Turning now to these figures,
In an alternate embodiment, as shown in schematic perspective view in
The base fabric 30 may alternatively be composed of mesh fabrics, such as those shown in commonly assigned U.S. Pat. No. 4,427,734 to Johnson, the teachings of which are incorporated herein by reference. Further, the base fabric 30 may be produced by spirally winding a strip of woven, nonwoven, knitted, braided or mesh material according to the methods shown in commonly assigned U.S. Pat. No. 5,360,656 to Rexfelt et al., the teachings of which are incorporated herein by reference. The base fabric 30 may accordingly comprise a spirally wound strip, wherein each spiral turn is joined to the next by a continuous seam making the base fabric 30 endless in a longitudinal direction.
The base fabric 30 may be endless, or, as shown in
One or more layers of staple fiber batt material 40 are applied to the outside of base fabric 30, and optionally to the inside as well, and constituent fibers thereof are driven into base fabric 30 by needling. The attachment is effected so as to leave a layer of staple fiber batt material 40 on the outside, and optionally on the inside, of the base fabric 30.
A fine fabric 44 is then disposed on the staple fiber batt material 40 on the outside of the base fabric 30. The fine fabric 44 may be woven or nonwoven, and may be endless, flat-woven or spiraled onto the staple fiber batt material 40. As depicted in
More generally, fine fabric 44, like base fabric 30, may be a woven, nonwoven, nonwoven arrays of MD or CD oriented yarns, knitted or braided structure of yarns of the varieties used in the production of paper machine clothing, such as monofilament, plied monofilament and/or multifilament yarns extruded from polymeric resin materials. Resins from the families of polyamide, polyester, polyurethane, polyaramid and polyolefin resins may be used for this purpose.
Fine fabric 44 may alternatively be composed of mesh fabrics, such as those shown in commonly assigned U.S. Pat. No. 4,427,734 to Johnson, the teachings of which are incorporated herein by reference. Further, the fine fabric 44 may be produced by spirally winding a strip of woven, nonwoven, knitted, braided or mesh material according to the methods shown in commonly assigned U.S. Pat. No. 5,360,656 to Rexfelt et al., the teachings of which are incorporated herein by reference. The fine fabric 44 may accordingly comprise a spirally wound strip, wherein each spiral turn is joined to the next by a continuous seam making the fine fabric 44 endless in a longitudinal direction.
If fine fabric 44 is endless, it may be disposed on staple fiber batt material 40 in the manner of a sleeve or sock. Moreover, where fine fabric 44 is endless, or spiraled onto staple fiber batt material 40 in accordance with the teachings of U.S. Pat. No. 5,360,656, and base fabric 30 is on-machine-seamable as depicted in
In any event, fine fabric 44 is so called because its component yarns and/or mesh material are finer (smaller size or diameter, thinner or of smaller denier) that those of base fabric 30, and its mesh is finer than that of base fabric 30. As an example, the fine fabric 44 may have openings no larger than 0.50 mm in any dimension.
Finally, one or more layers of staple fiber batt material 50 are applied to the outside of fine fabric 44, and constituent fibers thereof are driven into and entangled within fine fabric 44 by needling. The attachment is effected so as to leave a layer of staple fiber batt material 50 on the outside of the fine fabric 44.
Staple fiber batt material 40 and staple fiber batt material 50 may comprise staple fibers of any polymeric resin used in the production of paper machine clothing, but are preferably of a polyamide resin. The staple fibers making up staple fiber batt material 50 may have a smaller cross-sectional size or diameter or denier than those of staple fiber batt material 40. For example, the staple fibers of stable fiber batt material 50 may be of 6 denier, while staple fibers of staple fiber batt material 40 may be of 24 denier.
In contrast to the stratified press fabrics of the prior art, the fine fibers of staple fiber batt material 50 are separated from the relatively coarser fibers of staple fiber batt material 40 by fine fabric 44. The fine fabric 44 limits the amount by which the fine fibers of staple fiber batt material 50 penetrate into staple fiber batt material 40 and base fabric 30 during the needling of staple fiber batt material 50.
Moreover, when the backside of the press fabric 10 is needled, following the attachment of staple fiber batt material 50 to the face side, the fine mesh of fine fabric 44 prevents the transport of the relatively coarser staple fibers of staple fiber batt material 40 into the staple fiber batt material 50.
In the stratified press fabrics of the prior art, the fine fiber portion may be as great as 75% fine fiber after needling, while the coarse fiber portion may be as great as 75% coarse fibers, with the remaining 25% of the fibers in each portion being fibers of the opposite kind, driven thereinto by the needling. There is also an intermediate region at the interface between the fine and coarse fiber portions where the fine and coarse fibers are mixed. The present invention may eliminate or substantially reduce this mixing. As a result, there may be little or no coarse fibers of staple fiber batt material 40 on the face side of the press fabric 10.
In addition, fine fabric 44 provides press fabric 10 with added compaction resistance while minimally impeding water flow.
Among the advantages of the present stratified press fabric 10 are its superior smoothness characteristics, which result from its homogeneous layer of face side batt. This surface layer imparts a smoother surface to the wet paper web it contacts within a press nip.
The present stratified press fabric 10 minimizes rewet because the homogeneous layer of fine face side batt permits less water to return to the paper web following exit from a press nip compared to the press fabrics of the prior art. The same uniformity of the pressing surface maximizes the dryness of the paper sheet following exit from the nip. Moreover, the fine, homogeneous, smooth face side batt makes the press fabric 10 less prone to sheet blowing upon approach to a press nip, and reduces sheet marking because of its lack of needle tracks.
Of course, the fine fabric 44 is desirably “fine” enough not to mark a paper web through the staple fiber batt material 50 needled thereover, and to prevent relatively coarse staple fiber batt material 40 from mixing with the relatively fine staple fiber batt material 50 during the needling process. Furthermore, the fine fabric 44 may be “fine” enough to inhibit the transport of fibers 50 therethrough and have enough structural integrity to withstand the needling process.
Additionally, fine fabric 44 may be woven or knitted structures produced using yams (warp and weft) having diameters in the range from 0.04 mm to 0.50 mm. Such yams may have the same or different diameters or deniers. Further, the yarns may be extruded from polyamide, polyurethane, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyolefin and other polymeric resins commonly used for this purpose by those of ordinary skill in the art.
As an example, the fine fabric 44 may be woven from 0.25 mm polyamide warp yams and 0.25 mm polyamide weft yams, and have eighteen (18) of each per centimeter. Such fabric may have openings, which are approximately 0.30 mm by 0.30 mm, and which are sufficiently small to prevent the needling of coarse batt fibers therethrough from the inner side of the base fabric.
In another example, the fine fabric 44 may be woven from 0.19 mm polyethylene monofilament warp yarns and 0.25 mm polyethylene monofilament weft yams, at a density of 21.4 warp yarns per centimeter and 18 weft yams per centimeter. Such fabric may have openings which are approximately 0.28 mm by 0.30 mm.
Fine fabric 44 may alternatively be extruded of molded films, and may be perforated or unperforated. In the latter case, perforations will be made during the needling process. Nonwovens or spun-bonded materials may also be used.
Furthermore, this stratified/layered approach can be used to provide a passive sensor system for detecting wear in the press fabric. Namely, the lower (non-surface) layers of the stratified fabric can be produced using colored batt material. As the surface of the fabric is worn away by use, the colored batt material is exposed to provide a visual indication of the wear. For example, the stratified press fabric shown in
Modifications to the above would be obvious to those of ordinary skill in the art, but would not bring the invention so modified beyond the scope of the appended claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US03/39438 | 12/11/2003 | WO | 00 | 4/10/2007 |