The present invention relates to telecommunications networks, in general, and in particular to a passive test termination of an optical communication network.
Fiber-to-the-Home (FTTH) or Fiber-to-the-Business (FTTB) are becoming more popular, as they can provide a lot more bandwidth over longer distances than copper lines can do. There is, however, no mechanism available, comparable to the one used for copper lines, to test the optical line. In solutions known in the art an Optical Network Termination (ONT) is used for testing the optical line. However the ONT devices require power to communicate with the network side. If the fiber is broken, no communication is possible any more. However, the absence of communication with the ONT does not necessarily mean that the fiber is broken: the ONT could be defect or power can be down.
Hence, an improved optical network test termination would be advantageous and in particular one that is independent of external power supply.
Accordingly, the invention seeks to preferably mitigate, alleviate or eliminate one or more of the disadvantages mentioned above singly or in any combination.
According to a first aspect of the present invention, there is provided an optical test termination device for use in an optical network comprising a passive optical element and a first optical coupler and a second optical coupler for coupling the optical test termination device to an optical fiber. The passive optical element comprises an input for receiving a test signal from the network and an output for outputting a response signal towards the network an optical delay line and an optically controlled optical switch, wherein in response to the test signal the passive optical element is operable to output the response signal, which length is changed comparing to a length of the test signal.
According to a second aspect of the present invention, there is provided a communications network, wherein at least portion of the network is based on transmission of optical signals over optical fibers. The network comprises an optical test termination device having a passive optical element and a first optical coupler and a second optical coupler for coupling the optical test termination device to an optical fiber. The passive optical element comprises an input for receiving a test signal from the network and an output for outputting a response signal towards the network, an optical delay line and an optically controlled optical switch, wherein in response to the test signal the passive optical element is operable to output the response signal, which length is changed comparing to a length of the test signal.
According to a third aspect of the present invention, there is provided a method of testing a termination of an optical network comprising: transmitting a test signal from the network towards said termination of said optical network, receiving said test signal by a passive optical element connected to said termination, and, in response to said reception of said test signal, transmitting by said passive optical element a response signal towards the network, wherein said passive optical element comprises an optical delay line and an optically controlled optical switch and length of said response signal is changed comparing to a length of said test signal.
Further features of the present invention are as claimed in the dependent claims.
The present invention beneficially allows for:
The present invention will be understood and appreciated more fully from the following detailed description taken in conjunction with the drawings in which:
The term “passive optical element” herein below refers to an optical element, which does not require power supply for operation.
The term “downstream” herein below refers to a stream of data in the direction from the network to the subscriber.
The term “upstream” herein below refers to a stream of data in the direction from the subscriber to the network.
Referring to
In the embodiment of
In one embodiment at least one parameter of the response signal is in a non-linear relation to a corresponding parameter of the test signal. There are number of possible implementations of the non-linear relation. In one implementation the passive optical element 102 outputs a response signal which length is changed comparing to a length of the test signal.
With reference to
In operation, when an optical signal is split at point 306 part of the signal goes directly to an input port 308 of the optically controlled optical switch 304 and the other part goes to the control port 310 of the optically controlled optical switch 304 via the delay line 302. The optically controlled optical switch 304 works in a way that it breaks the line between its input 308 and output 312 ports if a control signal is received at the control port 310. If the delay line 302 has a delay parameter T the optical signal transmitted via the delay line 302 will trigger the optically controlled optical switch 304 T time after receiving the signal transmitted directly from split point 306 to the switch 304. In consequence, signals 402 with length shorter and equal than the delay parameter T will be transmitted via the switch 304 unaffected 404 and signals 406 with length longer than the delay parameter T will be trimmed to the length T 408. The parameters on the axes of
In an embodiment of the present invention the test signal transmitted by the network infrastructure is significantly longer than the delay parameter T and the response signal transmitted by the optical test termination device 100 comprising the passive optical element 102 will be characterized by its length equal T. If the network infrastructure receives in reply to the test signal a response signal that has time parameter T it indicates that the line to the subscriber functions properly. In turn, if the response signal is not received by the network infrastructure it indicates a fault on the line (the line is broken or bent).
In alternative embodiments the passive optical element 102 is adapted to change other parameters of the test signal.
In one embodiment the passive optical element 102 of the optical test termination device 100 outputs the response signal with light intensity which is in non-linear relation to light intensity of the test signal. In this embodiment the response signal is attenuated by a predefined percentage and if such attenuated response signal is received by the network infrastructure it indicates that the optical line to the subscriber operates properly.
In another embodiment the passive optical element 102 of the optical test termination device 100 outputs the response signal having a wavelength different from a wavelength of the test signal. In this embodiment the test signal is characterized by a certain wavelength and the passive optical element 102 shifts this certain wavelength by a predefined value. In consequence, if the network infrastructure receives a response signal that differs from the test signal only in the predefined wavelength shift it indicates that the optical line to the subscriber operates properly.
In yet another embodiment the passive optical element 102 of the optical test termination device 100 outputs the response signal, wherein a message carried by the response signal is different from a message carried by the test signal.
According to a second aspect of the present invention a communications network is defined. In one embodiment at least portion of the network is based on transmission of optical signals over optical fibers 108, 110, 202. It is clear for those specialized in the art that today's communications networks are not based on only one physical medium. On the contrary, the communications networks are combinations of physical links based on fiber optics, copper cables and/or radio links. The selection of the physical medium is based on bandwidth, quality and technical requirements (e.g. radio links are deployed is situations when it is not possible or not economically feasible to build cable or fiber optics infrastructure). The communications network in the present embodiment comprises an optical test termination device 100 having a passive optical element 102 and a first optical coupler 104 and a second optical coupler 106 for coupling the optical test termination device 100 to an optical fiber 108, 110. Said passive optical element 102 comprises an input for receiving a test signal from the network and an output for outputting a response signal towards the network. To avoid situation in which the network infrastructure makes false assessment the response signal differs from said test signal.
With reference to
With reference to
In one embodiment, when the communications network operates in a single fiber mode and the single fiber operation is based on wavelength separation of up- and downstreams, the communications network comprises on the network side a receiver adapted to receive response signals and normal operation signals. Alternatively the communications network comprises on the network side a splitter for separation of the response signals from the normal operation signals and a first receiver for receiving said response signals and a second receiver for receiving said normal operation signals. Only in a single fiber mode there could be necessary to have two receivers for the two wavelengths. In dual fiber mode, there is usually only one wavelength, the same for upstream and downstream. Therefore there is no chance to separate test and normal signal on the receiver of the network end, as both are the same wavelength. It is, however, not necessary, because the test would have to be carried out during non-operation time (during operation, when everything operates properly, there is no real need to have a detection mechanism that says the line is still there).
With reference to
In yet another embodiment if the passive optical element 102 has a short time to switch the optical path off, but a relatively long time to switch it on again, no light will come out of the element during normal operation because light enters the element frequently enough to keep the optically controlled optical switch 304 in an “off position”. As an example a dual fiber operation will be considered. In a dual fiber mode operation both the normal operation signal and the response signal from the optical test termination device 100 add up to sort of disturbed signal transmitted towards the network side. Therefore to avoid interference between the normal operation signal and the response signal causing deterioration of the signal transmitted towards the network the return path of the optical test termination device 100 should be switched off during normal operation. As outlined above the return path is not necessary during normal operation. This can be done using an electrical switch as explained in the previous embodiment, or in a passive way. In description of this embodiment it is explained how the optically controlled optical switch 304 may carry out this by itself without an additional electrically switched optical switch if it takes a short time to switch the optically controlled optical switch 304 off, and a longer time to switch it on again. During normal operation, the downstream will be modulated, i.e. light switched on and off at a high frequency. If the time it takes to switch this optical switch on again is relatively long compared to the modulation period, the switch would be switched off at the first signal, try to switch itself on again, but during that time the optically controlled optical switch 304 will be hit by the next signal and forced off again. This leads to a switch that is switched off all the time during normal operation. If a test of the line is required only the test signal is transmitted through the line. The test signal must be modulated in a way that that the optically controlled optical switch 304 is able to switch on and off in response to the test signals.
Number | Date | Country | Kind |
---|---|---|---|
0508825.7 | May 2005 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2006/061802 | 4/25/2006 | WO | 00 | 3/19/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/117311 | 11/9/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4300239 | Wakabayashi et al. | Nov 1981 | A |
4470685 | Tsunekawa et al. | Sep 1984 | A |
5019826 | de La Chapelle et al. | May 1991 | A |
5510925 | Suzuki et al. | Apr 1996 | A |
6414768 | Sakata et al. | Jul 2002 | B1 |
6483616 | Maddocks | Nov 2002 | B1 |
6766115 | Sorin et al. | Jul 2004 | B1 |
6947668 | Koeppen et al. | Sep 2005 | B1 |
7343094 | Kawahata | Mar 2008 | B2 |
7359635 | Helbing et al. | Apr 2008 | B2 |
7620319 | Krimmel | Nov 2009 | B2 |
20020089713 | Schwandner et al. | Jul 2002 | A1 |
20030011855 | Fujiwara | Jan 2003 | A1 |
20030198432 | Rosen et al. | Oct 2003 | A1 |
20040208503 | Shieh | Oct 2004 | A1 |
Number | Date | Country |
---|---|---|
0531047 | Mar 1993 | EP |
0784391 | Nov 2000 | EP |
2267792 | Dec 1993 | GB |
2403087 | Dec 2004 | GB |
55100759 | Jul 1980 | JP |
58123246 | Jul 1983 | JP |
60237736 | Nov 1985 | JP |
9186651 | Jul 1997 | JP |
2003309523 | Oct 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20080310837 A1 | Dec 2008 | US |