The present disclosure relates generally to implantable medical leads, and, more particularly, to passive fixation medical electrical leads.
The human anatomy includes many types of tissues that can either voluntarily or involuntarily, perform certain functions. After disease, injury, or natural defects, certain tissues may no longer operate within general anatomical norms. For example, after disease, injury, time, or combinations thereof, the heart muscle may begin to experience certain failures or deficiencies. Certain failures or deficiencies can be corrected or treated with implantable medical devices (IMDs), such as implantable pacemakers, implantable cardioverter defibrillator (ICD) devices, cardiac resynchronization therapy defibrillator devices, or combinations thereof.
IMDs detect and deliver therapy for a variety of medical conditions in patients. IMDs include implantable pulse generators (IPGs) or implantable cardioverter-defibrillators (ICDs) that deliver electrical stimuli to tissue of a patient. ICDs typically comprise, inter alia, a control module, a capacitor, and a battery that are housed in a hermetically sealed container with a lead extending therefrom. It is generally known that the hermetically sealed container can be implanted in a selected portion of the anatomical structure, such as in a chest or abdominal wall, and the lead can be inserted through various venous portions so that the tip portion can be positioned at the selected position near or in the muscle group. When therapy is required by a patient, the control module signals the battery to charge the capacitor, which in turn discharges electrical stimuli to tissue of a patient via electrodes disposed on the lead, e.g., typically near the distal end of the lead. Typically, a medical electrical lead includes a flexible elongated body with one or more insulated elongated conductors. Each conductor electrically couples a sensing and/or a stimulation electrode of the lead to the control module through a connector module.
In order to deliver stimulation or to perform sensing functions, it is desirable for the distal end of the lead to substantially remain in its position, as originally implanted by a physician. To stay in position, the distal end of the lead can be configured to be actively or passively fixed to tissue of interest. Active fixation refers to a lead electrode placed inside of tissue whereas passive fixation occurs when the electrode is placed on or near the surface of tissue. Actively fixing a lead to tissue can entail twisting a helical coil, disposed at the distal end of the lead, into the tissue of a patient. Suturing the lead to tissue is another active fixation means. While actively fixing the distal end of the lead to tissue substantially ensures that the lead remains in place, the tissue can experience some inflammation. Additionally, in some cases, such as children, active fixation of a lead may be difficult due to the size of the heart. Passive fixation of a lead, developed as an alternative to actively fixing a lead to tissue, involves use of an adhesive on the lead's distal end that can be stuck to the tissue, thereby reducing or eliminating inflammation of the tissue. Cyanocrylate adhesive, disclosed in U.S. Pat. No. 4,282,886, has been used to passively connect a lead to tissue. Alternatively, hydrogel, as disclosed in U.S. Pat. No. 4,768,523, has also been used to passively adhere a lead to tissue. Adhesives are placed directly onto a pad located at the distal end of the lead. The pad is then placed onto the epicardium. These adhesives, placed directly onto the pad, may not be tightly coupled or bonded to the pad. It is desirable to develop implantable medical electrical leads with new adherable fixation mechanisms.
The following drawings are illustrative of particular embodiments of the present invention and therefore do not limit the scope of the invention. The drawings are not to scale (unless so stated) and are intended for use in conjunction with the explanations in the following detailed description. Embodiments of the present invention will hereinafter be described in conjunction with the appended drawings, wherein like numerals denote like elements.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. The devices described herein include an exemplary number of leads, etc. One will understand that the components, including number and kind, may be varied without altering the scope of the disclosure. Also, devices according to various embodiments may be used in any appropriate diagnostic or treatment procedure, including a cardiac procedure. Leads disclosed herein are typically chronically implanted in a patient.
One or more embodiments relate to an implantable passive fixation lead. The lead comprises an elongate lead body and a support member disposed at the distal end of the lead body. The support member is configured to be passively fixated to tissue of a patient through the use of a bioreactive adhesion layer. A bioreactive adhesion layer, formed over the support member, comprises a linking material and adhesive material. The linking material is placed over, and, covalently bonds to the surface of the support member. A bioadhesive material is then placed over the linking material. The bioadhesive material covalently bonds onto the linking material. A removable cover is then placed over the bioadhesive material. The bioreactive adhesion layer ensures that an adhesive is secured in place.
Lead 106 is an endocardial lead; however, as previously stated, the disclosure also applies to epicardial leads, as depicted and described relative to
Lead 106 includes an elongated lead body 117 and a polymeric support member 114 for passively fixating the distal end 107 of the lead 106 to tissue of a patient. Each of these elements are described below. The elongated lead body 117 extends from a proximal end 105 to a distal end 107. Lead body 117 can include one or more connectors 101, and one or more jacketed elongated conductive elements 112a-d. A jacket (also referred to as a layer, longitudinal element, coating) extends along and longitudinally around the conductive elements 112a-d and serves to insulate one or more conductive elements 112a-d. Connector module 104 can include connectors 123, such as set screws, that electrically and mechanically connect conductive elements 112a-d to ports (not shown) of connector module 104. Conductive element 112c (also referred to as a “conductor coil,” torque coil”, “distal tip conductor”) can extend to the distal end 107 and can optionally be coupled to a retractable and/or extendable tip. One or more conductive elements 112a,b serve as, or are connected to, defibrillation coils 103a,b that deliver electrical stimuli, when necessary, to tissue of a patient. Lead 106 can also include a conductive element 112d that extends from the proximal end 105 to ring electrode 118 while another conductive element 112c extends from proximal end 105 to tip electrode 120.
Electrically conductive elements 112a-d can include coils, wires, coil wound around a filament, cables, conductors or other suitable members. Conductive elements 112a-d can comprise platinum, platinum alloys, titanium, titanium alloys, tantalum, tantalum alloys, cobalt alloys (e.g. MP35N, a nickel-cobalt alloy etc.), copper alloys, silver alloys, gold, silver, stainless steel, magnesium-nickel alloys, palladium, palladium alloys or other suitable materials. Electrically conductive element 112a-d is covered, or substantially covered, longitudinally with a jacket (also referred to as a layer, a longitudinal element, a longitudinal member, a coating, a tubular element, a tube or a cylindrical element). Typically, the outer surface of electrodes 108 such as the ring electrode 118, the tip electrode 120, and the defibrillation coils 103a,b are exposed or not covered by a jacket or layer so that electrodes 108 can sense and/or deliver electrical stimuli to tissue of a patient. Support member 114 (also referred to as a pad or disk) is used to passively couple the distal end 107 of lead 106 to tissue, as described in greater detail relative to
Medical electrical lead 200, 230 depicted in
Bioreactive adhesion layer 248 ensures that adhesive material remains in place and does not easily move, fall or easily contact an undesirable surface such as the surface of an electrode or non-targeted tissue. Bioreactive adhesion layer 248 comprises linking material 242 and bioreactive material 244 (also referred to as bioreactive adhesive) formed over or placed onto support member 114. One or more embodiments for forming bioreactive adhesion layer 248 is shown relative to
First surface 224a of support member 114, shown in
After first surface 224a has had its surface area increased, support member 114 can be used as a substrate for receiving linking material 242, as shown in
In particular, the linking material 242 can chemically react and covalently bond with the first surface 224a of support member 114. Referring to
Bioreactive layer 244 forms a connection with biologic material such as the tissue. The interaction between the bioreactive layer 244 and tissue can cause a chemical reaction and/or a biological response such as an inflammatory response and/or immune response. The bioreactive layer 244 can makeup the bioadhesive material, which can then react with a tissue site in order to form a bond between the tissue site and the support member 114. The bioreactive layer 244 can contain a sulfide reactive group (e.g. mercapto-reactive group (—SH), disulfide (—S—S—) etc.), amino-reactive group such as aldehyde (—CHO), catechol, cyanide (—CN), succimide (—NHS) cyanoacrylates (e.g. n-butyl cyanoacrylate or 2-octyl cyanoacrylate) and/or N-hydroxysuccinimide. The chemical structures for catechol isomers is presented below:
Table 2, presented below, summarizes exemplary substrates (i.e. material used to form support member 114) and bioadhesive molecule formulations that were grafted to polyurethane surfaces. It is to be appreciated that other suitable materials such as silicone or a combination thereof could be used, as previously discussed. Other types of reaction chemistries also exist. In the first formulation (PU-Dex-CHO), for example, polyurethane (PU) is used in support member 114, dextran (Dex) is the linking material, and -(aldehyde) (CHO) is the bioadhesive molecule. Other exemplary bioadhesive molecules include NH2, NH2-glutaraldehyde, polyacryl-NHS, NH2-star-NHS, Dextran-aldehyde, polyacryl-NHS with roughened surface, etc.
There are numerous ways in which a lead can be delivered and adhered to tissue. Referring to
The cover 250 is preferably sealed around and/or on top of the bioreactive layer 244. With respect to
The bioreactive layer 244 can be substantially sealed between the cover 250 and the first surface 224a by an effective, releasable seal, thus allowing the removal of the cover 250 in order to attach the support member 114 to the tissue site. For example, the cover 250 can be thermally sealed about the bioreactive layer 244, such as, for example, in the case of a cover 250 comprising a wax paper. In other embodiments, the cover 250 can be mechanically sealed against the bioadhesive material. In one or more embodiments, pressure can be used to mechanically seal cover 250 to the bioadhesive material.
Referring again to
In some cases physicians have located the preferred tissue site using a lead without an attached bioadesive material, removed the lead from the tissue site to apply the off-the-shelf bioadesive material to the lead and/or the tissue site, and then attached the lead to the tissue site. Such a procedure can be managed more easily in a general thoracic surgery in which the heart is exposed than in a limited access procedure such as a thoracoscopy. Leads 200, 230 can facilitate a less invasive implantation compared to conventional passive fixation devices. For example, the support member 114 is small enough in some embodiments to be implanted percutaneously through a small incision or trocar. The cover 250 allows the physician to insert the lead through the small incision and guide it to a tissue site without the bioreactive layer 244 bonding to, for example, a trocar wall or tissue along the route to the tissue site. The physician can then remove the cover 250 proximate the tissue site for attachment.
As
The tether 260 provides an unobtrusive and uncomplicated way to remove the cover 250 without needing to insert and manipulate additional instruments through a limited incision, thus allowing, for example, a smaller incision and/or trocar or thoracoscopy introducer, and potentially less scarring and post-operative pain for the patient. To facilitate removal, the tether 260 can be coupled to the cover 250 in a manner that allows the cover to be removed by simply pulling the tether out through the incision in a direction away from the support member 114. For example, in one embodiment, the cover 250 can comprise a cover proximal portion 262 and a cover distal portion 264. The cover 250 is preferably disposed on the bioreactive layer 244 with the cover proximal portion 262 proximate the lead body distal end 107. In other words, the cover proximal portion 262 is located between the cover distal portion 264 and the lead body distal end 107. The tether 260 can be coupled to the cover distal portion 264. When the tether is pulled away from the support member 114 in a direction along the lead body 212, the cover distal portion 264 is peeled back across the cover proximal portion 262 until the entire cover 250 is removed. The tether 260 and the cover 250 can then be pulled gently through the incision and removed from the body.
Referring to
Lead 270 can be delivered to a predetermined tissue site, for example, within the right atrium or ventricle. Once adjacent the desired tissue site, the tether 292 can be gently pulled to break and to remove the cover 290 and expose the bioreactive material specifically developed for application in the bloodstream/heart 286. The support member 276 can then be fixed to the tissue site and the cover 290 and the tether 292 removed from the body. In an alternate embodiment, the lead is delivered with a steerable catheter which covers and protects the bioreactive material in addition to or in place of the cover 290.
Numerous alternatives exist to the embodiments described herein. For example, although
Furthermore, the bioreactive material 244 is not limited to the annular shape depicted, but may be disposed on the first surface 224a in a number of suitable shapes and configurations in order to securely attach the support member 114 to a desired tissue site. In addition, one or more electrodes and conductors can be attached to the support member 114 in a variety of locations. As just one example, the support member 114 may have concentric ring and/or tip electrodes with the bioreactive material 244 attached to the first surface 224a in between and/or outside the electrodes.
Additionally, as can be seen in
Moreover, while one or more embodiments have been described such that the bioreactive adhesion layer 248 is formed over the first surface 224a of support member 114, it should be appreciated that the bioreactive adhesion layer 248 can also be formed solely over second surface 224b. Additionally, in one or more embodiments, bioreactive adhesion layer 248 can be formed over first and second surfaces 224a-b.
Although the present invention has been described in considerable detail with reference to certain disclosed embodiments, the disclosed embodiments are presented for purposes of illustration and not limitation and other embodiments of the invention are possible. It will be appreciated that various changes, adaptations, and modifications may be made without departing from the spirit of the invention and the scope of the appended claims.
This application claims the benefit of U.S. Provisional Application No. 61/047,837, filed on Apr. 25, 2008. The disclosure of the above application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4282886 | King | Aug 1981 | A |
4541440 | Parsonnet | Sep 1985 | A |
4768523 | Cahalan et al. | Sep 1988 | A |
5044374 | Lindemans et al. | Sep 1991 | A |
5052392 | Schullmeyer et al. | Oct 1991 | A |
5476500 | Fain et al. | Dec 1995 | A |
5693081 | Fain et al. | Dec 1997 | A |
5897585 | Williams | Apr 1999 | A |
6123723 | Konya et al. | Sep 2000 | A |
6159531 | Dang et al. | Dec 2000 | A |
6463335 | Munch et al. | Oct 2002 | B1 |
6718212 | Parry et al. | Apr 2004 | B2 |
7085606 | Flach et al. | Aug 2006 | B2 |
7099718 | Thacker et al. | Aug 2006 | B1 |
20040199237 | Mills et al. | Oct 2004 | A1 |
20090170124 | Campbell | Jul 2009 | A1 |
Number | Date | Country |
---|---|---|
WO 2006105161 | Oct 2006 | WO |
Entry |
---|
(PCT/US2009/040638) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, Jun. 7, 2009. |
Number | Date | Country | |
---|---|---|---|
20090270962 A1 | Oct 2009 | US |
Number | Date | Country | |
---|---|---|---|
61047837 | Apr 2008 | US |