The present invention relates generally to passive repeaters and more specifically to the use of passive repeaters to transfer radio frequency (RF) signals between a transmitter and receiver when a structure is located therebetween that interferes with the transmission of such signals.
In RF communications, there are instances especially within buildings and in connection with other structures such as walls or containers where these structures create a barrier to the transmission of the RF signals. Many illustrations of such RF shielding may be envisioned. However, two such scenarios will be described by way of illustration only.
First, the use of RF identification and wireless sensor technology is spreading in the supply chain and transportation industries. Goods equipped with RF tags and sensors are nested within larger containers for transport. Typical inter-modal cargo containers are constructed with steel that creates an RF barrier which limits access to the tags and sensors to the times when the containers are open, loaded, or unloaded. A solution that allows access to the tags and sensors from outside the container at any time is an attractive feature from both a logistics and a security standpoint. For all practical purposes, a metallic cabinet also acts as a RF shield for tagged items inside it. So, the term container used in this document is used to also refer to traditional metallic cabinets, or drawers.
Moreover, wireless services are often lost when a subscriber enters an elevator, since the elevator car creates an effective RF barrier. Improvements in the quality of service are always pursued by wireless service providers for competitive reasons, so a solution which offers uninterrupted access to in-building wireless services when a subscriber enters an elevator can be very compelling. Given the existing number of containers and elevators in use today, a low cost solution such as an improved passive repeater that is easily installed and does not require modification to the container or elevator is needed.
The accompanying figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views and which together with the detailed description below are incorporated in and form part of the specification, serve to further illustrate various embodiments and to explain various principles and advantages all in accordance with the present invention.
Before describing in detail embodiments that are in accordance with the present invention, it should be observed that the embodiments reside primarily in combinations of method steps and apparatus components related to a method and apparatus for a passive repeater for radio frequency communications. Accordingly, the apparatus components and method steps have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein. Thus, it will be appreciated that for simplicity and clarity of illustration, common and well-understood elements that are useful or necessary in a commercially feasible embodiment may not be depicted in order to facilitate a less obstructed view of these various embodiments.
Generally speaking, pursuant to the various embodiments, a passive repeater is described that may be implemented using low cost flex circuitry, for example. The repeater can be easily installed on a structure without necessarily having to modify the structure and includes: a connecting transmission circuit having first and second opposing ends and made of a flexible material for substantially conforming to a portion of a structure, the structure having first and second opposing sides; first and second antenna elements respectively coupled to the first and second opposing ends of the connecting transmission element; and first and second affixing elements respectively coupled to the first and second antenna elements for attaching the first and second antenna elements to the first and second opposing sides of the structure, wherein the first and second antenna elements are operable to transfer a signal from the first opposing side of the structure to the second opposing side of the structure via the connecting transmission circuit.
In one embodiment the antenna elements also comprise a flexible material and form an integral unit with the transmission circuit. The repeater may accommodate a single band or may be multi-band and may be substantially planar for ease of installing the repeater through openings in the structure and for further maximizing the area of the repeater that attaches and conforms to the structure. Those skilled in the art will realize that the above recognized advantages and other advantages described herein are merely exemplary and are not meant to be a complete rendering of all of the advantages of the various embodiments of the present invention.
Referring now to the drawings, and in particular
Turning first to the connecting transmission circuit 116, this circuit is constructed having a predetermined shape and dimensions (e.g., sufficiently thin and flat) and comprising a flexible material to enable the circuit to be easily inserted through an existing seam or opening of a structure (if necessary) without physically modifying the structure and to enable the circuit to be substantially conformed to a portion of a structure in a manner that causes no mechanical interference at the seam of the structure. As will be seen in more detail below, seams that exist around a door or access panel or between wall, floor and/or ceiling panels provide potential installation points. Herein, substantially conformed means that at least a portion of the transmission circuit is bent or flexed to conform to the shape (and/or dimensions) of a portion of a structure to an extent needed to enable (or not interfere with) the continued proper functioning of the portion and/or to an extent needed to enable (or not interfere with) the proper functioning of the passive repeater.
As stated above, connecting transmission circuit 116 is comprised of a flexible material such as the thin flexible substrate used in flex circuits, wherein conductive ink is typically printed on the substrate to form the conductive traces of the circuit. Since processes for manufacturing flex circuits are well known in the art, the details of such processes will not be included herein for the sake of brevity. However, in a flex circuit embodiment, transmission circuit 116 would comprise a plurality of layers that could be formed by appropriately folding the substrate along predetermined lines to create the multiple layers and allow for appropriately thick dielectrics to be used. A suitable adhesive layer between the circuit's multiple layers could be used to maintain structural integrity of the circuit, and high density interconnect (HDI) techniques, such as inductive loading of a ground plane, could also be employed to realize wider traces since the substrate would be very thin. Alternatively, the multilayer construction of repeater 100 could be realized using more conventional printed circuit board techniques employing vias, but at an increased cost.
In the embodiment illustrated in
Antenna elements 102, 108 can be manufactured and implemented in a variety of ways depending on the particular application for which the passive repeater is used, the manufacturing processes including those described above for manufacturing the transmission circuit. In the embodiment illustrated in
In accordance with a microstrip construction, antenna elements 102, 108 each comprise a first conducting panel (not shown), a dielectric layer 104, 110 overlaying this conductive panel and a conductive patch 106, 112 on top of the dielectric layer. Patch antenna elements 102, 108 are illustrated as single patch element operable to transfer RF signals over a single frequency band. One or both of the patch antennas may in another embodiment be operable to accommodate multiple air interfaces to transfer RF signals over multiple frequency bands by, for example, being constructed as a stacked patch antenna as is well known in the art. In further embodiments, one or more of the antenna elements may be constructed as a dipole antenna element, a slot antenna element, or a spiral antenna element as is also well known in the art.
Passive repeater 100 further comprises at least two affixing elements (not shown) attached respectively to the conductive panel of antenna element 102 and antenna element 108 (i.e., attached to the reverse side of the antenna elements 102, 108). The affixing elements are used to attach the repeater to a structure. In an embodiment, repeater 100 may further comprise an affixing element attached to a conductive panel of the transmission element, which lies in the same plane as the antenna conductive panels to which the two other affixing elements are attached. This additional affixing element may be a separate piece from the other affixing elements or an integral piece formed from one contiguous piece of material.
The affixing elements can be constructed using any suitable means. For example in one low cost implementation, one or more of the affixing elements may comprise an adhesive element that includes, for instance, a polyimide film or a paper material with adhesive on both sides, wherein one side of the adhesive is affixed to a conductive panel and the other side of the adhesive is affixed to another piece of material (e.g., polyimide film, paper, etc.). When attaching the repeater to a structure, for example in accordance with
In an alternative embodiment, one or more of the affixing elements may be implemented as a magnetic structure having, for instance, a first and second substantially planar magnetic element (that magnetically couple to each other), wherein one of the magnetic elements is non-magnetically (e.g., via an adhesive) attached to a conductive panel and the other magnetic element is generally (although not necessarily) magnetically coupled to the structure. Other embodiments of affixing elements include, but are not limited to, a Velcro structure having two pieces with one piece affixed to a conductive panel and the other to a surface of the structure so that the mating of the two Velcro pieces attaches the repeater to the structure. Any suitable latching mechanism may also comprise one or more of the affixing elements and is within the scope of the teachings herein.
Further, optionally, comprising repeater 100 (but not shown for ease of illustration) are transition circuits that couple and complete electrical connections between the transmission circuit and the antenna elements coupled on each of its opposing ends. For example, where as illustrated in
The dimensions of the antenna elements and the connecting transmission circuit comprising repeater 100 are predetermined based on a number of factors. Those factors include, but are not limited to, the manufacturing process and corresponding materials used to manufacture the antenna elements and transmission circuit, the radio frequencies accommodated, the expected strength of the RF signals being transferred from one opposing side of the structure to the other opposing side based on, for example, the distance of the antenna elements from a transceiver source located beyond either or both of the opposing sides of the structure, etc.
Generally, as shown in
From the bottom conductive layers to the top of the antenna elements and transmission circuit, the thickness or height may be substantially the same thickness, as in the embodiment illustrated in
In addition, it is desirable that the dimensions of the antenna elements and transmission circuit are such that the repeater does not interfere mechanically with the structure (such as the opening and closing of doors and access panels) and such that the repeater can be inserted through an existing opening in the structure without physically modifying the structure. For example, where the structure is enclosed and includes an opening or slot having a given height, it would be desirable that the height of the repeater at its thickest point be less than the height of the slot. In addition, it is desirable that the relevant portions of the repeater to be inserted through the opening have dimensions capable of being conformed to a shape having an effective cross-section that is smaller than a cross-section of the opening.
Turning now to
Structure 202, as illustrated, is an enclosed structure which may be, for example, an inter-modal container housing products that each has affixed thereto an RFID tag or may be an elevator that may hold a person using a communication device that transmits and receives RF signals. However, the application of the principles of the invention described herein is not limited to these types of enclosed structures. A repeater in accordance with embodiments of the present invention may be attached to other types of enclosed structures such as rooms that may be encased in metal or attached to different kinds of structures that are not enclosed such as walls.
A repeater in accordance with embodiment of the present invention can in addition to or in the alternative be attached through a door jamb 212 of the enclosed structure with one antenna element attached on an outside surface 214 of the structure perpendicular to the plane of the doorjamb and the other antenna element (not shown) attached on an inside surface of the structure perpendicular to the door jamb and having the transmission circuit substantially conforming to the shape and dimensions of the portion of the door between the inside surface and outside surface of the structure, which is an angle traversed by the transmission circuit. Again, the transmission circuit ideally has a thickness such that it does not interfere with the door being in its completely closed position and is sufficiently flexible to be bent at an angle from substantially zero degrees to substantially 360°. The first and second above-described positioning of the repeater 100 is useful, for example, when the enclosed structure is a container having doors or is a room.
In a third positioning, the repeater 100 is attached to an access panel 204 (such as may be found on an elevator, for instance) with one antenna element attached on the outside 210 of the access panel and the other antenna element (not shown) attached on the inside of the access panel and having the transmission circuit substantially conforming to the shape and dimensions of the portion of the access panel between the inside and outside of the access panel wherein an angle of, for example, substantially 360° is traversed by the transmission circuit. The transmission circuit ideally has a thickness such that it does not interfere with the access panel being in its completely closed position and is flexible enough to be bent to an angle of substantially 360°.
In addition as illustrated in
At a step 306, the transmission circuit is substantially conformed to a portion of the structure between the two opposing sides in a manner described above. Finally, at steps 308 and 310, the affixing elements are attached to the opposing sides of the structure to secure the repeater in place. Once installed, the antenna elements operate to transfer RF signals between the two opposing sides of the structure (e.g., between the outside and inside of an enclosed container or room, or around a wall) via the transmission circuit. The installation examples given above are directed toward an embodiment of the novel repeater wherein the antenna elements and transmission circuit are pre-assembled. However, applications where the passive repeater is assembled (e.g., the antenna elements are operably coupled to the transmission circuit) during installation on the structure are also within the scope of the teachings herein.
In the foregoing specification, specific embodiments of the present invention have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the present invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present invention. The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as critical, required, or essential features or elements of any or all the claims. The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.
Moreover in this document, relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” “has”, “having,” “includes”, “including,” “contains”, “containing” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises, has, includes, or contains a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises . . . a”, “has . . . a”, “includes . . . a”, “contains . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises, has, includes or contains the element. The terms “a” and “an” are defined as one or more unless explicitly stated otherwise herein. The terms “substantially”, “essentially”, “approximately”, “about” or any other version thereof, are defined as being close to that understood by one of ordinary skill in the art, and in one non-limiting embodiment the term may be defined to be within 10%, in another embodiment within 5%, in another embodiment within 1% and in another embodiment within 0.5%. The term “coupled” as used herein is defined as connected, although not necessarily directly and not necessarily mechanically. A device or structure that is “configured” in a certain way is configured in at least that way, but may also be configured in ways that are not listed.
Number | Name | Date | Kind |
---|---|---|---|
3657652 | Smith | Apr 1972 | A |
4001834 | Smith | Jan 1977 | A |
5262590 | Lia | Nov 1993 | A |
5600333 | Justice et al. | Feb 1997 | A |
6232923 | Guinn et al. | May 2001 | B1 |
20020119748 | Prax et al. | Aug 2002 | A1 |
20040110469 | Judd et al. | Jun 2004 | A1 |
20040192285 | Capobianco et al. | Sep 2004 | A1 |
Number | Date | Country |
---|---|---|
WO01024407 | May 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20070205946 A1 | Sep 2007 | US |