The present invention relates generally to skylights and more particularly to passive collimating skylights.
Large warehouses and retail buildings often use passive skylighting systems as a low cost option to illuminate the interior spaces. As compared to active skylighting systems, passive systems have no moving parts, such as sun-tracking reflectors or lenses. Due in part to their passive nature, many conventional passive skylighting systems cannot provide consistent lighting conditions either throughout the year or throughout the day since the ability of these skylight systems to illuminate an interior space is highly dependent on the angle of the sun. Consequently, the illumination area beneath the skylight moves throughout the day and the year as the sun moves overhead. In addition, conventional passive skylighting systems also do not efficiently deliver light to the desired location due to their inability to redirect and distribute incident rays of solar radiation in an efficient manner.
The present invention is best understood from the following detailed description when read in conjunction with the accompanying drawing. It is emphasized that, according to common practice, the various features of the drawing are not necessarily to scale. On the contrary, the dimensions of the various features are arbitrarily expanded or reduced for clarity. Like numerals denote like features throughout the specification and drawing.
Passive skylight systems are popular lighting choices in many commercial and retail buildings due to their low cost and energy efficiency. Passive collimating skylights provide vast improvements over standard passive skylights due to their ability to deliver light to a particular location within a room, regardless of the angle of incidence of rays of solar radiation incident on the energy-collecting aperture. With today's emphasis on energy conservation, the use of passive collimating skylights that are low cost and which can provide reliable and effective illumination in warehouses, office buildings and other commercial and retail structures is quickly becoming an increasingly attractive lighting option.
In general, a passive collimating skylight includes a radiant energy-collecting aperture to collect lights rays, a radiant energy-delivering aperture to distribute the collected light to illuminate a desired location, and a radiant energy directing passageway extending between the collecting and delivering apertures to collimate the radiant energy while it is being transferred between apertures so that light is consistently delivered to a desired location beneath the skylight. The structure and features of an exemplary passive collimating skylight are described in detail in U.S. Pat. No. 6,363,667. The present application expands on and provides additional advantages to those provided by the skylight system described in U.S. Pat. No. 6,363,667. Other passive collimating skylight systems also may take advantage from the features and benefits of the systems described herein.
Referring now to
More particularly, with reference to
To illustrate, in
The angle of the energy-collecting aperture 16 in the plane P1 relative to the plane P2 of the energy-delivering aperture 20 can be any angle within a range of 0 degrees to 90 degrees, and preferably less than 60 degrees. In some embodiments, the angle of the plane P1 relative to the plane P2 is selected based on the general geographic location of the building in which the skylight system will be installed. In certain implementations of the skylight system, the angle is selected so that, when installed in a building, the energy-collecting aperture 16 is tilted towards the equator by an angle that is approximately equal to the local latitude angle +/−30 degrees to maximize sunlight collection throughout the year.
Returning to
Employing a rigid or semi-rigid material (e.g., sheet metal, polystyrene foam, etc.) for at least a portion of the wall 12 of the tapered passageway 10 may be particularly advantageous in installations, or in certain areas of the installation (e.g., outdoors), where some degree of structural support or weather-proofing is desired. However, if structural support or weather-proofing is not a concern, e.g., under the roof deck inside the building, then further savings in cost and weight can be realized by eliminating part or all of the rigid or semi-rigid layers of the wall 12 material. Accordingly, in various implementations, the wall 12 of the tapered passageway 10 can include only a single layer that is made of a lightweight, reflective, flexible material that has sufficient strength to resist tearing. An example of such a reflective material is a metalized polymer film, such as an aluminized polyester film (e.g., aluminized MYLAR®).
In such implementations, the end of the film at the energy collecting end 14 of the tapered passageway 10 can be connected to an upper end support structure 28, such as a frame, that defines the energy-collecting aperture 16. The end of the film at the energy-delivering end 18 of the tapered passageway 10 can be connected to a lower end support structure 30 that stretches or pulls the film to maintain the position and shape of the passageway 10 when the skylight system is installed in a building. The lower end support 30 can be provided by a frame that defines the light-delivering aperture 20 and which is sufficiently weighted to exert a pulling force on the film that is directed from the light-receiving end 14 of the passageway 10 towards the light-delivering end 16 of the passageway 10. In some embodiments, the lower end support 30 can be a luminaire or other light delivery or diffuser structure that is attached to the tapered passageway 10 at the energy delivering end 18. The ends of the film can be attached to the end support structures 28, 30 by any suitable attachment system, such as by retention hardware, adhesives, glues, bonding compounds, tape, etc.
In other embodiments, one portion of the tapered passageway 10 may be made of the flexible film, while another portion of the tapered passageway 10 can be provided with structural rigidity or support. For instance, the skylight system can include a dome portion that extends above a roof line of a building and which includes the energy-collecting aperture 16 to receive the radiant energy from the sun's rays. Typically, a transparent or translucent material which is resistant to breakage (e.g., a window 44 in
An illustrative example of an embodiment of a tapered passageway 10 that does include a physically separate dome portion 32 is shown in the schematic cross-section of a skylighting system 40 installed through a roof 42 of a building. When the system 40 is installed, the tapered dome portion 32 of the passageway 10 is above the roof line 42 of the building so that it is exposed to the outside environment. In this embodiment, the wall 12 of the exterior dome portion 32 of the tapered passageway 10 is made of a sheet metal (e.g., anodized aluminum or galvanized steel), while the wall 12 of the portion 36 of the tapered passageway 10 that is in the interior of the building is made of metalized polyester film that is subjected to a stretching or pulling force so that the passageway 10 can maintain its position and shape. In other embodiments, the wall 12 of the interior portion 36 may also include an outer layer, such as plywood or polystyrene or polyurethane foam, that supports a layer of flexible, metalized film. By providing a tapered dome portion 32 of the passageway 10 above the roof line 42 that has a reflective inner surface, collimation of the radiant energy incident on the dome window 44 begins immediately upon collection above the roof line 42, resulting in increased efficiency with respect to the amount of collected light that is ultimately delivered to the illumination area.
For instance, for a surface having a reflectivity on the order of 85%, each reflection results in a 15% loss of radiant energy. By starting the collimation immediately upon receipt, fewer reflections of the incident solar rays are encountered in delivering the collimated light to the desired location and, consequently, the overall loss of energy can be significantly reduced. In addition, by starting the collimation above the roof, the length of the interior portion 36 of the collimating passageway 10 can be reduced, thus facilitating installation and minimizing structural intrusion into the usable interior volume of the building. The reduced length of the interior collimator portion 36 can be a significant benefit in buildings that use all available vertical space, such as warehouses and retail stores with tall shelving. In an exemplary installation, the length of the interior portion 36 extends at least to, but not far beyond, the bottom of the roof joists of the building. In this manner, both loss of light exiting the energy-delivering aperture 20 of the portion 36 of the passageway 10 due to incidence on the roof joists and intrusion into the useable interior volume of building are minimized.
The exterior dome portion 32 and the inner portion 36 of the tapered passageway 10 can be coupled together in a variety of manners. In an exemplary installation, the exterior dome portion 32 includes a bottom edge 46 that is flared. The flared edge 46 may be attached to the roof surface 42 by suitable attachment means, such as screws or adhesives. The flared edge 46 may also function as a “flashing” that can later be covered with an appropriate roofing material (e.g., a polymer membrane for a commercial roof) to prevent entry of moisture through the roof via the dome portion 32. In other installations, the dome portion 32 may extend through the roofing material and be attached to the roof support structure (e.g., steel joists and decking material) and the roof penetration sealed by any suitable attachment and sealing means.
In the exemplary installation of the system 40 in
By way of illustrative example and referring again to
In this example, installation of the skylight system can then proceed from the roof level. In some installations, a thin high-strength transparent film (such as Tefzel) (not shown) is placed over the hole 50 that has been formed in the roof 42 to provide thermal insulation, a vapor barrier, and a second line of defense for fall protection. Next, the metal sided dome portion 32 of the tapered passageway 10 is placed over the hole 50. In embodiments in which the dome portion 32 includes a flared bottom peripheral edge 46, the flared edge or flange 46 is attached to the roof deck, such as by screws. To complete the installation, a roof membrane is installed over the flashing surface 46 of the dome portion 32 to minimize water leakage into the building.
The exploded view of
As an example, in some installations and as shown in the schematic representation of a skylight system 65 in
The tubular extension 66 may be made of any suitable material that has an inner surface 68 that is specularly reflective. For instance, the extension 66 can be made of sheet metal with an inner surface that is silvered or otherwise covered by a specularly reflective coating or material, such as the aluminized polyester film discussed above. In other implementations, the tubular extension 66 can be made entirely of a reflective film extending between support structures 70, 72 that exert a stretching or pulling force between the two ends of the extension 66. In some embodiments, the upper support structure 70 of the tubular extension 66 can be a frame that fastens to a lower frame 74 of the tapered passageway 10 and the lower support structure 72 can be a luminaire or other light diffuser having sufficient weight to exert a pulling force that maintains the position and shape of the tubular extension 66. When made of the flexible reflective material, the tubular extension 66 can be folded, delivered to, installed and connected to the tapered passageway 10 at the installation site using the same installation techniques described above with respect to the tapered passageway 10. In some implementations, the bottom end support frame 74 of the tapered passageway 10 may including a fastening system that is configured to optionally attach to either a luminaire or to the upper end support frame 70 of the tubular extension 66. The tubular extension 66 can be attached to the tapered passageway 10 prior to hoisting the passageway 10 to the roof line 42 or can be separately hoisted for connection after the tapered passageway 10 has been attached to and is suspended from the roof 42.
In some installations, obstructions, such as wiring and piping, above the ceiling may make it impractical to install the tubular extension 66. In such a situation, the passive collimating skylight systems described herein can still be used to effectively light an area below the ceiling. As an example and as shown schematically in
In some buildings, it may be impractical or difficult to install any portion of the passive collimating skylight system from inside the building. However, installing the tapered passageway 10 from outside the building at the roof 42 is not an attractive alternative because the hole formed through the roof 42 must be oversized to allow for passage of the larger energy-delivering end 18 of the passageway 10. An oversized hole through the roof 42 is not particularly desirable because it can present an increased opportunity for moisture leaks through the roof 42. Accordingly, various implementations of the tapered passageway can include expandable or pop-open features that allow the tapered passageway to be installed from the roof 42 outside the building without requiring an oversized aperture through the roof 42.
Exemplary embodiments of expandable tapered passageways are shown in
In the expandable embodiment shown in
Although not shown, it should be understood that the expandable features described above may be employed with any of a variety of configurations of the tapered passageway, including the embodiment shown in
As described above, the passive skylighting system includes a tapered energy-directing passageway that extends from a tilted energy-collecting aperture and expands to an energy-delivering aperture. With reference again to
By way of further example only, it has been found that a passageway 10 configured with length L of 83.3 inches, area A1 of 1,900 square inches, width W1 of 33.7 inches, width W2 of 45.4 inches, width W3 of 48.2 inches, width W4 of 69.1 inches, distance D of 8 inches, and width W5 of 48.8 inches can deliver approximately 120,000 lumens to an interior space near solar noon on a clear day.
The installations described above include passive skylight systems in which the collimating skylight extends vertically downward from a roof towards the floor of a building. However, it is also contemplated that the passive collimating systems may be installed in a building in a horizontal orientation. For instance, the passive collimating skylight systems described herein may be installed in a multiple story building and may be used to illuminate interior spaces on any floor of the building. In such installations, rather than extending through the roof, the dome portion of the skylight system may extend through an aperture formed in an exterior sidewall of the building, and the energy collecting aperture is angled as appropriate to capture incident energy radiated by the sun. Within the building, the interior portion of the tapered passageway and the tubular extensions can be arranged so that they extend in a horizontal direction between the floor and ceiling of adjacent stories to a desired inside location. A tubular extension may then be routed vertically so that light is delivered to a luminaire or diffuser installed in a ceiling of an interior room. In such installations, the tapered passageway and the tubular extensions may be made of a rigid or semi-rigid material or a flexible, reflective film or membrane. In the latter case, the passageway and/or extensions can include end supports that stretch or exert a pulling force on the film or membrane between the ends.
The exemplary passive collimating skylight systems that have been described herein enable many advantages to be attained over known skylighting systems. In addition to being entirely passive, lightweight and low cost, the above-described collimating skylights offer improved efficiency due to the fact that collimation begins immediately upon collection of the light through the energy-receiving aperture above the roof in the dome portion. Further, the skylight systems have multiple features that facilitate installation, including light weight, flexibility and pop-out features. Moreover, use of a metalized polymer film to provide the reflective inner surface of the collimating passageway not only lowers the cost and the weight of the skylight system, but it also results in delivery of a more pleasing “white” light to the area of illumination. Yet further, when sheet metal or other rigid or semi-rigid material is used to form either the entire tapered passageway or the dome portion of the passageway, the geometry of the passageway enables multiple passageways to be stacked upon each other, which provides a tremendous benefit for transporting and delivering the skylight systems to various locations. It is contemplated that the passive collimating skylight systems described herein can include any one or more of these features, alone or in any combination. Passive collimating skylights as taught herein also provide another significant advantage over conventional skylights, i.e., the elimination of glare. By collimating the light that enters the room, the passive collimating skylights eliminate light rays from emerging into the room at high angles above 45 degrees relative to a vertical line. The high angle rays cause glare, which has been shown to reduce the comfort and productivity of the building occupants.
In other embodiments, the portion 36 of the collimating passageway 10 which is installed in the interior of a building may be used without the tapered dome portion 32. As an example and as shown in
The preceding merely illustrates the principles of the invention. It will thus be appreciated that those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the invention and are included within its spirit and scope. Furthermore, all examples and conditional language recited herein are principally intended expressly to be only for pedagogical purposes and to aid the reader in understanding the principles of the invention and the concepts contributed by the inventors to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the invention, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents and equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.
This description of the exemplary embodiments is intended to be read in connection with the figures of the accompanying drawing, which are to be considered part of the entire written description. In the description, relative terms such as “lower,” “upper,” “horizontal,” “vertical,” “above,” “below,” “up,” “down,” “top” and “bottom” as well as derivatives thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description and do not require that the apparatus be constructed or operated in a particular orientation. Terms concerning attachments, coupling and the like, such as “connected” and “interconnected,” refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise.
Although the invention has been described in terms of exemplary embodiments, it is not limited thereto. Rather, the appended claims should be construed broadly, to include other variants and embodiments of the invention, which may be made by those skilled in the art without departing from the scope and range of equivalents of the invention.
The present application is a divisional of and claims priority benefit of U.S. application Ser. No. 13/097,564 entitled “Passive Collimating Skylight” filed 29 Apr. 2011, of which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
191802 | Howard | Jun 1877 | A |
3511559 | Foster | Jul 1967 | A |
3350819 | Polidoro | Nov 1967 | A |
3839949 | Gobel | Oct 1974 | A |
4339900 | Freeman | Jul 1982 | A |
4733505 | Van Dame | Mar 1988 | A |
4809468 | Bareiss | Mar 1989 | A |
5502935 | Demmer | Apr 1996 | A |
5528471 | O'Green | Jun 1996 | A |
5546712 | Bixby | Aug 1996 | A |
5613333 | Witzig, Jr. | Mar 1997 | A |
5655339 | DeBlock | Aug 1997 | A |
5729387 | Takahashi | Mar 1998 | A |
6035593 | Chao | Mar 2000 | A |
6219977 | Chao et al. | Apr 2001 | B1 |
6363667 | O'Neill | Apr 2002 | B2 |
6918216 | Hoy et al. | Jul 2005 | B2 |
7639423 | Kinney et al. | Dec 2009 | B2 |
7957065 | Jaster | Jun 2011 | B2 |
8098434 | Hoffend et al. | Jan 2012 | B1 |
8371078 | Jaster | Feb 2013 | B2 |
20050166490 | Darmer et al. | Aug 2005 | A1 |
20070044833 | Chern | Mar 2007 | A1 |
20090205699 | Chang | Aug 2009 | A1 |
20100309556 | Jaster | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
2142873 | Mar 1973 | DE |
0628676 | Dec 1994 | EP |
2637929 | Apr 1990 | FR |
4323451 | Nov 1992 | JP |
647424 | Feb 1979 | SU |
9406979 | Mar 1994 | WO |
Number | Date | Country | |
---|---|---|---|
20140047784 A1 | Feb 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13097564 | Apr 2011 | US |
Child | 14059695 | US |