The present invention is directed generally to the dispensing of prescriptions of pharmaceuticals, and more specifically is directed to the automated dispensing of pharmaceuticals.
Pharmacy generally began with the compounding of medicines which entailed the actual mixing and preparing of medications. Heretofore, pharmacy has been, to a great extent, a profession of dispensing, that is, the pouring, counting, and labeling of a prescription, and subsequently transferring the dispensed medication to the patient. Because of the repetitiveness of many of the pharmacist's tasks, automation of these tasks has been desirable.
Some attempts have been made to automate all or portions of the pharmacy environment. Different exemplary approaches are shown in U.S. Pat. Nos. 6,006,946; 6,036,812 and 6,176,392 to Williams et al. and in U.S. Pat. No. 7,014,063 to Shows et al. The Williams system conveys a bin with tablets to a counter and a vial to the counter. The counter dispenses tablets to the vial. Once the tablets have been dispensed, the system returns the bin to its original location and conveys the vial to an output device. Tablets may be counted and dispensed with any number of counting devices. Shows et al. discloses a system that includes multiple drawers, each of which includes a plurality of dispensing devices that dispense tablets into a dispensing chute. The dispensing devices may be of the so-called “Baker Cell” configuration (see U.S. Pat. No. 3,368,713 to Hurst et al.), in which the tablets are mechanically singulated and counted prior to dispensing into the dispensing chute. The tablets are stored in the dispensing chute until such time as a pharmacist or technician dispenses the tablets from the chute into a pharmaceutical vial.
Although either of these particular systems can provide some automated steps to pharmaceutical dispensing, certain of the operations may be improved. In particular, tablets stored in the chute can jam, thereby rendering their dispensing in a waiting vial more difficult. Also, in some cases a pharmacy may desire some restrictions on the dispensing of the tablets from the chute.
As a first aspect, embodiments of the present invention are directed to a passive dispensing chute assembly. The assembly comprises: a chute configured to receive objects to be dispensed, the chute having an outlet; a plurality of staging members, each of the staging members being suspended from and pivotally interconnected with the chute, the staging members being coupled to move together between a staging position, in which lower ends of the staging members are drawn together to form an impassable cone, and a dispensing position, in which the lower ends of the staging members radially withdraw from each other to permit passage of objects therethrough; and a plurality of contact members, each of the contact members having an upper end that is suspended from and pivotally interconnected with a respective lower end of a staging member, wherein in the staging position, the upper ends of the contact members define a circle having a first circumference, and in the dispensing position, the upper ends of the contact members define a circle having a second circumference that is greater than the first circumference. Contact from underneath (for example, with a pharmaceutical vial) forces the contact members to move from the staging position toward the dispensing position.
As a second aspect, embodiments of the present invention are directed to a passive dispensing chute assembly, comprising: a chute configured to receive objects to be dispensed, the chute having an outlet; and a passive dispensing unit attached to the chute outlet. The passive dispensing unit has a staging portion, wherein objects are captured prior to dispensing. The staging portion includes a gate member movable between a staging position, in which objects may be captured within the staging portion, and a dispensing position, in which the objects may be fed gravimetrically into a receptacle positioned below the dispensing unit. The dispensing unit further includes a release member, the release member being coupled with the gate member, such that movement of the release member from a staging position to a dispenisng position moves the gate member from its staging position to its release position.
As a third aspect, embodiments of the present invention are directed to a passive chute assembly, comprising: a chute configured to receive objects to be dispensed, the chute having an outlet; and a passive dispensing unit attached to the chute outlet. The passive dispensing unit has a staging portion, wherein objects are captured prior to dispensing. The staging portion is movable between a staging position, in which objects may be captured within the staging portion, and a dispensing position, in which the objects may be fed gravimetrically into a receptacle positioned below the dispensing unit. The staging portion includes an adaptive opening that, when the staging portion moves to the dispensing position, opens adaptively corresponding to a diameter of the receptacle.
a is a perspective view of a dispensing stage assembly according to alternative embodiments of the present invention, with the door in its staging position.
b is a perspective view of the dispensing stage of
The present invention will now be described more fully hereinafter, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, like numbers refer to like elements throughout. Thicknesses and dimensions of some components may be exaggerated for clarity.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. As used herein the expression “and/or” includes any and all combinations of one or more of the associated listed items.
In addition, spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
Well-known functions or constructions may not be described in detail for brevity and/or clarity.
As described above, the invention relates generally to a system and process for dispensing pharmaceuticals. An exemplary process is described generally with reference to
A system that can carry out this process is illustrated in
In the illustrated embodiment, the bins 100 are configured to singulate, count and dispense pills through an air agitation technique. The air agitation technique is described in some detail in, for example, U.S. Pat. No. 6,971,541 to Williams et al., supra, and U.S. Patent Publication No. 2006/0241807, and need not be described in detail herein. Those skilled in this art will appreciate that other pill dispensing apparatus, including those that rely on mechanical singulating action (see, e.g., U.S. Pat. No. 7,014,063), may also be employed.
Referring now to
Referring now to
Referring now to
Referring again to
As can be seen in
To release the pills from the dispensing stage 110, a vial V is lifted from underneath, open end up, until its rim contacts the underside of one of the contact members 130 (see
Because an overleaf 126 underlies each petal 120, when any petal 120 begins to rotate to separate from the other petals 120, the panel 124 of that petal 120 contacts its underlying overleaf 126 and forces it radially outwardly. This movement in turn forces the adjacent petal 120 to which the underlying overleaf 126 is attached radially outwardly also. Thus, rotation of a single petal 120 causes all of the petals 120 to separate in conceit. Consequently, as the vial V continues to rise, all of the petals 120 continue to separate radially. This separation stops when the vial V contacts the lower ends of the petals 120. At this point, the panels 124 form a “sawtooth”-edged funnel that allows the pills staged in the chute 102 to slide into the vial V (see
Once the pills have been dispensed into the vial V, the vial can simply be lowered from the fixed ring 140 and capped. The petals 120 and contact members 130 return, via gravity, to their closed positions of
Those skilled in this art will appreciate that a dispensing stage of this configuration may be used with vials of multiple diameters, i.e., the stage has an adaptive opening that open proportionately with the diameter of the receiving vial. For example, a larger vial V′ is illustrated in
In the configuration described above, the dispensing stage 110 can provide a method of dispensing staged pills in which the technician can dispense the pills with a single one-handed movement. Also, the dispensing stage 110 has the ability to adapt its dispensing opening to the size of the vial being filled, which can reduce the tendency of pills to jam or clog the opening while ensuring that no pills are spilled during dispensing. In addition, the lifting motion of the base ring 112 can provide potential energy to the pills to facilitate feeding. Moreover, the pills feed from the center of the “cone” first, followed by pills from the periphery of the cone; this sequential feeding scheme can reduce the tendency of the pills to jam.
Those skilled in this art will recognize that, as an alternative, the fixed ring 140 may “float,” and the base ring 112 may be fixed. In one alternative embodiment, the upper base ring is fixed to the lower end of the chute (which does not telescope relative to the upper end of the chute), and the lower ring floats. In such embodiments, one or more of the petals 120, the contact members 130, the floating ring 140 or the base ring 112 may include a “stop” structure that prevents the floating ring 140 from simply rising when the vial is lifted. Exemplary structures include a stop post fixed to the base ring 112 that contacts the floating ring 140 when it is in the closed position, small stop nubs on the contact members that contact the petals, or the like. Also, in such embodiments one or more of the components may be spring-loaded to bias the petals 120 toward to the closed position. As another example, a dispensing stage 200 illustrated in
Those skilled in this art will appreciate that the dispensing stage may take other configurations also. For example, there may be fewer or more contact members and/or staging members. There may also be as many contact members as staging members in some embodiments. Other variations may also be apparent to those skilled in this art.
Another example of a passive dispensing stage is illustrated in
Referring to
Referring now to
Referring now to
In the staging position shown in
To release the pills, a technician can position a vial such that the lower end of the spout 328 fits within the interior of the vial V. The flexibility of the spout 328 enables the spout 328 to bend to fit within the vial V. The technician can then lift the vial V generally parallel to the axis S (
In some embodiments, raising of the door 306 can cause pills that are resting on the tongue 322 to be “dragged” along with the door 306 due to friction between the pills and the tongue 322. This behavior can help to agitate the staged pills and improve flow into the vial V. Certain embodiments may include an agitation finger or the like projecting from the tongue 322 to assist with agitation.
The dispensing stage 300 returns to the staging position of
Like the dispensing stage 110 described above, the dispensing stage 300 can also be operated with one hand, and can adapt to vials of different diameters.
A variation of the dispensing stage 300 is illustrated in
Another variation of the dispensing stage 300 is shown in
A generally U-shaped gate 520 is mounted onto the chute 502 via hinge pins 526 located on wings 522. Each of the hinge pins 526 extends through a respective open-ended slot 510 and is inserted into a mounting aperture 503 in the chute 502. As such, the hinge pins 526 define an axis of rotation R1. A slide pin 528 is located on each of the wings 522 and extends into a respective slot 512. A cover 524 extends downwardly between the wings 522 and, in the closed position of
It can be seen that, in the closed position of
Those skilled in this art will appreciate that the dispensing stages of the present invention may also be employed with the dispensing of objects other than pharmaceutical tablets. For example, small component parts in a manufacturing line, dispensable candies, and the like may be dispensed with the stages of the present invention.
The foregoing is illustrative of the present invention and is not to be construed as limiting thereof. Although exemplary embodiments of this invention have been described, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the claims. The invention is defined by the following claims, with equivalents of the claims to be included therein.
This application claims priority from the U.S. Provisional Patent Application No. 60/955,059, filed Aug. 10, 2007 and entitled Passive Device for Staging and Dispensing Tablets Useful in System and Method for Dispensing Prescriptions, the disclosure of which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5720154 | Lasher et al. | Feb 1998 | A |
5838575 | Lion | Nov 1998 | A |
6308494 | Yuyama et al. | Oct 2001 | B1 |
7066351 | Chang | Jun 2006 | B2 |
7289879 | William et al. | Oct 2007 | B2 |
7555362 | Broussard et al. | Jun 2009 | B2 |
Number | Date | Country | |
---|---|---|---|
20090140002 A1 | Jun 2009 | US |
Number | Date | Country | |
---|---|---|---|
60955059 | Aug 2007 | US |