Double doors, such as residential entry doors, have an active door (the door used for regular ingress and egress) and a passive door (the opposite door typically fixed in place, but that may be opened if desired). The passive door usually includes upper and lower shoot bolts that extend into the top and bottom of the door frame to form a secure connection. Common locking elements such as deadbolts and latches are located on the active door, and extend into the passive door to secure the double doors when locked. With the passive door secured at the top and bottom of the frame, and the active door secured to the passive door with a deadbolt, a force applied against the double doors will typically be insufficient to defeat the lock. Passive door locks, however, are often not intuitive and may result in user confusion. If a user believes they have locked the passive door when, in fact, they have not done so, the security of the door is compromised.
In one aspect, the technology relates to a lock mechanism for an inactive door including: a housing configured to receive a locking element from an active door lock; a slide movably received in the housing and including a drive bar connection element, wherein when the slide is in an unlocked position, the drive bar connection element is located in a path of travel of the deadbolt, and wherein when the slide is in a locked position, the drive bar connection element is located outside the path of travel of the deadbolt; at least one drive bar at least partially received in the housing, wherein the drive bar is connected to the drive bar connection element and wherein the drive bar is actuated by an actuator located remote from the housing; and a blocking element located within the housing, wherein the blocking element prevents movement of the slide from the locked position to the unlocked position. In an embodiment, the blocking element is pivotably connected to the housing and includes a dog, wherein when the blocking element is in a slide blocked position, the dog is located within a path of travel of the slide. In another embodiment, the blocking element includes an actuator adapted to be actuated by at least one of a thumbturn located external to the housing and a key cylinder located external to the housing. In yet another embodiment, the blocking element is biased into both of the slide blocked position and a slide unblocked position. In still another embodiment, the blocking element is adapted to be rotated from the slide unblocked position to the slide blocked position only when the slide is in the locked position.
In an embodiment of the above aspect, the blocking element is pivotably connected to the slide and includes a projection, wherein when in a slide blocked position, the projection is positioned such that a pin extends into a path of vertical travel of the projection. In another embodiment, the blocking element is biased into a slide unblocked position, wherein the pin does not extend into a path of vertical travel of the projection. In yet another embodiment, the blocking element is adapted for movement from a slide unblocked position to the slide blocked position due to contact with the locking element extending into the housing. In still another embodiment, the blocking element includes an actuator pivotably connected to the housing.
In an embodiment of the above aspect, the slide is adapted to move vertically due to actuation of an element located discrete from housing. In another embodiment, the lock mechanism includes a drive bar actuation mechanism for moving the slide between the unlocked position and the locked position. In yet another embodiment, the drive bar actuation mechanism is located in a drive bar actuation mechanism housing discrete from the housing. In still another embodiment, the drive bar actuation mechanism is operated by pivotal movement of a handle located on the drive bar actuation mechanism housing.
In another aspect, the technology relates to a lock mechanism for an inactive door, the lock mechanism including: a housing configured to receive a deadbolt from an active door lock; and a selectively actuable blocking element, wherein when the blocking element is in an unlocked position, the blocking element is located in a path of travel of the deadbolt, and wherein when the blocking element is in a locked position, the blocking element is located outside the path of travel of the deadbolt. In an embodiment, the lock mechanism includes an actuator located within the housing, wherein the actuator is selectively actuable to prevent movement of the blocking element from the locked position to the unlocked position. In another embodiment, when the deadbolt is received in the housing, the blocking element is prevented from moving to the unlocked position.
In another aspect, the technology relates to a lock mechanism for an inactive door, the lock mechanism including: a slide for selectively moving a drive bar between a locked position and an unlocked position; a first blocking element for preventing movement of the slide from the locked position to the unlocked position, wherein the first blocking element prevents movement of the slide when contacted by a deadbolt inserted into the locking mechanism; and a second blocking element for selectively preventing movement of the slide from the locked position to the unlocked position. In an embodiment, the first blocking element is pivotably connected to the slide. In another embodiment, the first blocking element prevents movement of the slide due to contact with between the first blocking element and a projection extending from a housing of the lock mechanism. In another embodiment, the second blocking element prevents movement of the slide due to positioning a dog in a path of travel of the slide.
There are shown in the drawings, embodiments which are presently preferred, it being understood, however, that the technology is not limited to the precise arrangements and instrumentalities shown.
Depicted in
The passive lock assembly 200 depicted in
Relevant to the each of the two depicted positions are the positions of the drive bar 306 and certain elements located within the housing 302. The drive bar connection element 306, in this case, acts as a blocking element, thus denying a deadbolt passage into the housing 302 when positioned as depicted in
With the drive bar connection element 314 no longer in the path of travel of the deadbolt 408, the deadbolt 408 may now be advanced horizontally H into the interior of the housing 302, as depicted in
An additional benefit of the passive lock mechanism 300 is apparent from
In other embodiments, a deep astragal may include a deadbolt extension, which may be utilized to penetrate the passive lock housing even when the deadbolt 508 is too short to do so. In such an embodiment, the deadbolt extension element may telescope or project from the astragal into the housing 302 due to a force applied by the deadbolt 508 into a rear portion of the deadbolt extension element.
The materials utilized in the manufacture of the passive lock mechanism may be those typically utilized for lock manufacture, e.g., zinc, steel, brass, stainless steel, etc. Material selection for most of the components may be based on the proposed use of the passive lock mechanism, level of security desired, etc. Appropriate materials may be selected for a passive lock mechanism used on patio or entry doors, or on doors that have particular security requirements, as well as on passive lock mechanisms subject to certain environmental conditions (e.g., moisture, corrosive atmospheres, etc.). For particularly light-weight door panels (for example, cabinet door panels, lockers, or other types of panels), molded plastic, such as PVC, polyethylene, etc., may be utilized for the various components. Nylon, acetal, Teflon®, or combinations thereof may be utilized as required or desired to reduce friction, although other low-friction materials are contemplated.
Positional terms such as upper, lower, etc., as used herein, are relative terms used for convenience of the reader and to differentiate various elements of the passive lock mechanism from each other. In general, unless otherwise noted, the terms are not meant to define or otherwise restrict location of any particular element. For example, the passive lock mechanism may be installed below a drive bolt actuation mechanism on a door.
While there have been described herein what are to be considered exemplary and preferred embodiments of the present technology, other modifications of the technology will become apparent to those skilled in the art from the teachings herein. The particular methods of manufacture and geometries disclosed herein are exemplary in nature and are not to be considered limiting. It is therefore desired to be secured in the appended claims all such modifications as fall within the spirit and scope of the technology. Accordingly, what is desired to be secured by Letters Patent is the technology as defined and differentiated in the following claims, and all equivalents.
This application claims priority to and the benefit of U.S. Provisional Patent Application Ser. No. 61/695,868, filed Aug. 31, 2012, entitled “Passive Door Lock Mechanisms,” the disclosure of which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
419384 | Towne | Jan 1890 | A |
651947 | Johnson | Jun 1900 | A |
738280 | Bell et al. | Sep 1903 | A |
972769 | Lark | Oct 1910 | A |
1094143 | Hagstrom | Apr 1914 | A |
1142463 | Sheperd | Jun 1915 | A |
1251467 | Blixt et al. | Jan 1918 | A |
1277174 | Bakst | Aug 1918 | A |
1359347 | Fleisher | Nov 1920 | A |
1366909 | Frommer | Feb 1921 | A |
1596992 | Ognowicz | Aug 1926 | A |
1646674 | Angelillo | Oct 1927 | A |
1666654 | Hiering | Apr 1928 | A |
1716113 | Carlson | Jun 1929 | A |
2535947 | Newell | Dec 1950 | A |
2739002 | Johnson | Mar 1956 | A |
2862750 | Minke | Dec 1958 | A |
3064462 | Ng et al. | Nov 1962 | A |
3162472 | Rust | Dec 1964 | A |
3250100 | Cornaro | May 1966 | A |
3332182 | Mark | Jul 1967 | A |
3413025 | Sperry | Nov 1968 | A |
3437364 | Walters | Apr 1969 | A |
RE26677 | Russell et al. | Oct 1969 | E |
3586360 | Perrotta | Jun 1971 | A |
3806171 | Fernandez | Apr 1974 | A |
3899201 | Paioletti | Aug 1975 | A |
3904229 | Waldo | Sep 1975 | A |
3953061 | Hansen et al. | Apr 1976 | A |
4076289 | Fellows et al. | Feb 1978 | A |
4116479 | Poe | Sep 1978 | A |
4132438 | Guymer | Jan 1979 | A |
4236396 | Surko et al. | Dec 1980 | A |
4288944 | Donovan | Sep 1981 | A |
4476700 | King | Oct 1984 | A |
4500122 | Douglas | Feb 1985 | A |
4593542 | Rotondi et al. | Jun 1986 | A |
4602812 | Bourne | Jul 1986 | A |
4607510 | Shanaan et al. | Aug 1986 | A |
4643005 | Logas | Feb 1987 | A |
4691543 | Watts | Sep 1987 | A |
4754624 | Fleming et al. | Jul 1988 | A |
4949563 | Gerard et al. | Aug 1990 | A |
4961602 | Pettersson | Oct 1990 | A |
4962653 | Kaup | Oct 1990 | A |
4962800 | Owiriwo | Oct 1990 | A |
4964660 | Prevot et al. | Oct 1990 | A |
4973091 | Paulson | Nov 1990 | A |
5077992 | Su | Jan 1992 | A |
5092144 | Fleming et al. | Mar 1992 | A |
5118151 | Nicholas, Jr. et al. | Jun 1992 | A |
5125703 | Clancy et al. | Jun 1992 | A |
5171050 | Mascotte | Dec 1992 | A |
5172944 | Munich et al. | Dec 1992 | A |
5197771 | Kaup et al. | Mar 1993 | A |
5265452 | Dawson et al. | Nov 1993 | A |
5290077 | Fleming | Mar 1994 | A |
5373716 | MacNeil et al. | Dec 1994 | A |
5382060 | O'Toole et al. | Jan 1995 | A |
5388875 | Fleming | Feb 1995 | A |
5404737 | Hotzl | Apr 1995 | A |
5482334 | Hotzl | Jan 1996 | A |
5495731 | Riznik | Mar 1996 | A |
5513505 | Danes | May 1996 | A |
5516160 | Kajuch | May 1996 | A |
5524941 | Fleming | Jun 1996 | A |
5524942 | Fleming | Jun 1996 | A |
5609372 | Ponelle | Mar 1997 | A |
5620216 | Fuller | Apr 1997 | A |
5707090 | Sedley | Jan 1998 | A |
5716154 | Miller et al. | Feb 1998 | A |
5722704 | Chaput et al. | Mar 1998 | A |
5782114 | Zeus et al. | Jul 1998 | A |
5791700 | Biro | Aug 1998 | A |
5820170 | Clancy | Oct 1998 | A |
5820173 | Fuller | Oct 1998 | A |
5865479 | Viney | Feb 1999 | A |
5878606 | Chaput et al. | Mar 1999 | A |
5890753 | Fuller | Apr 1999 | A |
5896763 | Dinkelborg et al. | Apr 1999 | A |
5901989 | Becken et al. | May 1999 | A |
5906403 | Bestler et al. | May 1999 | A |
5915764 | MacDonald | Jun 1999 | A |
5951068 | Strong et al. | Sep 1999 | A |
6050115 | Schroter et al. | Apr 2000 | A |
6094869 | Magoon et al. | Aug 2000 | A |
D433916 | Frey | Nov 2000 | S |
6148650 | Kibble | Nov 2000 | A |
6174004 | Picard | Jan 2001 | B1 |
6196599 | D'Hooge | Mar 2001 | B1 |
6209931 | Von Stoutenborough et al. | Apr 2001 | B1 |
6217087 | Fuller | Apr 2001 | B1 |
6250842 | Kruger | Jun 2001 | B1 |
6257030 | Davis, III et al. | Jul 2001 | B1 |
6264252 | Clancy | Jul 2001 | B1 |
6266981 | von Resch et al. | Jul 2001 | B1 |
6282929 | Eller et al. | Sep 2001 | B1 |
6283516 | Viney | Sep 2001 | B1 |
6293598 | Rusiana | Sep 2001 | B1 |
6327881 | Grundler et al. | Dec 2001 | B1 |
6389855 | Renz et al. | May 2002 | B2 |
6443506 | Su | Sep 2002 | B1 |
6454322 | Su | Sep 2002 | B1 |
6502435 | Watts et al. | Jan 2003 | B2 |
6516641 | Segawa | Feb 2003 | B1 |
6637784 | Hauber et al. | Oct 2003 | B1 |
6672632 | Speed et al. | Jan 2004 | B1 |
6688656 | Becken | Feb 2004 | B1 |
6733051 | Cowper | May 2004 | B1 |
6776441 | Liu | Aug 2004 | B2 |
6810699 | Nagy | Nov 2004 | B2 |
6871451 | Harger et al. | Mar 2005 | B2 |
6935662 | Hauber et al. | Aug 2005 | B1 |
6971686 | Becken | Dec 2005 | B2 |
6994383 | Morris | Feb 2006 | B2 |
7025394 | Hunt | Apr 2006 | B1 |
7083206 | Johnson | Aug 2006 | B1 |
7155946 | Lee et al. | Jan 2007 | B2 |
7207199 | Smith et al. | Apr 2007 | B2 |
7249791 | Johnson | Jul 2007 | B2 |
7261330 | Hauber | Aug 2007 | B1 |
7404306 | Walls et al. | Jul 2008 | B2 |
7418845 | Timothy | Sep 2008 | B2 |
7513540 | Hagemeyer | Apr 2009 | B2 |
7634928 | Hunt | Dec 2009 | B2 |
7677067 | Riznik et al. | Mar 2010 | B2 |
7707862 | Walls et al. | May 2010 | B2 |
7726705 | Kim | Jun 2010 | B2 |
7735882 | Abdollahzadeh et al. | Jun 2010 | B2 |
7856856 | Shvartz | Dec 2010 | B2 |
7878034 | Alber et al. | Feb 2011 | B2 |
8182002 | Fleming | May 2012 | B2 |
8348308 | Hagemeyer et al. | Jan 2013 | B2 |
8376414 | Nakanishi et al. | Feb 2013 | B2 |
8382166 | Hagemeyer et al. | Feb 2013 | B2 |
8398126 | Nakanishi et al. | Mar 2013 | B2 |
8840153 | Juha | Sep 2014 | B2 |
8850744 | Bauman et al. | Oct 2014 | B2 |
20020104339 | Saner | Aug 2002 | A1 |
20030159478 | Nagy | Aug 2003 | A1 |
20040107746 | Chang | Jun 2004 | A1 |
20040239121 | Morris | Dec 2004 | A1 |
20050103066 | Botha et al. | May 2005 | A1 |
20050144848 | Harger et al. | Jul 2005 | A1 |
20050229657 | Johansson et al. | Oct 2005 | A1 |
20070068205 | Timothy | Mar 2007 | A1 |
20070080541 | Fleming | Apr 2007 | A1 |
20070113603 | Polster | May 2007 | A1 |
20070170725 | Speyer et al. | Jul 2007 | A1 |
20080087052 | Abdollahzadeh et al. | Apr 2008 | A1 |
20080092606 | Meekma | Apr 2008 | A1 |
20080141740 | Shvartz | Jun 2008 | A1 |
20080150300 | Harger et al. | Jun 2008 | A1 |
20080156048 | Topfer | Jul 2008 | A1 |
20080156049 | Topfer | Jul 2008 | A1 |
20080178530 | Ellerton et al. | Jul 2008 | A1 |
20080179893 | Johnson | Jul 2008 | A1 |
20080184749 | Alber et al. | Aug 2008 | A1 |
20090078011 | Avni | Mar 2009 | A1 |
20100154490 | Hagemeyer et al. | Jun 2010 | A1 |
20100213724 | Uyeda | Aug 2010 | A1 |
20100236302 | Uyeda | Sep 2010 | A1 |
20100327610 | Nakanishi et al. | Dec 2010 | A1 |
20110198867 | Hagemeyer et al. | Aug 2011 | A1 |
20110289987 | Chiou et al. | Dec 2011 | A1 |
20120146346 | Hagemeyer et al. | Jun 2012 | A1 |
20120306220 | Hagemeyer et al. | Dec 2012 | A1 |
20130019643 | Tagtow et al. | Jan 2013 | A1 |
20130140833 | Hagemeyer et al. | Jun 2013 | A1 |
20130152647 | Terei et al. | Jun 2013 | A1 |
20130234449 | Dery et al. | Sep 2013 | A1 |
20140125068 | Hagemeyer et al. | May 2014 | A1 |
20140159387 | Hagemeyer et al. | Jun 2014 | A1 |
20160108650 | Hagemeyer et al. | Apr 2016 | A1 |
20160369525 | Tagtow et al. | Dec 2016 | A1 |
Number | Date | Country |
---|---|---|
844928 | Dec 1920 | AT |
1002656 | Feb 1957 | DE |
1584112 | Sep 1969 | DE |
2639065 | Mar 1977 | DE |
3032086 | Mar 1982 | DE |
3836693 | May 1990 | DE |
9011216 | Oct 1990 | DE |
4224909 | Feb 1993 | DE |
29807860 | Aug 1998 | DE |
10253240 | May 2004 | DE |
202012002743 | Apr 2012 | DE |
202013000920 | Apr 2013 | DE |
202013000921 | Apr 2013 | DE |
202013001328 | May 2013 | DE |
0007397 | Feb 1980 | EP |
0231042 | Aug 1987 | EP |
341173 | Nov 1989 | EP |
359284 | Mar 1990 | EP |
661409 | Jul 1995 | EP |
792987 | Sep 1997 | EP |
1106761 | Jun 2001 | EP |
1867817 | Dec 2007 | EP |
2128362 | Dec 2009 | EP |
2273046 | Jan 2011 | EP |
2339099 | Jun 2011 | EP |
2581531 | Apr 2013 | EP |
2584123 | Apr 2013 | EP |
2584124 | Apr 2013 | EP |
21883 | Apr 1921 | FR |
1142316 | Mar 1957 | FR |
1162406 | Sep 1958 | FR |
1201087 | Dec 1959 | FR |
2339723 | Sep 1977 | FR |
2342390 | Sep 1977 | FR |
2344695 | Oct 1977 | FR |
2502673 | Oct 1982 | FR |
226170 | Apr 1925 | GB |
264373 | Jan 1927 | GB |
612094 | Nov 1948 | GB |
1498849 | Jan 1978 | GB |
1575900 | Oct 1980 | GB |
2051214 | Jan 1981 | GB |
2076879 | Dec 1981 | GB |
2115055 | Sep 1983 | GB |
2122244 | Jan 1984 | GB |
2126644 | Mar 1984 | GB |
2134170 | Aug 1984 | GB |
2136045 | Sep 1984 | GB |
2168747 | Jun 1986 | GB |
2196375 | Apr 1988 | GB |
2212849 | Aug 1989 | GB |
2225052 | May 1990 | GB |
2230294 | Oct 1990 | GB |
2242702 | Oct 1991 | GB |
2244512 | Dec 1991 | GB |
2265935 | Oct 1993 | GB |
2270343 | Mar 1994 | GB |
2280474 | Feb 1995 | GB |
2318382 | Apr 1998 | GB |
2364545 | Jan 2002 | GB |
2496911 | May 2013 | GB |
614960 | Jan 1961 | IT |
309372 | Mar 1969 | SE |
9625576 | Aug 1996 | WO |
0233202 | Apr 2002 | WO |
2007104499 | Sep 2007 | WO |
Entry |
---|
PCT Invitation to Pay Fees in Application PCT/US2013/057102, mailed Feb. 3, 2014, 5 pgs. |
PCT International Search Report and Written Opinion in International Application PCT/US2013/057102, mailed Apr. 23, 2014, 21 pgs. |
“Intercity Locks—for All Your Security Needs—Fast”, http://www.directlocks.co.uk/locks-multipoint-locks-c-123—96.html, accessed Oct. 27, 2011, original publication date unknown, 3 pgs. |
“Intercity Locks—for All Your Security Needs—Fast”, http://www.directlocks.co.uk/locks-multipoint-locks-c-123—96.html?page=2&sort=2A, accessed Oct. 27, 2011, original publication date unknown, 3 pgs. |
“Intercity Locks—for All Your Security Needs—Fast”, http://www.directlocks.co.uk/locks-multipoint-locks-c-123—96.html?page=3&sort=2A, accessed Oct. 27, 2011, original publication date unknown, 3 pgs. |
“LocksOnline.co.uk: Premier Supplier of Security Products”, http://www.locksonline.co.uk/acatalog/Maco—multipoint—lock—2—cams—2—shootbolt—attachment.html, accessed Oct. 27, 2011, original publication date unknown, 5 pgs. |
“LocksOnline.co.uk: Premier Supplier of Security Products”, http://www.locksonline.co.uk/acatalog/upvc—Locks.html, accessed Oct. 27, 2011, original publication date unknown, 6 pgs. |
“uPVC Window Hardware and uPVC Door Hardware online”, http://www.upvc-hardware.co.uk/, accessed Oct. 27, 2011, original publication date unknown, 2 pgs. |
Number | Date | Country | |
---|---|---|---|
20140060127 A1 | Mar 2014 | US |
Number | Date | Country | |
---|---|---|---|
61695868 | Aug 2012 | US |