The disclosed system and method relate to missile tracking. More specifically, the disclosed system and method relate to tracking and intercept of a ballistic missile (BM).
In the engagement and intercept of a hostile ballistic missile (BM), a weapon system will typically track the ballistic missile objects using a ground-based radio frequency (RF) sensor and transmit track information to an intercepting missile for processing. The intercepting missile is typically equipped with an infrared (IR) sensor which is used to acquire and track the hostile ballistic missile objects as part of the engagement sequence.
Hostile ballistic missiles, however, can be expected to deploy decoy objects to conceal the warhead(s) and avoid tracking and interception. Multiple objects from one or more BM launch events may therefore be present in the IR sensor field of view (FOV). In order to select and guide to the targeted object, a correlation process takes place in order to relate the RF track information to the IR track information. However, uncertainties in both the RF and IR tracks, due at least in part to measurement noise and systematic errors can lead to degraded correlation performance. In addition, for certain intercept geometries, the objects observed by the IR sensor may appear close together in angle and be separated by unknown distances in range. Objects closely spaced within the IR sensor FOV relative to the magnitude of their uncertainties results in diminished resolvability. This brings about degraded correlation performance. The accuracy of the correlation process is important to the success of the intercept. Furthermore, determination of the object of interest drives missile guidance algorithms to complete the intercept. Cases where the object of interest is incorrectly determined may result in extremely degraded intercept performance.
In many cases, objects may be separated by significant distances in missile-to-object range. However, due to the “angles-only” nature of the IR sensor measurements, missile-to-object range is not directly available.
Prior art implementations of BM engagement systems rely on object separation within the IR sensor FOV to be above an identified threshold and do not account for missile-to-object range in their correlation processing. For cases with objects spaced closely in angle with respect to the IR sensor focal plane, complications may result.
Alternative systems and methods are desired.
An aspect of the present disclosure derives a 3-dimensional target position and velocity using 2-dimensional IR sensor angular measurements for objects travelling in a ballistic manner within the IR sensor's FOV. In one embodiment, the resulting 3-dimensional states are used to generate updated inputs for correlation and object selection, which may yield enhanced system performance. The selection of the target object is used to drive missile guidance algorithms and complete the intercept.
The details of the invention, both as to its structure and operation, may be obtained by a review of the accompanying drawings, in which like reference numerals refer to like parts, and in which:
It is to be understood that the figures and descriptions of the present invention have been simplified to illustrate elements that are relevant for a clear understanding of the present invention, while eliminating, for purposes of clarity, many other elements found in radar detection, tracking and engagement systems that employ RF and IR sensors. However, because such elements are well known in the art, and because they do not facilitate a better understanding of the present invention, a discussion of such elements is not provided herein. The disclosure herein is directed to all such variations and modifications known to those skilled in the art.
In the following detailed description, reference is made to the accompanying drawings that show, by way of illustration, specific embodiments in which the invention may be practiced. It is to be understood that the various embodiments of the invention, although different, are not necessarily mutually exclusive. Furthermore, a particular feature, structure, or characteristic described herein in connection with one embodiment may be implemented within other embodiments without departing from the scope of the invention. In addition, it is to be understood that the location or arrangement of individual elements within each disclosed embodiment may be modified without departing from the scope of the invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims, appropriately interpreted, along with the full range of equivalents to which the claims are entitled. In the drawings, like numerals refer to the same or similar functionality throughout several views.
According to an aspect of the disclosure, a system based on multi-sensor discrimination and correlation is provided in which two dimensional (2D) IR sensor angular measurements are used to passively estimate missile to object range and three dimensional (3D) position and velocity for ballistic objects. The range derived provides an additional dimension of object separation for input to an RF/IR correlation algorithm, thereby resulting in improved object selection, higher probability for engagement success, mitigation of effects of challenging intercept geometries, and improved guidance and navigation of intercepting missiles.
Although the system of the disclosure is described in the context of a missile weapon system, it should be noted that the methodology could be used in other applications where passive range estimation of an object is needed, and/or where multiple probabilities from varying sensors or sources need to be combined in an “optimal” sense, factoring in the confidence levels of each source or sensor.
In
According to an aspect of the disclosure, two dimensional IR target states and covariance data from IR sensor 18ir along with RF target states and covariance data from RF sensor 12 are input to passive range estimation module 31 for determining object range data including three dimensional target states and three dimensional covariance data for input over path 31a to RF/IR correlation module 34. The passive range estimation data is used to provide enhanced correlation data for increased probability of correct object selection and guide-to-object navigation (in this case, the guide-to object is conical element 14o1). The interceptor missile is guided toward the selected object for the purpose of hitting and killing it using the kinetic energy of the collision, or at least bringing the interceptor missile within a range in which an explosive charge can be effectively used.
As shown in
It should be noted that the various processing blocks, namely blocks 31, 32, 34, 36, 38, and 44 of
Suitable computer program code may be provided for performing the functions described herein such as RF discrimination, IR discrimination, RF/IR correlation, probabilistic object selection and engagement, guidance and navigation, and other calculations illustrative of the type of functions which may be performed by computer program code embodiments of the present invention.
By way of non-limiting example only, interceptor missile 18 may include the functionality associated with processing blocks 31 (passive range estimation), 32 (IR discrimination), 34 (RF/IR correlation), 38 (object selection) and 44 (guidance/navigation) with communication paths 19, 22, 31a, 33, and 35 being typical electrical (including optical) communications media for communicating information within interceptor missile 18. RF data from the RF sensor 12 (including RF probability data from RF discriminator 36) located remotely from interceptor missile 18 may be communicated to interceptor missile 18 via one or more radio links (e.g. paths 13, 37).
In another embodiment, the RF sensor 12, IR sensor 18ir and corresponding processing blocks 31, 32, 34, 36, 38, 44 are located at interceptor missile 18 with corresponding electrical and/or optical communications pathways for establishing communications within interceptor missile 18, as is understood by one of ordinary skill in the art.
It is further understood that processing modules 31, 32, 34, 36, 38, 44 may be implemented using one or more corresponding computer processors (e.g. CPU) and associated data storage devices (e.g. memory). The data storage device(s) may store, for example, (i) a program (e.g., computer program code and/or a computer program product) adapted to or configured to direct the processor in accordance with embodiments of the present invention, and (ii) a database adapted to store information that may be utilized to store information required by the program. The program may be stored, for example, in a compressed, an uncompiled and/or an encrypted format, and may include computer program code. The instructions of the program may be read into a main memory of the processor from a non-transitory computer-readable medium other than the data storage device, such as from a ROM or from a RAM. While execution of sequences of instructions in the program causes the processor to perform the process steps described herein, hard-wired circuitry may be used in place of, or in combination with, software instructions for implementation of the processes of embodiments of the present invention. Thus, embodiments of the present invention are not limited to any specific combination of hardware and software. The computer program code required to implement the functions described herein can be developed by a person of ordinary skill in the art, and is not described in detail herein. The term “computer-readable medium” as used herein refers to any medium that provides or participates in providing instructions to the processor of the computing device (or any other processor of a device described herein) for execution. Such a medium may take many forms, including but not limited to, non-volatile media, non-transitory media, tangible media, volatile media, and transmission media. Non-volatile media and tangible media include, for example, optical or magnetic disks, such as memory. Volatile media include dynamic random access memory (DRAM), which typically constitutes the main memory. Common forms of computer-readable media include, for example, a floppy disk, a flexible disk, hard disk, magnetic tape, any other magnetic medium, a CD-ROM, DVD, any other optical medium, punch cards, paper tape, any other physical medium with patterns of holes, a RAM, a PROM, an EPROM or EEPROM (electronically erasable programmable read-only memory), a FLASH-EEPROM, other memory chip or cartridge, a carrier wave, or other medium from which a computer can read.
As discussed herein, passive range estimation module 31 receives both IR track data (2D target states and covariance data) and RF track data (3D target states and covariance data) and processes the data to generate passive range estimates used to form 3D IR position and velocity state estimates. This information is applied to RF/IR module 34. The result of the RF/IR correlation algorithm in block 34 is an M×N RF/IR correlation matrix (where M denotes the number of RF objects being tracked and N denotes the number of IR objects being tracked). The M×N RF/IR correlation matrix represents the confidence or probability that the ith RF object is correlated or matched with the jth IR object. The M×N RF/IR correlation matrix is applied from RF/IR correlation block 34 to RF Confusion matrix from block 36 by way of a path 35. The correlation in block 34 can be performed using a common RF and IR metric, such as position or velocity, for each tracked object of each sensor, and may be based on computing the maximum likelihood or Mahalanobis distance of every combination of RF and IR objects. If an RF object and an IR object cannot be correlated with a high level of confidence, then the correlation is low for that pairing and results in a low correlation probability within the correlation matrix.
Referring now to
The passive range estimating engagement system according to the present disclosure provides 3-dimensional states of objects travelling in a ballistic manner within an IR sensor FOV using 2-dimensional sensor angular measurements. In this method, the sensor may be located on a moving platform, including an intercepting missile. These 3D object states are used to provide improved inputs to the other engagement system modules such as RF/IR correlator 34 (
According to an aspect of the disclosure, and with reference to the process flow of
Where, {right arrow over (x)}T and {right arrow over ({dot over (x)}T are the object, or target position and velocity in ECI. The state dynamics can be described as shown below.
Where, the acceleration, {right arrow over ({umlaut over (x)}T contains a term for gravity and a higher order gravitational term, {right arrow over (a)}J2. μ is the Earth's gravitational constant and ∥●∥ denotes the magnitude of a vector.
In order to estimate the missile-to-object range, the IR sensor measurement is modeled and related to the state. The measurement model is illustrated in the
A coordinate frame attached to the interceptor missile 18 (
ĥ={circumflex over (n)}×{circumflex over (d)} eq. 6
These 3X1 vectors provide for the transformation of coordinate systems from ECI to LOS. The transformation (block 720) to a common frame (e.g. from ECI to LOS) is provided by:
In the LOS coordinate frame, {circumflex over (n)}LOS=[1 0 0]T where T is the transpose matrix. To model a measurement, {circumflex over (n)} is rotated by a small rotation representing the measurement errors. The measurements (block 730) in the LOS frame (e.g. IR sensor measurements) may then be modeled as shown below.
{right arrow over (y)}LOS=(I+[Δ{tilde over (θ)}]LOS)·{circumflex over (n)}LOS eq. 8
Where I is the identity matrix and where,
[Δ{circumflex over (θ)}] is a parameter that accounts for noise and represents a skewed symmetry of the matrix. Δψ and Δφ represent the IR sensor angular measurements, which can be approximated as small angles. The measurement then becomes: {right arrow over (y)}LOS=[1+Δψ−Δφ]T. Since there are only two independent parameters, it is convenient to express the measurement in two dimensions. A projection matrix is used to single out the components of the measurement in the sensor focal plane as:
AP=(I−{circumflex over (n)}·{circumflex over (n)}T) eq. 10
The measurement can be represented in 2D as follows.
Now that the measurement has been modeled, it can be related to the state by combining the IR sensor LOS and RF range (block 740) according to the equation:
The observation matrix H, is a mapping from the 2-dimensional LOS frame to the 3-dimensional ECI frame and uses the LOS basis vectors, {circumflex over (d)} and ĥ, and the current estimate of the missile-to-object range {circumflex over (ρ)}. Initially, this range can be obtained from data provided by the radar, or set to an arbitrary value.
Using the above measurement equation, the state may be estimated and the quality of the estimate improved over time using consecutive measurements (block 750) of IR sensor data according to eq. 12. In one embodiment, an estimation filter such as at least a six (6) state estimation filter may be utilized. This can be done using well-known methods of a recursive estimation algorithm, such as Kalman filtering, by way of non-limiting example only. The estimated state output data may be input to a correlator function (block 760) for providing improved inputs to RF/IR correlator 34 (
One implementation of the passive range estimation method according to the present disclosure may be illustrated using a Kalman filter. With reference to the process flow of
The state covariance at time step k based on the measurement from time step k, M(k|k) is propagated to the next time step (block 820). This results in the state covariance at time step k+1 based on the measurement from time step k, M(k+1|k).
M(k+1|k)=FM(k|k)FT+GWGT eq. 14
Where,
And W is a user-defined process noise, Δt is the filter time between cycles, I3x3 is a 3×3 identity matrix and 03×3 is a 3×3 matrix of zeros. The filtered state estimate at time t is propagated to the next time step (block 830).
This integral can be evaluated by many known methods, for example, a 4th Order Runge-Kutta algorithm may be implemented. The measurement variance is then calculated (block 840) as shown below:
Q=HM(k+1|k)HT+N eq. 18
where, N is the measurement noise covariance matrix, defined as shown below.
And σθ2 is the square of the 1-sigma measurement noise variance, input by the user. The Kalman gain K is then computed (block 850).
K=M(k+1|k)HTQ−1 eq. 20
The measurement updated state covariance is calculated (block 860).
M(k+1|k+1)=LM(k+1|k)LT+KNKT eq. 21
Where, L=I−KH. And the measurement updated state estimate is calculated (block 870).
{right arrow over (s)}′(k+1|k+1)={right arrow over (s)}′(k+1|k)+K[{right arrow over (y)}(k+1)−H{right arrow over (s)}′(k+1|k)] eq. 22
This process is repeated over time using consecutive measurements to develop a filtered estimate of the target state (block 880). The range estimate at each time step can be obtained as follows.
{circumflex over (ρ)}=∥{right arrow over (x)}′T−{right arrow over (x)}M∥ eq. 23
Where, {right arrow over (x)}′T={right arrow over (s)}′1-3 is the estimated target position obtained from the first three elements of the state estimate (block 890). The state covariance is a 6×6 matrix which can be divided into four 3×3 matrices, one for position MP, one for velocity MV and two cross-covariance matrices MP/V and MV/P.
To obtain the quality of the range estimate, only MP is important. Given MP, the position covariance in ECI, obtained from the first 3 rows and columns of M(k+1|k+1), the range estimate uncertainty can be obtained (block 895).
MPLOS=TECILOSMPTECILOS
σρ=√{square root over (MPLOS(1,1))} eq. 26
The 1-sigma range uncertainty standard deviation is the (1,1) element of the position error covariance matrix expressed in the LOS coordinate frame. Data representing the measurement updated state estimate {right arrow over (s)}′ or target position, and covariance data M determined as outlined in eqs. 22 and 24 above, may be provided as an output of the passive range estimation module to the input of an RF/IR correlation module shown in
As shown herein, the correlation problem can now be solved with a higher degree of certainty given this new range information. Referring back to the scenario depicted in
Thus, there has been shown a passive range estimating engagement system and method that provides 3-dimensional states of objects travelling in a ballistic manner within an IR sensor FOV using 2-dimensional sensor angular measurements. In this method, the sensor may be located on a moving platform, including an intercepting missile. These 3D object states are used to provide improved inputs to the other engagement system modules. The range derived provides an extra dimension of object separation in the RF/IR correlation algorithm, resulting in improved object selection, higher probability for engagement success, mitigation of the effects of challenging intercept geometries and improved guidance and navigation of the intercepting missile.
Thus, there is disclosed a system and method for estimating range of an object of interest in a cloud of objects of lesser interest and travelling in a ballistic manner within the field of view of an IR sensor. In one embodiment, a processor onboard the interceptor missile receives RF sensor data associated with an object, wherein the RF data includes position and velocity data in a given coordinate frame (e.g. ECI frame). The processor transforms the RF sensor data from the given coordinate frame to an IR coordinate frame and subtracts the sensor location in the IR coordinate frame to generate an initial range measurement perpendicular to the IR sensor focal plane. IR sensor data associated with an object is received and an initial line of sight (LOS) vector generated in the IR coordinate frame. The processor combines the initial range measurement represented in the IR sensor focal plane with the initial line of sight (LOS) vector in the IR sensor coordinate frame to form an initial IR 3-D state estimate. A six (6) state estimation filter (e.g. Kalman filter) is initialized to provide a position estimate using the initial IR 3-D measurement represented in the IR sensor focal plane. IR sensor data is received including IR angular measurements associated with an object to generate a line of sight (LOS) vector in the IR sensor coordinate frame. Estimation filtering is then performed using the at least 6-state estimation filter 3-D position and velocity estimates using only the IR LOS measurements as inputs to generate updated 3-D position and velocity state estimates. The process is repeated using consecutive IR sensor measurements and filtered to obtain filtered estimates of the target state and state covariance until the measurement residuals meet a given threshold criteria (e.g. steady state, given uncertainty range, and the like). Data representing the measurement updated state estimate or target position, and covariance data, may be provided as input to a correlator for performing RF/IR correlation processing. A range estimate and range uncertainty based on the above measurements may be derived and provided as input to the correlator.
Although this invention has been described with reference to particular embodiments, it is to be understood that the embodiments and variations shown and described herein are for illustration purposes only. Modifications to the current design may be implemented by those skilled in the art, without departing from the scope of the invention. Further, any of the functions and steps provided herein may be implemented in hardware, software or a combination of both and may reside on one or more processing devices located at any location of a configuration linking the elements of
Furthermore, although the invention has been described in terms of exemplary embodiments, it is not limited thereto. Rather, the appended claims should be construed broadly, to include other variants and embodiments of the invention, which may be made by those skilled in the art without departing from the scope and range of equivalents of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4817495 | Drobot | Apr 1989 | A |
5365236 | Fagarasan et al. | Nov 1994 | A |
5611502 | Edlin et al. | Mar 1997 | A |
5798942 | Danchick et al. | Aug 1998 | A |
5960097 | Pfeiffer et al. | Sep 1999 | A |
6845938 | Muravez | Jan 2005 | B2 |
6877691 | DeFlumere et al. | Apr 2005 | B2 |
7009554 | Mookerjee et al. | Mar 2006 | B1 |
7032858 | Williams | Apr 2006 | B2 |
7180443 | Mookerjee et al. | Feb 2007 | B1 |
7193557 | Kovacich et al. | Mar 2007 | B1 |
7236121 | Caber | Jun 2007 | B2 |
7277047 | Mookerjee et al. | Oct 2007 | B1 |
7292179 | Schroeder et al. | Nov 2007 | B2 |
7375679 | Mookerjee et al. | May 2008 | B1 |
7511252 | Pedersen et al. | Mar 2009 | B1 |
7626534 | Boka et al. | Dec 2009 | B1 |
7663528 | Malakian et al. | Feb 2010 | B1 |
7719461 | Mookerjee et al. | May 2010 | B1 |
7875837 | Szabo et al. | Jan 2011 | B1 |
8115148 | Boardman et al. | Feb 2012 | B1 |
8134103 | Luu et al. | Mar 2012 | B2 |
8138965 | Luu et al. | Mar 2012 | B1 |
8288696 | Boka et al. | Oct 2012 | B1 |
8378880 | Boka et al. | Feb 2013 | B1 |
8400511 | Wood et al. | Mar 2013 | B2 |
20030184468 | Chen et al. | Oct 2003 | A1 |
20060082490 | Chen et al. | Apr 2006 | A1 |
20060279453 | Caber | Dec 2006 | A1 |