The present disclosure relates to the treatment of conditions that may be caused by increased resistance or at least a partial occlusion of airways, which may include conditions such as snoring or sleep apnea. More specifically, the present disclosure relates to a device for the regulation or pressurization of exhaled air and maintaining airway integrity.
Snoring and other sleep conditions such as apnea or hypopnea may commonly be caused by increased resistance and/or at least a partial occlusions in a person's airway. Increased resistance and obstruction may cause the oxygen levels in a person's blood to decrease and carbon dioxide levels to increase. In addition, increased resistance and/or at least a partial obstruction will cause sleep disruption. It is believed that these occlusions may be caused by conditions such as defects in the nasal septum, obesity, use of sedatives, alcohol or drugs, neuromuscular disease, weak respiratory muscles, collapse of the soft wall tissue in the airways, enlarged glands or nodes in the throat, etc. Current treatments may include the use of CPAP, APAP or VPAP machines; however, these machines require the use of an air compressor or other device to supply airway pressure.
An aspect of the present disclosure relates to a device for treating sleep apnea and/or other sleep conditions. The device may include a lower mouthpiece, including a locating device, an upper mouthpiece, including a housing, and a valve body, insertable into the housing. The valve body may include a channel having a slot defined therein for receiving the locating device in the slot and at least one passageway. In addition, the device may also include a first valve portion including a slider, wherein the valve is insertable into the at least one passageway, and a port, including a slide guide configured to slide-ably receive the slider.
Another aspect of the present disclosure relates to a system including the above device in combination with a nose piece. The nose piece may include, for example, a nose clip or a mask.
A further aspect of the present disclosure relates to a method of treating sleep apnea or other sleep conditions. The method may include positioning into a mouth a device including a lower mouthpiece, wherein the lower mouthpiece may include a locating device; an upper mouthpiece, wherein the upper mouthpiece may include a housing; a valve body, insertable into said housing, wherein the valve body may include a channel having a slot defined therein for adjustably receiving said locating device in said slot, and at least one passageway. The device may also include a first valve portion, insertable into the at least one passageway, wherein the first valve portion may include a slider and a port, including a slide guide configured to slide-ably receive the slider.
The features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
a is a rear perspective view of a lower mouthpiece of an example of a device contemplated herein;
b is a rear view of the lower mouthpiece of
c is a bottom view of the lower mouthpiece of
a is a rear perspective view of an example of an upper mouthpiece and housing contemplated herein;
b is a rear view of the upper mouthpiece and housing of
c is cross-sectional view A-A of the upper mouthpiece and housing illustrated in
d is a cross-sectional view B-B of the upper mouthpiece and housing illustrated in
e is a bottom view of the upper mouthpiece and housing of
a is a rear perspective of an example of a valve body contemplated herein;
b is a rear view of the valve body of
c is a cross-sectional view A-A of the valve body of
d is a cross-sectional view B-B of the valve body of
e is a rear view of the valve body of
f is a bottom view of the valve body of
a is a rear perspective view of an example of a first valve portion contemplated herein;
b is a side view of the valve portion of
a is a rear perspective view of an example of a second valve portion;
b is a side view of the second valve portion of
c is a top view of the second valve portion of
a illustrates a rear perspective view of a port contemplated herein;
b is a rear view of the port of
c is a front view of the port of
The present device relates to a mask and/or a mouthpiece device that pressurizes exhaled air to increase the pressure in the airway of a person during the rest portion of the respiratory cycle and maintaining the airway at least partially dilated through the entire respiratory cycle. An airway may be understood as those parts of the respiratory system through which air may flow. Accordingly, as illustrated in
During the respiratory cycle, increased airway resistance or partial airway collapse may occur between the posterior end of the nasal septum and/or the epiglottis. Airway resistance and/or partial occlusion may be influenced by forces that may promote the collapse of the airway. Pressure which may promote at least a partial collapse may include pressure exerted on the airway by soft tissues and negative airway pressure created by the diaphragm. On the other hand however, airway resistance, or at least partial occlusion may be counteracted by forces that may cause dilation in the airway. Such dilation forces may include the action of pharyngeal dilator muscles and/or longitudinal traction of the airway from lung inflation. When forces that promote collapse of the airway overcome those forces that may otherwise dilate the airway, resistance or at least a partial occlusion of the airway may occur.
Accordingly, the device described herein may be utilized to increase pressure in the airway during the periods of exhalation and rest during the respiratory cycle, which may provide further dilation forces. The device may enclose the mouth and/or nose such that air may be substantially prevented from exiting the interface between the device and the mouth and/or nose area, allowing for pressure to develop between the device and the airway of a patient in the range of 0.1 to 30 cm H2O, including all values and increments therein. The device may include one or more ports into which one or more valves may be affixed or formed integral to. Such valves may provide uni-directional or bi-directional flow to accommodate for inhaled and exhaled air.
An exemplary device is illustrated in
The valve for regulating exhalation may be a relief valve, which may be adjustable and set to a desired pressure such that upon meeting or exceeding such pressure, exhaled air may be released from the valve. The valve may include, for example, a PEEP valve or a spring loaded check valve. The valve may be used to generate positive end-expiratory pressure in the range of about 1 to 30 cm H2O, including all values and increments therein. As noted above, the valve may rely on the use of a spring or the valve may rely on a resilient material to pressurize the airway. Accordingly, a desired airway pressure may be developed and may be maintained during the exhalation and rest portions of the respiratory cycle.
It should therefore be appreciated, that the pressure created in the airway during exhalation due to the presence of the pressure relief valve may remain above atmospheric pressure once the respiratory cycle is completed. Such pressure may promote the patency of the airway and help overcome those forces that may promote airway collapse. In addition, due to the increased pressure in the airways, the amount of air left in the lungs at the end of respiration, known as functional residual capacity (FRC), may be greater than without the device. This may lead to increased longitudinal traction of the airways, which may also promoting airway patency.
The inhalation valve, to provide air into the airway, may be a one-way valve, such as a check valve. Upon inhalation, the one way valve may open and then upon exhalation, the valve may close. The valve may assume a number of configurations and may be formed from a flap, membrane, disc or a duckbill valve. The valve may have a resistance to flow in the range of about 0.1 to 1.0 cm H2O at a flow rate of 2 L/min, including all values and increments therein.
A further exemplary aspect of the device is illustrated in
In addition, in another aspect other valve types may be utilized in the device. Additional valves may, for example, prevent the back flow of exhaled air, such as a check valve, which may be incorporated inline between the exhalation regulating valve and the port. Or, additional valves may provide for access ports in case of an emergency or failure of other valves in the device. In other embodiments, at least one port may be configured to include a T or Y connector 50 as illustrated in
Accordingly, as can be seen from the aspects described above, at least one flow port and at least one valve may be provided in the system to accommodate for inhaled and/or exhaled air. In another aspect, at least two ports may be provided to accommodate for inhaled and exhaled air. It should be appreciated that while the illustrations above provide a single valve for inhalation and a single valve for exhalation, more than one valve may be provided for each function. In addition, the individual valve functions, i.e., inhalation and exhalation, may be combined into a single valve structure. Accordingly, a valve may be understood herein as a body which includes mechanisms, such as springs, flaps, membranes, etc., to provide and/or regulate the passage of air or another gas through the a body.
In another aspect, a mask may be provided wherein only the mouth is covered. In such a manner, the nose may be retained in a closed position, such that air does not pass through the nose, utilizing a nose clip. Furthermore, the mask may only cover the nose and in such a situation, the mouth may be enclosed utilizing a mouthpiece or clamp.
Referring back to
The mask may be formed of a thermoplastic material, such as acrylic, polycarbonate, polystyrene, etc. The retention device may be formed from, for example, an elastomeric or rubber material. The seal or cushion may be formed from silicone, rubber, elastomeric material or a combination thereof.
The mask may also include or be used in combination with a mandibular advancement device. The mandibular advancement device may be a mouthpiece inserted into the mouth to hold the tongue away from the back of the airway or to hold the lower jaw slightly forward relative to its natural relaxed position. Accordingly, the mandibular advancement device may counteract the pressure of the soft tissues, promoting airway patency. The mouthpiece may be formed integrally into the mask or may be removably affixed to the mask.
Another exemplary device is illustrated in
The mouthpiece may also be used as a mandibular advancement device, as described above. Accordingly, in such a manner, the wall 65 and the bridge 66 of the mouthpiece may be formed to position the jaw in a slightly forward position relative to a natural relaxed position or the bridge may be replaced by retaining device capable of holding the tongue in a forward position, such that it does not fall back towards the airway.
In a further example, illustrated in
As illustrated in
a and 9b illustrate an example of an upper mouthpiece 90. Again, the upper mouthpiece 90 may be generally “U” shaped and define a cavity 92 for accommodating at least a portion of the upper teeth and/or gums. Once again, the sides of the mouthpiece 94 and 96 may extend to about the same length or may be different lengths. The upper mouthpiece 90 may also include a housing 98 for receiving at least a portion of the valve body (76 of
c illustrates the housing taken at cross section A-A of
In addition, as illustrated in
Referring back to
An example of a valve body is illustrated in
Illustrated in
The first valve portion may be configured to unseat from the valve body upon the application of a given pressure developed in the airway upon exhalation. The pressure may be determined and adjusted for a given user. The valve may then remain open while the given pressure is exceeded and once the pressure falls below the given pressure, the valve may reseat. Reseating of the valve may occur due to gravity, i.e., the weight of the valve, or due to the assistance of a spring affixed to the valve body or a second valve portion.
An example of a second valve portion 1200 is illustrated in
When exhalation pressure is exerted on the first valve portion, and reaches and/or exceeds a given pressure, the magnets may separate or the spring may extend allowing for the first valve portion to unseat and slide forward and air to escape the valve body. After the given pressure is no longer exceeded, the first valve portion may then slide back to its seated position due to the forces exerted by the magnets, relaxation of the springs or gravity.
During inhalation, the first valve portion may remain seated and valve flaps 914 and 916 located in the housing 98 (illustrated in
Referring back to
Furthermore, the valve body may also include a channel 1020 including a slot 1022 (also alluded to above) for receiving the locating device of the lower mouthpiece (88, illustrated in
In addition, an intake/exhalation port may be provided as illustrated in
Furthermore, the port 1300 may include two locating screw holes or guides 1314 and 1316. Adjustment screws may be inserted into the screw holes or guides, extending into the valve body (as illustrated by 1032 and 1034 of
The mouthpieces described herein may be formed from a moldable plastic material. The material may be either a thermoplastic or a thermoset. For example, the mouthpiece may be formed from a thermoplastic material that may be boiled, causing the thermoplastic material to become shapeable and upon cooling capable of retaining a formed shaped. In addition, the mouthpiece may be formed from a thermoset material that may be cast into impressions of an individual's mouth/teeth. Furthermore, the material may be relatively flexible.
The valve body and/or valve portions may be formed of a thermoplastic material, such a polystyrene, nylon, acrylic, polycarbonate, etc. In addition, the valve body or valve portions may be formed of a relatively hard natural or synthetic rubber, silicone or a thermoplastic elastomer. In addition, the port may also be formed of similar materials.
During use the device may be positioned into the mouth of the patient and the position of the lower mouthpiece may be adjusted relative to the upper mouthpiece by moving the locating device in said slot to provide mandibular advancement. In addition, the device may be used in combination with a nose piece, such as a clip, plugs, or other device to prevent the inhalation or exhalation of air through the nose. Furthermore, the above may be integrated into a mask as described above.
Accordingly, in a broad aspect, the combination of the mouthpiece and a pressure relief valve may be employed in a method to raise pleural pressure through out expiration and while the respiratory system is at rest. The positive pressure in the airway in combination with mandibular repositioning may be pressurize the airway during the rest portion of the respiratory cycle and maintain the airway at least partially dilated through the entire respiratory cycle.
A further aspect of this disclosure therefore relates to a system, device and/or method for treating sleep conditions that may include a device capable of enclosing the mouth and/or nose of a person having at least one port defined therein, including a relief valve and an inhalation valve. The system may also include a mandibular advancement device capable of being inserted into the mouth of said person.
Another aspect of this disclosure relates to a device for treating sleep conditions comprising a mask having at least one port defined therein, including a relief valve and an inhalation valve. The device may also have a mandibular advancement device affixed to the mask.
In addition, a further aspect of this disclosure relates to a device for treating sleep conditions including a mandibular advancement device capable of being inserted into the mouth of a person, having a at least one port defined therein, including a relief valve and an inhalation valve.
The foregoing description of several methods and an embodiment of the invention has been presented for purposes of illustration. It is not intended to be exhaustive or to limit the invention to the precise steps and/or forms disclosed, and obviously many modifications and variations are possible in light of the above teaching.
The present application claims the benefit of U.S. provisional patent application number 60/913,409 filed on Apr. 23, 2007, the disclosure of which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
60913409 | Apr 2007 | US |