This invention relates to passive optical network apparatus and methods of installing and upgrading the apparatus.
A Passive Optical Network (PON) is a type of access network of a communications system. A PON typically has a central office at which apparatus called an Optical Line Termination (OLT) interfaces with a metro or carrier network. An arrangement of optical fibres and splitters connect the OLT with multiple Optical Network Units (ONU). In a Fibre To The Home (FTTH) system an ONU is located at a subscriber premises while in a Fibre To The Curb (FTTC) system an ONU is located at a roadside cabinet.
Existing PONs are based on Asynchronous Transfer Mode Passive Optical Network (APON), Broadband PON (BPON), Gigagbit PON (GPON) and Ethernet PON (EPON) technologies as standardised by the International Telecommunications Union (ITU-T) and Institute of Electrical and Electronic Engineers (IEEE). Many of these PON technologies use some form of time division multiple access technique, with the capacity of a wavelength channel being shared in a time-divided manner across multiple ONUs.
More recently, Wavelength Division Multiplexed Passive Optical Networks (WDM PON) have been proposed. A WDM PON supports multiple wavelength channels. A separate wavelength can be allocated for communication between the Optical Network Unit (OLT) and each ONU in the PON.
In open markets, such as Europe, there is a requirement that a subscriber should be able to choose an operator to provide their communications service. This complicates the network equipment that must be provided, as it can require multiple operators to each install OLT equipment at a central office.
An aspect of the present invention provides an apparatus for a node of a wavelength division multiplexed optical access network comprising:
Such an apparatus allows a full, physical layer, “unbundling” of the capacity of the wavelength division multiplexed passive optical network (WDM-PON), with a plurality of operators able to access any optical network unit or subscriber in a point-to-point manner. Typically, there will be a single wavelength channel for communication with each optical network unit, or a pair of wavelength channels for communication with each optical network unit.
Advantageously, the wavelength division multiplexing optical line termination apparatus comprises a plurality of optical interfaces, each for interfacing with a plurality of remote optical network units in a different passive optical network using a plurality of wavelength channels, there being a plurality of electrical first ports corresponding to the optical wavelength channels used in each optical interface.
Advantageously, the apparatus is formed as a plurality of modules. Each of the modules comprises a wavelength division multiplexing optical line termination unit which provides one of the optical interfaces and has a plurality of electrical first ports corresponding to the optical wavelength channels used in that optical interface.
Advantageously, each of the modules further comprises an electrical switching matrix unit for interconnecting the first ports of the wavelength division multiplexing optical line termination unit in that module to the second ports.
A modular form of the apparatus allows a “pay as you grow” model, where operators only install as much apparatus as required to serve the number of subscribers requiring service. The optical interface of each module is optically isolated from the optical interface of other modules. This has an advantage of allowing a common set of wavelength channels to be reused in some, or all, of the optical interfaces and reduces the cost of the apparatus.
Each module can be a single physical unit, such as a plug-in card, or a plurality of physical units or cards which are intended to work together to provide the required functionality.
Another aspect of the present invention provides a method of installing an optical access network comprising installing apparatus at a node as defined above and, for each optical network unit of the passive optical network requiring connection, configuring the switching matrix to interconnect a first port, corresponding to an optical wavelength channel used by that optical network unit, and a second port corresponding to a required operator network for that optical network unit.
Another aspect of the present invention provides a method of upgrading an optical access network comprising apparatus at a node as defined above, with the switching matrix configured to interconnect a first port, corresponding an optical wavelength channel used by an optical network unit, and a second port corresponding to a first operator network for that optical network unit, the method comprising reconfiguring the switching matrix to interconnect the said first port, corresponding to the optical wavelength channel used by the optical network unit, and another second port corresponding to a different required operator network for that optical network unit.
Embodiments of the invention will be described, by way of example only, with reference to the accompanying drawings in which:
Central office 20 interfaces with metro or core communication networks 40, 41, 42 belonging to different operators. Operators 40-42 are different telco providers who can compete to offer a communications service to subscribers served by the PONs 10. One such network 40 is shown in more detail in
In a wavelength division multiplexed passive optical network (WDM-PON) multiple wavelength channels, called lambdas λ, are allocated for communication between the Central Office 20 and ONUs 11. In an advantageous scheme, a single lambda is allocated for communication between the Central Office 20 and a single ONU 11. A set of wavelength channels are carried between the OLT and remote node 12 on a common fibre 13, and then passively demultiplexed at the remote node 12 onto a set of fibres 14. Each fibre 14 carries a single wavelength channel to an ONU 11. Bi-directional communication can be achieved in various ways, such as by the use of two wavelength channels to each ONU (i.e. one wavelength channel for downstream communication and a different wavelength channel for upstream communication) or by time-division multiplexed use of a single wavelength channel.
OLT 22 supports an optical interface 23 with the set of ONUs 11 in a PON 10. OLT 22 connects to fibre 13 and transmits/receives on a set of optical wavelength channels. Each optical wavelength channel is terminated at the Optical Line Termination unit (OLT) 22 at the CO 20. The OLT 22 also has a set of electrical ports 24. Each port 24 is an input or output path to an individual one of the ONUs 11. Typically, there is a 1:1 relationship between ports 24 and ONUs 11. OLT 22 has an optical transmitter which modulates an optical source using an electrical signal representing data to be transmitted, received from a port 24. The OLT 22 also has an optical receiver which detects a data signal carried by the optical wavelength channel and outputs the data as an electrical signal to a port 24. Typically, data is carried over a wavelength channel by phase, frequency or intensity modulation of an optical source. In
The overall switching matrix 30 of the CO 20 connects to the electrical ports 24 of the OLT 22 and has a set of ports for connecting with each of the operator networks 40-42. The switching matrix 30 allows interconnections between any port 24, representing an individual wavelength channel used by an ONU 11, and any operator network 40-42. The switching matrix 30 routes traffic between a particular operator and all ONUs 11 requiring service from that operator. A set of ports 33 are shown connecting with an interface 34 to the incumbent operator network 40. Another set of ports of switching matrix 30 connect with an interface to the operator OLO1 and a further set of ports of switching matrix 30 connect with an interface to the operator OLO2. The switching matrix 30 can be realised as a single switching stage or, advantageously, as multiple sequential switching stages shown in
A controller 31 configures the switching matrix 30 in response to external input signals 33 which specify what connectivity is required from the CO, e.g. ONUx requires service from OLO1, ONUy requires service from OLO2. Controller 31 outputs control signals 32 to configure the switching matrix to provide the required connectivity.
Interface apparatus 34 is provided for each operator network 40-42. Each operator 40-42 can make an individual decision as to how traffic is carried over their own network 40-42. Typically, an operator will use some form of multiplexing (aggregation) to combine the individual connections to/from for each ONU and may also use concentration (i.e. compression, or bit-rate reduction) to reduce the bit rate of individual connections, or the combined set of connections. Interface apparatus 34 can include apparatus which, in the direction of transport towards the operator network 40, multiplexes traffic (also called aggregation) and, optionally, concentrates traffic (i.e. compresses, or reduces the bit rate of the traffic). Interface apparatus 34 can also include apparatus which, for the direction of transport towards the CO 20, demultiplexes traffic and, optionally, de-concentrates traffic (i.e. decompresses, or increases the bit rate of the traffic). Interface apparatus 34 can be implemented as one or more line cards at the CO 20. An operator can increase the number and/or capacity of the line cards at the CO 20 as an increased number of ONUs 11 require service from that operator.
Traffic can be multiplexed, and optionally concentrated, in different ways in order to meet requirements needed from the incumbent or OLOs 40-42. Examples include:
Multiplex (aggregate) on lambda/user basis and send to the proper operator without any level of concentration. Different aggregation level could be feasible (e.g. 10 Gb links for 8 lambdas/users @1 G, 40 Gb/32 subs).
Multiplex (aggregate) for incumbent operator subscribers. Traffic can also be concentrated in the same node. Such traffic shall be ready to be transported by the incumbent optical packet metro.
Multiplex (aggregate) and also concentrated by the incumbent for a specific OLO. In this way, the OLO shall rely on incumbent transport service to carry its traffic towards the Operator Point of Presence (POP).
The overall switching matrix 30 of the CO 20, shown in
The switch in the module 25 is an electrical circuit switch, formed by smaller integrated Strictly Non Blocking (SNB) devices. The problem of rearranging a set of N inputs to a set of N outputs is about finding one of the possible permutations between any input port to any output port. In this scenario we have a group of K undifferentiated outputs, for example associated to an OLO, where for instance the output ports are partitioned taking into account a single OLO (K ports) and an incumbent (N-K ports). In this way the number of possible permutations will substantially decrease based on the partitioning of different OLOs plus the incumbent. It is not request to switch a specific user to a specific output, because it is enough to connect each input to one of the outputs assigned to the proper operator (incumbent or one of the OLO).
Each module 25 described in the embodiments can be a single physical unit, such as a plug-in card, or a plurality of physical units or cards (e.g. one card carrying the OLT unit 22, one card carrying the switching unit 30), which are intended to work together to provide OLT functionality for a number of ONUs 11 and switching functionality. Advantageously the module, or cards forming the module, are configured to plug in to an equipment rack at a CO 20. Advantageously, the OLT unit 220 comprises a card with optical components which are realised as integrated optics, to reduce the cost and physical size of the module. Even more advantageously, the integration of photonics and electronics (including the possibility of integrating photonic and electronic functions in the same “die”) can permit a single module which is significantly reduced in physical size. As explained above, the architecture presented here allows the same set of wavelength channels to be reused in each of PONs 10A, 10B, thereby allowing each OLT unit 220 to be identical.
The architecture described here provides wavelength unbundling. The possibility to route wavelength channels to various operators with a granularity of a single lambda is guaranteed by a rearrangeably non-blocking switch in order to permit to the operators to provide the requested services also to a small number of users. Each user has a virtual point-to-point wavelength based connection. The architecture also makes it possible to provide different data rates and/or different protocols to individual users, or groups of users (WDM-PON transparency). Each user can have a bandwidth of 1.25 GHz, although different per user bandwidth and port numbers can be applied. The links from the WDM-PON OLT 22, 220 to the switching matrix 30, 300 are purely electrical interfaces. This reduces the complexity and the implementation cost of the switch matrix.
Modifications and other embodiments of the disclosed invention will come to mind to one skilled in the art having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of this disclosure. Although specific terms may be employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
Number | Date | Country | Kind |
---|---|---|---|
09171553.2 | Sep 2009 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2009/063716 | 10/20/2009 | WO | 00 | 5/26/2012 |