential pressure between the inlet and the outlet of the bleed valve at which the piston moves between an open position and a closed position. When the differential pressure rises above the differential pressure the piston moves to the closed position such that the duct fluidly separates the inlet from the outlet. When the differential pressure drops blow above the differential pressure the piston moves to the open position such that the duct fluidly couples the inlet to the outlet.
In certain embodiments movement between the open position and the closed position can be passive. Setting the differential pressure can include rotating a set pin connecting the baffle to the housing. Setting the differential pressure can include changing flow area of the orifice.
These and other features of the systems and methods of the subject disclosure will become more readily apparent to those skilled in the art from the following detailed description of the preferred embodiments taken in conjunction with the drawings.
So that those skilled in the art to which the subject disclosure appertains will readily understand how to make and use the devices and methods of the subject disclosure without undue experimentation, embodiments thereof will be described in detail herein below with reference to certain figures, wherein:
Reference will now be made to the drawings wherein like reference numerals identify similar structural features or aspects of the subject disclosure. For purposes of explanation and illustration, and not limitation, a partial view of an exemplary embodiment of a bleed valve in accordance with the disclosure is shown in
Referring to
Combustion section 16 is disposed in fluid communication with compressor section 14, is arranged to receive therefrom compressed fluid 24, and generates high pressure combustion products 26 using compressed fluid 24 and fuel also provided to combustion section 16. High pressure combustion products 26 are provided by combustion section 16 to turbine section 18.
Turbine section 18 is disposed in fluid communication with combustion section 16 and is arranged to receive therefrom high pressure combustion products 26. Turbine section 18 expands high pressure combustion products 26 as high pressure combustion products 26 traverse turbine section 18, turbine section 18 extracting work 28 from high pressure combustion products 26 during expansion. A portion of work 28 is provided to compressor section 14 to provide the input power necessary to compress fluid 22 for generating compressed fluid 24, the amount of work corresponding the amount of fluid and extent of compression required for the operating state of gas turbine engine 10. Bleed valve 100 is connected to case 12 for reducing amount of work 28 provided to compressor section 14 according to the operating regime of gas turbine engine 10.
With reference to
Referring to
Housing 102 has an inlet portion 120 and an outlet portion 122. Inlet portion 120 defines inlet 104, is sealably connected to outlet portion 122 on an end opposite of inlet portion 120 opposite (relative to a direction of flow through bleed valve 100) inlet 104, and has an open seat 124 arranged within an interior of inlet portion 120. Open seat 124 is configured to receive piston 112 when piston 112 is in open position 116 (shown in
Guide tube 110 extends axially between inlet 104 and outlet 106 and has an inlet end 130, an outlet end 132, and a guide tube orifice 134. Outlet end 132 is seated in outlet portion 122 of housing 102. Guide tube orifice 134 is defined within guide tube 110 at a location between outlet end 132 and inlet end 130 and extends through a thickness of the wall defining guide tube 110. Inlet end 130 opposes inlet 104 on a side of guide tube orifice 134 opposite outlet end 132. An end cap 150 is seated on guide tube 110 facing inlet 104 separating an interior 164 of guide tube 110 from inlet 104. As shown in
Piston 112 is slidably seated on guide tube 110 and has a face 136 and a skirt 138. Face 136 opposes inlet 104. Skirt 138 extends from face 136 towards outlet 106 and has an inner portion 140 and an outer portion 142. Inner portion 140 extends about guide tube 110 and is in sliding engagement with an outer surface of guide tube 110. Outer portion 142 extends about inner portion 140 is sealably received between inlet portion 120 and outlet portion 122 of housing 102. Piston orifice 114 extends through piston face 136 to fluidly couple inlet 104 with a volume bounded by the downstream surface of face 136 and opposing faces of inner portion 140 and outer portion 142 of skirt 138. An inner sealing member 144 is seated within outer portion 122 of housing 102, extends about guide tube 110, and abuts an inner surface of outer portion 142 to prevent fluid flow therebetween. An outer sealing member 146 is seated within inlet portion 120 of housing 102, extends about skirt outer portion 142, and abuts an outer surface of skirt outer portion 142 to prevent fluid flow therebetween. Skirt 138 is slideably received between inner sealing member 144 and outer sealing member 146 to sealably move between open position 116 (shown in
A biasing member 148 is arranged between piston 112 and housing 102. Biasing member 148 is arranged to exert a biasing force B (shown in
Referring to
Referring to
With continuing reference to
In both closed position 118 (shown in
Referring to
With reference to
Flow area 158 (shown in
In the illustrated exemplary embodiment set mechanism 164 includes a set pin 172 with a flange 174, a collar 176, and a sleeve 178. Set pin 172 movably couples baffle to the housing for displacement of the baffle relative to the guide tube. Flange 174 extends about set pin 172 adjacent baffle 162 and fixes baffle 162 to set pin 172. Collar 176 threadably seats about an end of set pin 172 and fixes baffle 162 to set pin 172. Set pin 172 is in turn received within a set pin aperture 181 defined within housing 102, set pin 172 arranged between guide tube orifice 134 and housing aperture 182 fluidly coupling guide tube orifice 134 with outlet 106, and set pin 172 being free for rotation and axial movement (both shown with arrows in
Referring now to
It is contemplated that movement between the open position and the closed position can be passive, i.e., without the employment of a solenoid or muscle force from a pressurized fluid source, as shown box 222 and 232. It is also contemplated that, in accordance with certain embodiments, that setting the differential pressure can include rotating a set pin, e.g., set pin 172 (shown in
Inline bleed valves for gas turbine engines are generally operated by a pneumatic controller. The pneumatic controller controls so-called muscle pressure to the inline bleed valve, applying the muscle pressure into a actuation chamber to actuate the inline bleed valve. While generally acceptable for their intended function such pneumatic controllers and actuation chambers can add complexity, mass, and/or size to the inline bleed valve.
In certain embodiments described herein passive inline bleed valves function solely according to the pressure at bleed valve inlet and outlet. In this respect the bleed valve can include an orifice network with orifices defined within the inline bleed valve and fluidly between the inlet and the outlet. By selecting suitable sizing of the orifice flow area internal leakage through the inline bleed valve and pressure within chambers defined within the inline bleed valve interior can be controlled, pressure within a chamber located fluidly downstream of the bleed valve piston balancing force on the piston from pressure within a chamber located fluidly upstream of the bleed valve piston. The net force on the piston is a function of the pressures on each side of the piston and pressure exerted on the piston by the biasing member, the amount of force exerted on the piston thus controlling valve actuation pressure.
The methods and systems of the present disclosure, as described above and shown in the drawings, provide for inline bleed valves with superior properties including passive control. Being passively controlled the inline bleed valves do not require an active control mechanism, such as a solenoid and/or a controller. This can reduce complexity, mass, and size of the bleed valve, potentially improving reliability and/or reducing cost. While the apparatus and methods of the subject disclosure have been shown and described with reference to preferred embodiments, those skilled in the art will readily appreciate that changes and/or modifications may be made thereto without departing from the scope of the subject disclosure.
This application is a divisional of U.S. patent application Ser. No. 16/054,869 filed Aug. 3, 2018, which is incorporated by reference herein in its entirety.
This invention was made with government support with the United States Air Force under Contract No. FA8626-16-C-2139. The government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
1636662 | Lamer | Jul 1927 | A |
2265435 | Kinzie | Dec 1941 | A |
2608204 | Dunn | Aug 1952 | A |
2780779 | Thomiszer | Feb 1957 | A |
3493008 | Scaglione | Feb 1970 | A |
4182117 | Exley et al. | Jan 1980 | A |
5531566 | Derouet et al. | Jul 1996 | A |
6102017 | Bushell | Aug 2000 | A |
6230734 | Grebnev et al. | May 2001 | B1 |
7086841 | Cornwell | Aug 2006 | B2 |
7555905 | Borcea | Jul 2009 | B2 |
8814498 | Goodman et al. | Aug 2014 | B2 |
9784184 | Marocchini et al. | Oct 2017 | B2 |
20030205049 | Anderson et al. | Nov 2003 | A1 |
20040261858 | Ferrel | Dec 2004 | A1 |
20070234738 | Borcea | Oct 2007 | A1 |
20070284002 | Hartman et al. | Dec 2007 | A1 |
20160273450 | Marocchini et al. | Sep 2016 | A1 |
20170191373 | Miranda et al. | Jul 2017 | A1 |
20180231128 | Villanueva | Aug 2018 | A1 |
20190155317 | Povey | May 2019 | A1 |
20190277194 | DeFelice | Sep 2019 | A1 |
Number | Date | Country |
---|---|---|
3056739 | Aug 2016 | EP |
3070336 | Sep 2016 | EP |
2376515 | Dec 2002 | GB |
Entry |
---|
Extended European Search Report dated Jan. 8, 2020, issued during the prosecution of European Patent Application No. EP 19189049.0. |
Number | Date | Country | |
---|---|---|---|
20210348619 A1 | Nov 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16054869 | Aug 2018 | US |
Child | 17193235 | US |