The present invention generally concerns latching devices (i.e., latches) and, more particularly, magnetic latches.
The most common element designed to provide ON/OFF switching action when activated magnetically is a reed switch. As shown in
In order to polarize the beams in magnetically opposite states (to cause attraction between the beams), the field around the beams should be highly non-uniform. This is usually achieved by placing a magnetically hard dipole magnet in the proximity of the switch. The hardness of the magnet is defined as its resistance to re-magnetization (high coercive force, Hc, and high remnant magnetization, Mr). The beams of the switch are, in turn, very soft magnetically, i.e. they have very low Hc and very low Mr. This condition insures consistent and linear mechanical action, and prevents self-latching.
Magnetic latching devices (or “magnetic relays”) commonly include a reed switch. Such latching devices also typically include secondary solenoids which provide a field sufficient to retain the beams of the reed switch in the closed position, but insufficient to close the beams without an external field. Because the solenoids, however, require non-zero electrical current (or power), in circumstances when no such current can be provided, or it proves to be an excessive drain on a power supply, such magnetic latches are not practical for many applications. Accordingly, there exists a need for a passive magnetic latch.
In one general aspect, embodiments of the present invention are directed to a passive magnetic latch. The latch includes a magnetically-actuated switch and a hard, non-linear biasing magnet. The magnetically-actuated switch includes components that, when polarized, cause the magnetically-actuated switch to transition from a first state (such as open) to a second state (such as closed). According to various embodiments, the magnetically-actuated switch may be a reed switch with at least two soft magnetic beams that, when polarized, transition from the first state to the second state. The biasing magnet is positioned proximate to the reed switch such that when the magnetization of the biasing magnet is changed by an external effect to thereby induce a modified magnetic field from the biasing magnet, the modified magnetic field polarizes the beams of the reed switch such that the reed switch transitions from the first state to the second state and the reed switch remains in the second state after the external effect is removed. A second external effect may be used to change the magnetization of the biasing magnet causing de-polarization of the beams of the reed switch such that the switch transitions from the second state back to the first state and remains in the first state after the second external effect is removed. In this way, the passive magnetic latch may operate as a remote ON/OFF switch that is responsive to the external effects, which do not need to physically contact the biasing magnet, but merely need to suitably alter the magnetization of the biasing magnet.
The biasing magnet may be positioned a fixed distance from the magnetically-actuated (e.g., reed) switch. According to various implementations, the biasing magnet is directly connected to the magnetically-actuated switch by an adhesive. For example, the biasing magnet may be directly affixed to a glass cover of a reed switch with the adhesive. Also, the magnetically-actuated switch and the biasing magnet may be mounted on a substrate. Further, according to yet other embodiments, the magnetically-actuated switch and the biasing magnet may be fabricated as a monolithic structure.
The shape, structure, dimensions and position of the biasing magnet may be chosen to satisfy dimensional requirements as well as maximize or otherwise increase the sensitivity of the reed switch to the magnetization of the biasing magnet. According to one embodiment, the biasing magnet may be shaped such that it has multiple equivalent anisotropy axes (e.g., cubical or spherical). It may also be positioned, for example, at an axial end of the magnetically-actuated switch or adjacent to a mid-section portion of the magnetically-actuated switch.
The external effects on the biasing magnet may change, for example, the magnitude of the magnetization of the biasing magnet and/or the direction of the magnetization of the biasing magnet. According to various embodiments, the sources of the external effects may be external magnets, such as electromagnets or permanent magnets, that affect the magnetization of the biasing magnet. According to other embodiments, the sources of the external effects may be thermal sources capable of changing the fundamental properties of the biasing magnet material such as heating the biasing magnet above its Curie temperature.
Various embodiments of the present invention are described herein by way of example in connection with the following figures, wherein:
According to other embodiments, the reed switch 42 may be a normally-closed switch. In that case, when a suitable polarizing magnetic field is applied, the beams polarize such that they repel and therefore break a mechanical/electrical contact between the beams, i.e., transition from a closed state to an open state. The beams 46 remain in the open state until depolarized. According to other embodiments, the magnetically-actuated switch 42 may assume other configurations, such as, for example, configurations that include three soft magnetic components.
The magnetically-actuated switch 42 will be described below as being a reed switch 42, although it should be recognized that any magnetically-actuated switch may be used. In addition, the reed switch 42 may or may not include a glass cover 48 enclosing the beams 46.
The biasing magnet 44 may be positioned proximate to and a fixed distance from the reed switch 42 such that the beams 46 are sensitive to the magnetization of the biasing magnet 44. For example, as shown in
The biasing magnet 44 is made of a hard (or permanent), non-linear ferromagnetic material, such as iron, nickel, cobalt, alloys thereof (including Alcino alloys), SmCo based alloys, NdFeB based alloys, hard ferrites such as strontium ferrite, hard magnetic polymer composites or combinations of these materials. The biasing magnet 44 may produce a non-uniform magnetic field. The field may be insufficient to polarize the beams 46 of the reed switch 42 in the absence of an external effect that changes the magnetization of the biasing magnet 44. As such, if the reed switch 42 is a normally-open switch, the contact between the beams 46 will remain open until the biasing magnet 44 is appropriately magnetized by the external effect.
The non-linearity of the biasing magnet 44 is exhibited in its hysteretic behavior: the biasing magnet 44 retains a non-zero magnetization in the absence of an external field or other external effect on the magnetization of the biasing magnet 44, and requires the application of a non-zero external field to either eliminate or reduce the macroscopic magnetization thereof, or to rotate the direction of the magnetization of the biasing magnet 44. The hysteresis of the biasing magnet 44 is affected by the structure and shape of the biasing magnet 44. The internal structure, including the granularity, defines the intrinsic direction of the magnetic anisotropy (i.e., preferred direction of magnetization), the saturated magnetic moment, and the remnant magnetization of the biasing magnet 44. The shape of the biasing magnet 44 defines its shape anisotropy, i.e., the preferred direction of the remnant magnetization due to the demagnetization in its own field.
In operation, the initial magnetization of the biasing magnet 44, in the absence of an external effect on the magnetization thereof, may be insufficient to cause the beams 46 of the reed switch to polarize and cause the reed switch 42 to change states (e.g., open-to-closed or closed-to-open). When a sufficient external effect (either uniform or non-uniform), however, is applied to the biasing magnet 44, the magnetization of the biasing magnet 44 is changed. The change may be, for example, a change in the magnitude of the magnetization and/or a change in the direction of magnetization with respect to the axis of the switch 42, and the change in magnetization of the biasing magnet 44 causes the new, or modified, magnetic field from the biasing magnet 44 to be sufficient to polarize the beams 46 to change the state of the reed switch 42, even after the external effect is removed. Therefore, since only the magnetization state of the biasing magnet 44 affects the state of the switch 42, the effect of the external field on the latching device 40 is transitory.
The external effect may be, for example, a magnetic field produced by a magnet 50 placed sufficiently near to the biasing magnet 44, shown in
A second external effect may be used to transition the switch 42 from the second state back to the first state. In order to accomplish this, the second external effect may again change the magnetization of the biasing magnet 44 (either by changing the magnitude and/or direction of the magnetization) to cause the beams 46 to de-polarize, thereby causing the beams 46 to revert back to the first state. For example, for a normally-open switch, the change in magnetization of the biasing magnet 44 caused by the second external effect may cause the beams 46 to repel each other such that the switch 42 transitions to an open state. For a normally-closed switch, the change in magnetization of the biasing magnet 44 caused by the second external effect may cause the beams 46 to attract each other such that the switch 42 transitions to a closed open state.
Like the first external effect, the second external effect may be produced by an external magnetic field produced by an external magnet (not shown), such as either a permanent magnet or an electromagnet, and/or thermal flow from an external thermal source (not shown) that is sufficient to heat or cool the biasing magnet 44 to its critical temperature (Curie temperature or compensation temperature).
The biasing magnet 44 may be of comparable size to the reed switch 42. In order to increase the sensitivity of the reed switch 42 to the biasing magnet 44, the biasing magnet 44 may be positioned in a location where the switch 42 shows maximum sensitivity to the field of the biasing magnet 44. This location may vary depending on the type and model of reed switch 42 used. For example, reed switches that are less sensitive may require larger biasing magnets placed closer to the reed switch, and more sensitive reed switches may permit the use of smaller biasing magnets positioned further from the reed switch. Also, the biasing magnet 44 may be fabricated to be intrinsically isotropic and shaped to avoid strong shape anisotropy. For example, the biasing magnet 44 may be shaped such that it has multiple equivalent anisotropy axes. For example, the biasing magnet 44 may be cubical or spherical in shape. The biasing magnet 44 may be positioned at one axial end of the reed switch 42, as shown in
In other embodiments, as shown in
In commercial applications, the magnetic latch device 40 may be produced, for example, as a combination of the biasing magnet 44 and the reed switch 42 (as shown, for example, in
The present invention is also directed to methods of remotely activating (or actuating) a magnetically-actuated (e.g., reed) switch 42. According to various embodiments, the method includes positioning a hard, non-linear biasing magnet 44 proximate to the reed switch 42 such that the reed switch is sensitive to the magnetization of the biasing magnet 44. The method also includes changing the magnetization of the biasing magnet 44 with an external effect such that when the magnetization of the biasing magnet 44 is changed by the external effect to thereby induce a modified magnetic field from the biasing magnet 44, the modified magnetic field polarizes the beams 46 of the reed switch 42 such that the reed switch 42 transitions from a first state to a second state and the reed switch 42 remains in the second state after the external effect is removed. Changing the magnetization of the biasing magnet may include changing the magnitude and/or the direction of the magnetization of the biasing magnet 44.
The method may further include changing the magnetization of the biasing magnet 44 with a second external effect such that the magnetization of the biasing magnet 44 causes the beams 46 to depolarize and thereby revert back to the first state. Again, changing the magnetization of the biasing magnet 44 with the second external effect may include changing the magnitude and/or the direction of the magnetization of the biasing magnet 44
While several embodiments of the invention have been described herein, it should be apparent, that various modifications, alterations and adaptations to those embodiments may occur to persons skilled in the art with the attainment of some or all of the advantages of the present invention. For example, different materials for some of the components may be used that those describes above. It is therefore intended to cover all such modifications, alterations and adaptations without departing from the scope and spirit of the present invention as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3440583 | Woodhead | Apr 1969 | A |
3489971 | Robert | Jan 1970 | A |
3559124 | Posey | Jan 1971 | A |
3967224 | Seeley | Jun 1976 | A |
4038620 | Shlesinger et al. | Jul 1977 | A |
4063203 | Fujiwara et al. | Dec 1977 | A |
4117291 | Gebauer | Sep 1978 | A |
4165935 | Bongort et al. | Aug 1979 | A |
4320370 | Itou et al. | Mar 1982 | A |
4943791 | Holce et al. | Jul 1990 | A |
5194706 | Reneau | Mar 1993 | A |
5438869 | Mueller et al. | Aug 1995 | A |
5811896 | Grad | Sep 1998 | A |
5847632 | Oshima | Dec 1998 | A |
5883556 | Shutes | Mar 1999 | A |
6794964 | Sood et al. | Sep 2004 | B2 |
20020149454 | Nishikawa | Oct 2002 | A1 |
Number | Date | Country |
---|---|---|
2457009 | May 1979 | FR |
Number | Date | Country | |
---|---|---|---|
20060114086 A1 | Jun 2006 | US |