1. Field of the Invention
This invention relates generally to passive infrared (PIR) switches.
2. Description of the Prior Art
A passive infrared (PIR) occupancy switch is a device that can be used to replace a single-pole-single-throw (SPST) switch including standard mechanical wall switches found in many homes and businesses. The PIR switch detects infrared energy due to motion in an area. Control circuitry in the PIR switch operates to open or close contacts of a relay to disconnect or connect power to a load, such as a lighting circuit, based on the level of infrared energy detected.
The PIR switch can be used in a two-wire system. That is, power can be received from a phase line and can be coupled through the relay contacts to a phase load line. A neutral (or return) wire may not be available. When the switching relay contacts are closed, the phase line and phase load lines are connected to provide power to the load. There is no voltage between the phase and the load lines. Thus, power between the phase line and phase load lines is not available to drive the PIR control circuitry when the relay contacts are closed because the relay contacts short circuit the control circuitry.
Power for the control circuitry can be provided between the phase line wire and ground. Safety considerations can limit the amount of current that may be drawn between the phase line wire and ground. Two-wire electrical control devices, other than PIRs, that switch power across a load when energized may have similar power considerations. That is, when the switched contacts are in a low impedance state as occurs when the relay contacts are closed, the voltage across the device drops from an alternating current (AC) line voltage to almost zero. Thus, when the control device is ON (energized), no power is available to drive the switching control circuitry.
One solution utilizes a technique whereby a small amount of current is purposely leaked to ground to drive the control circuitry when power is switched to the load. The switching control circuitry, if designed to draw only a small amount of current (compared to the load circuitry), can derive the power it needs to operate from this ground leakage current. When leakage current is used to operate switching/control circuitry, Underwriters Laboratory (UL) requires that the current not exceed a value of 0.5 milliampere (mA) (500 microamperes (μA)). Circuits which satisfy this limitation can be difficult to implement.
U.S. Pat. No. 5,786,644 ('644) assigned to Leviton Manufacturing Co., Inc., assignee of the present disclosure, discloses the use of an energy storage means such as a capacitor which uses ground leakage current to operate switching control circuitry of a passive infrared switch. Referring to FIG. 1 of '644, there is shown a two wire sensor 10 which includes switching means 18 settable to one of a high (e.g., open circuit) and a low (e.g., short circuit) impedance state in response to a switching signal from a PIR control 16 for connecting/disconnecting a source of AC power to/from an electrical load 22 such as a light. The switching means 18 is located in a main conduction path which provides power between the AC source and the load. The switching means is connected between a first leg of the AC source and a first terminal of the electrical load. The second terminal of the electrical load is connected to a second leg of the AC source. An energy storage means 14 for storing an electrical charge is electrically coupled to the first leg of the AC source and to the first terminal of the electrical load. A charge control means 12 is connected between the switching means and the energy storage means to regulate the voltage across the energy storage means and, therefore, the current flowing therein. When the contact in the switching means 18 is open, that is, in a non-conductive state, substantially no power is delivered to the load and substantially all of the AC source voltage appears across the circuit 10 because it has a relatively high impedance relative to the load 22. At this time leakage current is provided to and is stored in the energy storage device. When the contacts are closed, the power required to drive the PIR control circuit is obtained from the energy storage means. Circuitry for controlling the switching means is coupled across the energy storage means 14 and responds to detection (or sensing) of the monitored condition by generating the switching signal.
Techniques and methods are disclosed for a passive infrared (PIR) wall switch that is operable in a two-wire circuit to control power to a load. The PIR wall switch can include one or more PIR sensors with a low current two stage amplifier-filter. The PIR sensor(s) monitor infrared (IR) radiation. The amplifier can provide a pulse signal when an IR radiation level has changed, for example, because of motion in a surrounding area. Power for control circuitry of the PIR switch may be derived from a ground leakage type power supply, which can supply phase wire leakage current to ground of less than 0.5 milliampere.
The passive infrared switch can be used in a two wire system and includes a relay switch coupled to control the flow of power to a load. A passive infrared control circuit can be coupled to operate the relay switch upon detecting a change of infrared radiation. A power supply is coupled to supply a current not greater than 0.5 mA to the passive infrared control circuit.
Some of the implementations of the disclosed techniques may include one or more of the following advantages. The PIR wall switch can continue to operate in a two-wire system that supplies phase current to a load wire when the switch is energized (closed). The PIR switch can use a power supply, which supplies a current no greater than 0.5 mA to the PIR circuitry, which may be drawn from the phase wire to ground. The 0.5 mA limit can avoid a potentially hazardous condition.
The above-stated and other advantages of the invention will become apparent from the following detailed description when taken with the accompanying drawing. It will be understood, however, that the drawing is for the purpose of illustration and is not to be construed as defining the scope or limits of the invention, reference being had for the latter purpose to the claims appended hereto.
Features and advantages of the present invention will be more readily understood upon consideration of the following detailed description of a preferred embodiment of the invention when taken in conjunction with the following drawings wherein like parts are represented by similar reference numbers.
Referring to
PIR control circuit 34, is electrically coupled by conductor 50 to control the operation of relay switch 32 and is connected to the AC power terminals 38, 40. The PIR control circuit monitors an area for a predetermined condition and generates a signal when the predetermined condition occurs. The sensor of the PIR control circuit can be preferably a passive infrared (PIR) control sensor to provide an occupancy sensing function. The sensor comprises conventional circuitry well known to those skilled in the art and the state of the relay switch is defined by the sensor in accordance with the amount of infrared energy detected by the PIR.
When the contact in relay switch 32 is in its open state, (that is, a non-conductive state), substantially no power is delivered to the load 48. A majority of the AC source voltage on conductors 44, 46 appears across the contacts 38, 40 of the wall switch 30 while the relay switch 32 is non-conductive because it has a relatively high impedance relative to the load 48. However, current is provided both to the ground leakage type of power supply 36 and the PIR control circuit 34 by conductor 51, which is coupled to terminals 38, 40.
The ground leakage type of power supply 36 has input terminals connected to the phase conductor 44 by terminal 38 and the neutral conductor 46 by terminal 40 of the wall switch. A terminal 56 of the ground leakage type of power supply 36 is connected to provide power to the PIR control circuit 34, and terminal 58 of the ground leakage type power supply is connected to the building ground which can be the system ground or reference point for the switch circuitry. Ground leakage type of power supply 36 is more fully disclosed in
Referring to
The DC level on conductor 70 is applied to two resistors R25 and R26 coupled in series to limit the current applied to the circuit and bias the base B of a transistor Q1. The base B of transistor Q1 also is connected to the cathode of a zener diode Z1. Transistor Q1 acts as an emitter follower and the emitter E of transistor Q1 is connected to the base B of a transistor Q2. Collectors C of transistors Q1 and Q2 are connected to conductor 70. The output at emitter E of transistor Q2 is coupled to a resistor R27. The transistors Q1 and Q2 are connected as a Darlington amplifier or cascaded emitter followers. Resistors R25 and R26 limit the voltage applied to zener diode Z1 to prevent burnout and limit current to the load. The output to the emitter E of transistor Q2 is applied to a first end of the output resistor R27 and a second end of resistor R27 is connected to the cathode of a zener diode Z2 and to ground 58 through a bypass capacitor C29. The use of the bypass capacitor C29 is optional. The anode of zener diode Z2 is coupled to the circuit ground 58.
The ground leakage type power supply 36 regulates the current through the resistor R27. The zener diode Z1 and the base B to emitter E voltage drop of transistors Q1 and Q2 determines the voltage across R27. The voltage on terminal 56 from the emitter E of transistor Q2 to ground 58 will be fixed.
As the input voltage at terminals 38 and 42 by conductors 44 and 46 to the bridge 60 increases above voltage Ve2, the extra voltage will be dropped across the collector C to emitter E of transistor Q2, this is voltage Vce2. Therefore, the same current will flow through resistor R27 for input voltages in the range of 102 to 400 volts. This allows the use of one terminal for phase power input and one terminal for the AC neutral to the ground leakage type power supply 36. The voltage applied to resistor R27 and which is on terminal 56 is used as an input to the PIR control circuit to power the Control circuitry. The ground leakage type power supply 36 limits the supply current to the PIR control circuit to 0.5 ma.
To limit the leakage current to this level, current is leaked from the input conductor 44 to the neutral line 45 or circuit ground, which can be the building ground. Ground point 58 is the system ground or reference point for the switchable circuitry. The acceptable level of leakage current is 0.5 mA and the ground leakage type power supply limits the current regardless of the load applied to it.
Referring to
While there have been shown and described and pointed out the fundamental features of the invention as applied to the preferred embodiment, as is presently contemplated for carrying them out, it will be understood that various omissions and substitutions and changes in the form and details of the device described and illustrated and in its operation may be made by those skilled in the art, without departing from the spirit of the invention.
This application claims the benefit of the filing date of a provisional application having Ser. No. 60/591,274, which was filed on Jul. 27, 2004.
Number | Date | Country | |
---|---|---|---|
60591274 | Jul 2004 | US |